Deep Learning Model for Analyzing EEG Signal Analysis
To analyze the physiological information within the acquired EEG signal is very cumbersome due to the possibility of several factors, viz. noise and artifacts, complexity of brain dynamics, and inter-subject variability. To address these issues, this paper compares a U-shaped encoder-decoder network...
Uložené v:
| Vydané v: | IEEE access Ročník 13; s. 91034 - 91045 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To analyze the physiological information within the acquired EEG signal is very cumbersome due to the possibility of several factors, viz. noise and artifacts, complexity of brain dynamics, and inter-subject variability. To address these issues, this paper compares a U-shaped encoder-decoder network (UNET) and Bat-based UNET signal analysis (BUSA) techniques to classify depression rates in the Electroencephalogram (EEG) datasets. The main objective of including these two techniques is to reveal their effectiveness. It comprises pre-processing, feature extraction, feature selection, and classification stages. The framework excels at noise reduction during pre-processing, enhancing dataset integrity. Feature extraction leverages band power and correlation dimension to extract crucial features. Furthermore, feature selection optimizes classification accuracy by refining the fitness function of bats in the classification layer. The performance of UNET and BUSA are compared based on the following performance evaluating parameters viz. accuracy (Acc), Area Under the Curve (AUC), precision (P), and recall (R) (or sensitivity (Se)). The results indicated that the BUSA technique outperforms the UNET technique. |
|---|---|
| AbstractList | To analyze the physiological information within the acquired EEG signal is very cumbersome due to the possibility of several factors, viz. noise and artifacts, complexity of brain dynamics, and inter-subject variability. To address these issues, this paper compares a U-shaped encoder-decoder network (UNET) and Bat-based UNET signal analysis (BUSA) techniques to classify depression rates in the Electroencephalogram (EEG) datasets. The main objective of including these two techniques is to reveal their effectiveness. It comprises pre-processing, feature extraction, feature selection, and classification stages. The framework excels at noise reduction during pre-processing, enhancing dataset integrity. Feature extraction leverages band power and correlation dimension to extract crucial features. Furthermore, feature selection optimizes classification accuracy by refining the fitness function of bats in the classification layer. The performance of UNET and BUSA are compared based on the following performance evaluating parameters viz. accuracy (Acc), Area Under the Curve (AUC), precision (P), and recall (R) (or sensitivity (Se)). The results indicated that the BUSA technique outperforms the UNET technique. |
| Author | Singh, Saurabh Prince Gupta, Varun Kumar, Vivek Ra, In-Ho Lee, Young-Seok |
