A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN

In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 12; číslo 1; s. 232
Hlavní autoři: Alshingiti, Zainab, Alaqel, Rabeah, Al-Muhtadi, Jalal, Haq, Qazi Emad Ul, Saleem, Kashif, Faheem, Muhammad Hamza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2023
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12010232