| Author_xml | – sequence: 1 givenname: Varun orcidid: 0000-0002-0390-9266 surname: Gupta fullname: Gupta, Varun organization: Department of Electronics and Communication, National Institute of Technology Sikkim, Namchi, India – sequence: 2 givenname: Vivek orcidid: 0000-0001-9285-2857 surname: Kumar fullname: Kumar, Vivek organization: Department of Electrical and Electronics Engineering, National Institute of Technology Sikkim, Namchi, India – sequence: 3 orcidid: 0000-0002-5878-7227 surname: Prince fullname: Prince organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, Republic of Korea – sequence: 4 givenname: Saurabh surname: Singh fullname: Singh, Saurabh organization: Department of AI and Bigdata, Woosong University, Daejeon, Republic of Korea – sequence: 5 givenname: Young-Seok surname: Lee fullname: Lee, Young-Seok organization: School of Computer and Software, Kunsan National University, Gunsan, Republic of Korea – sequence: 6 givenname: In-Ho orcidid: 0000-0002-3936-1116 surname: Ra fullname: Ra, In-Ho email: ihra@kunsan.ac.kr organization: School of Software, Kunsan National University, Gunsan, Republic of Korea |
| BookMark | eNpNUE1PAjEQbQwmovIL9LCJZ3Db6cf2SBCVBOMBPTelnZIluMUWDvjrXVximMvMvMx7M_OuSa-JDRJyR8sRpaV-HE8m08VixEomRiAkKFlekD6jUg9BgOyd1VdkkPO6bKNqIaH6RDwhbos52tTUzap4ix43RYipGDd2c_g5YtPpS7GoV23fgbnOt-Qy2E3GwSnfkM_n6cfkdTh_f5lNxvOhA0l3Q10F4ZUH1EFRx7znpdQBKHLNqPIWl94uaXuLU0uhUSrPHVMAjKEMwTm4IbNO10e7NttUf9l0MNHW5g-IaWVs2tVug0ZVVqD1oErOubPCouUVOAbOMhqcbLUeOq1tit97zDuzjvvUPpQNMAqaaeCinYJuyqWYc8Lwv5WW5mi36ew2R7vNye6Wdd-xakQ8Y2jFtajgF0Ove7E |
| CODEN | IAECCG |
| Cites_doi | 10.1007/s12652-023-04746-y 10.1007/s11277-022-09678-y 10.1016/j.bspc.2021.102749 10.1016/j.jad.2019.05.070 10.1007/s11277-024-10916-8 10.1504/ijbra.2024.137372 10.1504/IJMEI.2023.129353 10.1016/j.compbiomed.2024.108329 10.1007/s11277-023-10326-2 10.1007/s40031-022-00831-6 10.1007/s40031-022-00783-x 10.1007/s11063-016-9530-1 10.1007/s13755-021-00139-7 10.1007/s11277-024-11409-4 10.1016/j.cub.2018.11.052 10.1007/s10470-018-1249-7 10.1504/IJBRA.2025.145103 10.1109/LSP.2019.2906824 10.1007/s11042-018-5885-9 10.1007/s11277-022-10076-7 10.1109/ICCP.2017.8117036 10.1016/j.future.2019.06.027 10.1007/s12652-023-04715-5 10.1016/j.compbiomed.2024.108510 10.1007/s11042-023-15462-2 10.1016/j.compbiomed.2021.104757 10.1080/03772063.2019.1575292 10.1007/s12652-023-04582-0 10.1007/s11277-020-07253-x 10.1007/s11277-020-07675-7 10.1016/j.eswa.2020.113285 10.1049/iet-bmt.2017.0160 10.1080/03772063.2023.2220698 10.1504/IJBRA.2024.137369 10.1504/IJESMS.2025.144881 10.1504/IJBRA.2022.121758 10.1007/s11277-021-09389-w 10.1016/j.eswa.2023.122777 10.1007/s12652-022-04469-6 10.1007/s40031-021-00693-4 10.1016/j.clinph.2020.04.172 10.1016/j.eswa.2018.08.031 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3563760 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (IEEE/IET Electronic Library - IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 91045 |
| ExternalDocumentID | oai_doaj_org_article_78a5ead370444ca5aea483c23ca21fc6 10_1109_ACCESS_2025_3563760 10974958 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (MOE) grantid: 2023RIS-008 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-98f5d7d3e9f71c2dd4069f31e49217daebdab1081c7b59e67d4c273322e6ffcc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499536700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:21 EDT 2025 Wed Oct 08 03:46:55 EDT 2025 Sat Nov 29 07:49:04 EST 2025 Wed Aug 27 01:49:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-98f5d7d3e9f71c2dd4069f31e49217daebdab1081c7b59e67d4c273322e6ffcc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3936-1116 0000-0002-5878-7227 0000-0001-9285-2857 0000-0002-0390-9266 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10974958 |
| PQID | 3213929345 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_78a5ead370444ca5aea483c23ca21fc6 crossref_primary_10_1109_ACCESS_2025_3563760 ieee_primary_10974958 proquest_journals_3213929345 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 (ref28) 2024 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Biasiucci (ref13) 2024; 251 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref10 doi: 10.1007/s12652-023-04746-y – ident: ref24 doi: 10.1007/s11277-022-09678-y – ident: ref7 doi: 10.1016/j.bspc.2021.102749 – volume: 251 year: 2024 ident: ref13 article-title: EEG based automated detection of seizure using machine learning approach and traditional features publication-title: Expert Syst. Appl. – ident: ref39 doi: 10.1016/j.jad.2019.05.070 – ident: ref23 doi: 10.1007/s11277-024-10916-8 – ident: ref29 doi: 10.1504/ijbra.2024.137372 – ident: ref43 doi: 10.1504/IJMEI.2023.129353 – ident: ref17 doi: 10.1016/j.compbiomed.2024.108329 – ident: ref2 doi: 10.1007/s11277-023-10326-2 – ident: ref41 doi: 10.1007/s40031-022-00831-6 – ident: ref19 doi: 10.1007/s40031-022-00783-x – ident: ref35 doi: 10.1007/s11063-016-9530-1 – ident: ref38 doi: 10.1007/s13755-021-00139-7 – ident: ref45 doi: 10.1007/s11277-024-11409-4 – ident: ref1 doi: 10.1016/j.cub.2018.11.052 – volume-title: Data Acquisition, Loggers, Amplifiers, Transducers, Electrodes | BIOPAC ident: ref30 – ident: ref26 doi: 10.1007/s10470-018-1249-7 – ident: ref40 doi: 10.1504/IJBRA.2025.145103 – ident: ref37 doi: 10.1109/LSP.2019.2906824 – ident: ref33 doi: 10.1007/s11042-018-5885-9 – ident: ref25 doi: 10.1007/s11277-022-10076-7 – ident: ref4 doi: 10.1109/ICCP.2017.8117036 – ident: ref8 doi: 10.1016/j.future.2019.06.027 – ident: ref9 doi: 10.1007/s12652-023-04715-5 – ident: ref15 doi: 10.1016/j.compbiomed.2024.108510 – ident: ref31 doi: 10.1007/s11042-023-15462-2 – ident: ref6 doi: 10.1016/j.compbiomed.2021.104757 – volume-title: Physionet Database year: 2024 ident: ref28 – ident: ref32 doi: 10.1080/03772063.2019.1575292 – ident: ref42 doi: 10.1007/s12652-023-04582-0 – ident: ref20 doi: 10.1007/s11277-020-07253-x – ident: ref22 doi: 10.1007/s11277-020-07675-7 – ident: ref3 doi: 10.1016/j.eswa.2020.113285 – ident: ref5 doi: 10.1049/iet-bmt.2017.0160 – ident: ref27 doi: 10.1080/03772063.2023.2220698 – ident: ref16 doi: 10.1504/IJBRA.2024.137369 – ident: ref44 doi: 10.1504/IJESMS.2025.144881 – ident: ref12 doi: 10.1504/IJBRA.2022.121758 – ident: ref18 doi: 10.1007/s11277-021-09389-w – ident: ref14 doi: 10.1016/j.eswa.2023.122777 – ident: ref11 doi: 10.1007/s12652-022-04469-6 – ident: ref21 doi: 10.1007/s40031-021-00693-4 – ident: ref34 doi: 10.1016/j.clinph.2020.04.172 – ident: ref36 doi: 10.1016/j.eswa.2018.08.031 |
| SSID | ssj0000816957 |
| Score | 2.347819 |
| Snippet | To analyze the physiological information within the acquired EEG signal is very cumbersome due to the possibility of several factors, viz. noise and artifacts,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 91034 |
| SubjectTerms | Accuracy band power Bat-based UNET signal analysis (BUSA) Brain Brain modeling Classification Classification algorithms Convolutional neural networks correlation dimension Datasets Deep learning EEG datasets Electrodes Electroencephalography Emotion recognition Encoders-Decoders Feature extraction Feature selection Machine learning Noise reduction Performance evaluation Signal analysis U-shaped encoder-decoder network (UNET) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4lFEoKAMjITG8XsspYWpQgKkbpbjR1UJFdQWBr4e23FREAMLqxXFuefG9jmWfS4Al7UVGteVzwAvcdi6wQW3nsgpzJBTnFrDm2ITbDLh06l4aJX6CmfCGnvgBrg-44r4aBELxmZaEWUV5khXSKsKOh3Ntj3raYmpOAdzSAVhyWYIlqI_GA59RF4QVuQaERrOgvxYiqJjfyqx8mtejovNeB_sJZaYD5qvOwBbdnEIdlvegUeA3Fr7lid71Fkeapq95J6B5tFm5DO0jUZ3-eN8Ft-UvEe64Hk8ehreF6kGQqERhetCcEcMM8gKx6CujAk3VR2CFgsvJoyytVE19OFqVhNhKTNYe0bih6mlzmmNjkFn8bqwJyAPTn4YKa85HMK6pkI5ZjhViFqsiCkzcLWBQ741VhcySoRSyAY9GdCTCb0M3ATIvh8NPtWxwWdPpuzJv7KXgW4AvNWf1zeC8Az0NhmQaVCtJKpgYHMIk9P_6PsM7IR4mv2UHuisl-_2HGzrj_V8tbyI_9MXuiDLXg priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning Model for Analyzing EEG Signal Analysis |
| URI | https://ieeexplore.ieee.org/document/10974958 https://www.proquest.com/docview/3213929345 https://doaj.org/article/78a5ead370444ca5aea483c23ca21fc6 |
| Volume | 13 |
| WOSCitedRecordID | wos001499536700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeeLRULC_lwLH7SPw-wrLAhRVSW4mb5dhjhFQtCBYOHPjteByDFlU9cIkiy0nsb-x4Zuz5BuCwReN52yQJ6BEn1w3va0yKnOOKRaclBt0lm1DTqb66MpclWD3HwiBiPnyGA7rNe_nh1j-Sq2xIu6VJodfLsKyU6oK13h0qlEHCCFWYhVLV4dF4nDqRbMBGDJiQdPzjw-qTSfpLVpV_fsV5fTld_2TLNmCtKJLVUSf5TVjC2Tf4ukAv-B3ECeJdVRhUrytKe_a3SkpqlZlInqlsMjmrft1c5zcVepIt-HM6-T0-75c0CX3PZD3vGx1FUIGhiar2TQgUzBpZjdwkeyM4bINr6wSPV60wKFXgPiktaSajjNF79gNWZrcz3IaKyP44c8ksiYz7VhoXVdDSMYnciTDqwc83-Oxdx4ZhsxUxMrZD2xLatqDdg2OC-L0qUVnngoSdLTPDKu1EGs5MEXOdd8Kh45r5hnnX1NHLHmwR3gvf66Duwd6bxGyZdw-WNTUpfIyLnf88tgtfqImdF2UPVub3j7gPq_5pfvNwf5BN8nS9eJkc5OH1Clrryp0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RQCo9UGhBbEtLDhxZ2MTfR7ospSqskKASN8uxxwgJLQgWDvx6PI5BINQDt8hyEueNJ54Ze94AbLZoPG-bJAE94BS64X2NyZBzXLHotMSgu2ITajzWZ2fmuCSr51wYRMyHz3CbLvNefrjydxQq26Hd0mTQ6w8wJzhv6i5d6zmkQjUkjFCFWyh13tkdDtNnJC-wEdtMSDoA8mr9yTT9pa7Km59xXmH2P79zbEuwWEzJareT_TLM4OQLfHpBMPgVxB7idVU4VM8rKnx2WSUztcpcJA_UNhr9rk4uzvOTCkHJCvzbH50OD_qlUELfM1lP-0ZHEVRgaKKqfRMCpbNGViM3yeMIDtvg2jrB41UrDEoVuE9mS9JllDF6z1ZhdnI1wTWoiO6PM5cck8i4b6VxUQUtHZPInQiDHmw9wWevOz4Mm_2IgbEd2pbQtgXtHvwiiJ-7Epl1bkjY2aIbVmkn0oRmirjrvBMOHdfMN8y7po5e9mCF8H7xvg7qHqw_ScwWzbu1rKnJ5GNcfPvPbRvw8eD06NAe_hn__Q4LNNwuprIOs9ObO_wB8_5-enF78zNPr0eBcsu- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Model+for+Analyzing+EEG+Signal+Analysis&rft.jtitle=IEEE+access&rft.au=Gupta%2C+Varun&rft.au=Kumar%2C+Vivek&rft.au=Prince&rft.au=Singh%2C+Saurabh&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=91034&rft.epage=91045&rft_id=info:doi/10.1109%2FACCESS.2025.3563760&rft.externalDocID=10974958 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |