A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN

In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 12; no. 1; p. 232
Main Authors: Alshingiti, Zainab, Alaqel, Rabeah, Al-Muhtadi, Jalal, Haq, Qazi Emad Ul, Saleem, Kashif, Faheem, Muhammad Hamza
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2023
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior.
AbstractList In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior.
Audience Academic
Author Alaqel, Rabeah
Saleem, Kashif
Faheem, Muhammad Hamza
Haq, Qazi Emad Ul
Alshingiti, Zainab
Al-Muhtadi, Jalal
Author_xml – sequence: 1
  givenname: Zainab
  surname: Alshingiti
  fullname: Alshingiti, Zainab
– sequence: 2
  givenname: Rabeah
  surname: Alaqel
  fullname: Alaqel, Rabeah
– sequence: 3
  givenname: Jalal
  surname: Al-Muhtadi
  fullname: Al-Muhtadi, Jalal
– sequence: 4
  givenname: Qazi Emad Ul
  surname: Haq
  fullname: Haq, Qazi Emad Ul
– sequence: 5
  givenname: Kashif
  orcidid: 0000-0001-8062-3301
  surname: Saleem
  fullname: Saleem, Kashif
– sequence: 6
  givenname: Muhammad Hamza
  orcidid: 0000-0002-1643-6728
  surname: Faheem
  fullname: Faheem, Muhammad Hamza
BookMark eNp9kE1PAjEQhhuDiYj8Ai-beGWxH7vb7RHxM1nQBDxvumUWSqCL7XLg3zuIB2OM7aHzvp1nJnkvScc1Dgi5ZnQohKK3sAHT-sZZExinjHLBz0iXU6lixRXv_KgvSD-ENcWjmMgF7ZLJKLoH2EUFaO-sW8Z3OsAielvZsEKJny1Ot42LZofQwjZ6D0d7PJ0OomI2nwwi7RZfVYzeFTmv9SZA__vtkfnjw3z8HBevTy_jUREbkbE2VhmXoLOUZ7muKRNVpWRltEZVSym5rFJaiYRlJmMowaQaZF4leZqIpDaiR25OY3e--dhDaMt1s_cON5ZcZowxniuJXcNT11JvoLSublqvDd4FbK3BDGuL_kgmgiVUqAQBcQKMb0LwUJc7b7faH0pGy2PU5R9RI6V-Uca2-hgZrrObf9lPxWmGbg
CitedBy_id crossref_primary_10_1051_itmconf_20257802010
crossref_primary_10_1109_ACCESS_2024_3352629
crossref_primary_10_1109_ACCESS_2024_3420243
crossref_primary_10_2298_CSIS240930019Z
crossref_primary_10_7717_peerj_cs_2640
crossref_primary_10_1002_spy2_70011
crossref_primary_10_3390_electronics14030414
crossref_primary_10_1109_ACCESS_2025_3589620
crossref_primary_10_1007_s41870_025_02703_w
crossref_primary_10_1155_2023_2415288
crossref_primary_10_1051_e3sconf_202340203027
crossref_primary_10_3390_electronics12214545
crossref_primary_10_1016_j_csa_2024_100036
crossref_primary_10_1016_j_aej_2024_09_115
crossref_primary_10_1016_j_jisa_2024_103953
crossref_primary_10_32604_jai_2024_054314
crossref_primary_10_1007_s11227_024_06124_7
crossref_primary_10_1016_j_cosrev_2025_100810
crossref_primary_10_1016_j_ijhydene_2025_150716
crossref_primary_10_3390_app14010460
crossref_primary_10_3233_IDT_240026
crossref_primary_10_3390_s24072077
crossref_primary_10_1080_00051144_2024_2415797
crossref_primary_10_51583_IJLTEMAS_2025_140600083
crossref_primary_10_1109_OJCOMS_2024_3462503
crossref_primary_10_1016_j_engfailanal_2024_109191
crossref_primary_10_1177_18724981251321395
crossref_primary_10_3390_electronics14081581
crossref_primary_10_1109_ACCESS_2025_3591843
crossref_primary_10_3390_electronics12234823
crossref_primary_10_37394_232018_2025_13_51
crossref_primary_10_3390_agronomy15051180
crossref_primary_10_3390_info15110701
crossref_primary_10_1080_19942060_2025_2541686
crossref_primary_10_1177_1088467X251341783
crossref_primary_10_1016_j_compeleceng_2024_109374
crossref_primary_10_1109_ACCESS_2024_3491429
crossref_primary_10_3390_s23094403
crossref_primary_10_1108_IJPCC_03_2024_0081
crossref_primary_10_3390_math12111720
crossref_primary_10_3390_app13095275
crossref_primary_10_1109_ACCESS_2024_3436812
crossref_primary_10_1016_j_cose_2024_103736
crossref_primary_10_3390_electronics13091662
crossref_primary_10_1109_ACCESS_2024_3351946
crossref_primary_10_23919_PCMP_2023_000187
crossref_primary_10_3390_s24124022
crossref_primary_10_51173_ijds_v2i2_35
crossref_primary_10_1007_s11760_024_03204_2
crossref_primary_10_1177_24723444251353784
crossref_primary_10_1016_j_foodchem_2025_146354
crossref_primary_10_1016_j_knosys_2025_114271
crossref_primary_10_1016_j_procs_2025_04_007
crossref_primary_10_1016_j_procs_2025_04_003
crossref_primary_10_1007_s11042_023_17993_0
Cites_doi 10.3389/fnhum.2016.00687
10.1109/ACCESS.2020.3013699
10.1088/1742-6596/1738/1/012131
10.1109/ICASSP40776.2020.9053670
10.1108/JEIM-01-2020-0036
10.1145/3301326.3301336
10.1016/j.proeng.2012.01.930
10.1109/ICCAIS48893.2020.9096869
10.1109/TrustCom/BigDataSE.2019.00024
10.1007/s42979-021-00535-6
10.1016/j.neucom.2019.02.056
10.3390/app11199210
10.1109/ITNEC48623.2020.9084799
10.1007/978-981-13-2203-7_52
10.20532/cit.2019.1004702
10.1109/ACCESS.2019.2912200
10.1109/ICCCS49678.2020.9277459
10.1109/ICWS49710.2020.00030
10.1007/s10462-020-09838-1
10.1007/s13369-020-04802-1
10.3844/jcssp.2021.610.623
10.1109/BDCloud.2018.00099
10.3390/electronics9091514
10.1007/s11235-020-00733-2
10.1109/ICCICT50803.2021.9510059
10.1109/HORA52670.2021.9461378
10.1109/IJCNN48605.2020.9207707
10.1109/SKIMA47702.2019.8982427
10.1109/ACCESS.2022.3151903
10.21833/ijaas.2020.07.007
10.1109/ACCESS.2021.3137636
10.1109/ECRIME.2017.7945048
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics12010232
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A743140394
10_3390_electronics12010232
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-9627ea65268af013bb97bcaa8aff77727b50b3416c61772ec5ae78b485434fc3
IEDL.DBID BENPR
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908705000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Tue Aug 12 16:42:06 EDT 2025
Tue Nov 04 18:41:32 EST 2025
Tue Nov 18 21:24:02 EST 2025
Sat Nov 29 07:15:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-9627ea65268af013bb97bcaa8aff77727b50b3416c61772ec5ae78b485434fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8062-3301
0000-0002-1643-6728
OpenAccessLink https://www.proquest.com/docview/2761112897?pq-origsite=%requestingapplication%
PQID 2761112897
PQPubID 2032404
ParticipantIDs proquest_journals_2761112897
gale_infotracacademiconefile_A743140394
crossref_primary_10_3390_electronics12010232
crossref_citationtrail_10_3390_electronics12010232
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Alsariera (ref_5) 2020; 45
Ariyadasa (ref_37) 2020; 7
ref_14
ref_36
ref_35
ref_34
ref_10
ref_31
Bagui (ref_11) 2021; 17
ref_30
Do (ref_17) 2022; 10
Chai (ref_33) 2021; 6
ref_19
Zhang (ref_41) 2021; 1738
ref_38
ref_15
Qazi (ref_9) 2017; 10
Feng (ref_13) 2019; 27
ref_25
Mosquera (ref_18) 2020; 53
ref_24
ref_23
ref_22
ref_21
Shrestha (ref_16) 2019; 7
ref_20
Lakshmi (ref_39) 2012; 30
ref_42
ref_40
ref_1
Sarker (ref_12) 2021; 2
Tang (ref_43) 2022; 10
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
Alsariera (ref_6) 2020; 8
ref_8
Mahdavifar (ref_32) 2019; 347
Basit (ref_4) 2021; 76
ref_7
References_xml – ident: ref_7
– volume: 10
  start-page: 687
  year: 2017
  ident: ref_9
  article-title: Single Trial EEG Patterns for the Prediction of Individual Differences in Fluid Intelligence
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00687
– volume: 8
  start-page: 142532
  year: 2020
  ident: ref_6
  article-title: Ai meta-learners and extra-trees algorithm for the detection of phishing websites
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013699
– ident: ref_30
– volume: 1738
  start-page: 012131
  year: 2021
  ident: ref_41
  article-title: Research on phishing webpage detection technology based on CNN-BiLSTM algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1738/1/012131
– ident: ref_3
– ident: ref_25
  doi: 10.1109/ICASSP40776.2020.9053670
– ident: ref_28
  doi: 10.1108/JEIM-01-2020-0036
– ident: ref_38
  doi: 10.1145/3301326.3301336
– volume: 30
  start-page: 798
  year: 2012
  ident: ref_39
  article-title: Efficient prediction of phishing websites using supervised learning algorithms
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.01.930
– volume: 6
  start-page: 100134
  year: 2021
  ident: ref_33
  article-title: Deep learning in computer vision: A critical review of emerging techniques and application scenarios
  publication-title: Mach. Learn. Appl.
– ident: ref_26
  doi: 10.1109/ICCAIS48893.2020.9096869
– ident: ref_14
  doi: 10.1109/TrustCom/BigDataSE.2019.00024
– ident: ref_40
– volume: 2
  start-page: 154
  year: 2021
  ident: ref_12
  article-title: Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00535-6
– volume: 347
  start-page: 149
  year: 2019
  ident: ref_32
  article-title: Application of deep learning to cybersecurity: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.056
– ident: ref_27
  doi: 10.3390/app11199210
– ident: ref_1
– ident: ref_19
  doi: 10.1109/ITNEC48623.2020.9084799
– ident: ref_36
  doi: 10.1007/978-981-13-2203-7_52
– volume: 27
  start-page: 41
  year: 2019
  ident: ref_13
  article-title: A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients
  publication-title: J. Comput. Inf. Technol.
  doi: 10.20532/cit.2019.1004702
– ident: ref_8
– volume: 7
  start-page: 53040
  year: 2019
  ident: ref_16
  article-title: Review of Deep Learning Algorithms and Architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– ident: ref_21
  doi: 10.1109/ICCCS49678.2020.9277459
– ident: ref_31
– ident: ref_29
  doi: 10.1109/ICWS49710.2020.00030
– ident: ref_2
– volume: 53
  start-page: 5929
  year: 2020
  ident: ref_18
  article-title: A review on the long short-term memory model
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09838-1
– volume: 45
  start-page: 10459
  year: 2020
  ident: ref_5
  article-title: Phishing website detection: Forest by penalizing attributes algorithm and its enhanced variations
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04802-1
– ident: ref_10
– volume: 17
  start-page: 610
  year: 2021
  ident: ref_11
  article-title: Machine learning and deep learning for phishing email classification using one-hot encoding
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2021.610.623
– ident: ref_15
– ident: ref_22
  doi: 10.1109/BDCloud.2018.00099
– ident: ref_20
  doi: 10.3390/electronics9091514
– volume: 76
  start-page: 139
  year: 2021
  ident: ref_4
  article-title: A comprehensive survey of AI-enabled phishing attacks detection techniques
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-020-00733-2
– ident: ref_42
  doi: 10.1109/ICCICT50803.2021.9510059
– ident: ref_24
  doi: 10.1109/HORA52670.2021.9461378
– ident: ref_23
  doi: 10.1109/IJCNN48605.2020.9207707
– ident: ref_34
  doi: 10.1109/SKIMA47702.2019.8982427
– volume: 10
  start-page: 36429
  year: 2022
  ident: ref_17
  article-title: Deep Learning for Phishing Detection: Taxonomy, current challenges and Future Directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151903
– volume: 7
  start-page: 56
  year: 2020
  ident: ref_37
  article-title: Detecting phishing attacks using a combined model of LSTM and CNN
  publication-title: Int. J. Adv. Appl. Sci.
  doi: 10.21833/ijaas.2020.07.007
– volume: 10
  start-page: 1509
  year: 2022
  ident: ref_43
  article-title: A deep learning-based framework for phishing website detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137636
– ident: ref_35
  doi: 10.1109/ECRIME.2017.7945048
SSID ssj0000913830
Score 2.5910645
Snippet In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 232
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Classification
Cybercrime
Cybersecurity
Data encryption
Data security
Datasets
Deep learning
Electronic mail systems
Feature selection
Human performance
Identity theft
Internet
Literature reviews
Machine learning
Methods
Neural networks
Personal information
Phishing
Safety and security measures
Security
Shopping
Theft
URLs
Websites
Title A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN
URI https://www.proquest.com/docview/2761112897
Volume 12
WOSCitedRecordID wos000908705000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6K85AGJpRZNnOeE2lIEEo0i6AAske04gIRCoYWR385d4vKQEAtLlNiJZeVs3-ez_X0AByRkVbhOwKXyJPcQcXBZKARyxvEjR6NHyCvK_IswSaLr6zi1Abex3VY5HROrgTp_0hQjP3Jxvo3YIIrD49EzJ9UoWl21EhqzMEdMZV4D5rr9JL38jLIQ62Uk2jXdkMD5_dGXuszYoZVgV7g_XNLvA3PlbU6X_1vPFViyOJN16oaxCjOmXIPFb-yD6zDosBNjRsxSrN7xLnq0nKX3dVgKMyfVPq2S1bTmrNpewHpJ0mIXV8NBi8kyr-44pm3A8LQ_7J1xq67AtQicCSfVHSMDonuRBQJBpeJQaSnxqQgRc4fKbyv0cYFGkBO6RvvShJHyIjqMWmixCY3yqTRbwIJcuHHutGOjYi_XBiGNTzRfohAmFrlugjv9v5m2zOMkgPGY4QyEjJL9YpQmtD4_GtXEG3-_fkiGy6hbYtla2tMFWEMiuMo6hJS8toi9JuxODZfZ_jrOvqy2_Xf2DiyQ4HwdhNmFxuTl1ezBvH6bPIxf9m3z24fZwXsfr6l_i2np-SC9-QCCfOcD
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH6iUKn0ULpQdcpSH1r1MhaJnc0HVA2bQMxEI3UOqBfLdhyohMKUmYL6o_of-14WFglx49BbEifO4i_vfc_L9wA-UyKrUoQJNzYyPELGwU1pkcj5MM5Chx6hqCXzh2meZycnarwAf7u1MDStsrOJtaEuLhz1kW8JjLeRG2Qq_Tb9xSlrFI2udik0Glgc-z_XGLLNto_2sH2_CHGwP9k95G1WAe5kEs45ZZvxJiGZE1MiAbJWpdYZg3tlilwztXFg0bYnDp17KryLjU8zG2W0CLN0Eqt9BktRhLES_j7j-MdNlw5JbGYyaLSNpFTB1m0qm1lIw85Cinv-72EvULu2g5X_7KO8hlcth2aDBvRvYMFXb-HlHWXFdzAasD3vp6yVjz3lO-itCzY-a7rcsHBez0GrWCPZzuqpE2w3z_ts-H0y6jNTFfUWx2OrMHmK13kPi9VF5T8ASwopVBEGylsVFc4jXYtJwkyW0itZuB6Irjm1a1XVKbnHucboijCgH8BAD_o3F00bUZHHT_9KONFkcrBuZ9qVE_iEJN6lB8QCo0CqqAfrHU50a4tm-hYkHx8v_gQvDiejoR4e5cdrsCzw3k1n0zoszi9_-w147q7mP2eXmzXuGegnhtQ_pW09eg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUqFyoBSoWGjBh1Zc1trEzssHhJYuK6puo5XYQ8XFsh2HVkLp0t0W8dP4d8zk0YdU9dYDtyTO2-OZb8bjbwB2qZBVKcKEGxsZHiHi4Ka0COR8GGehQ4tQ1JT5kzTPs-NjNV2Bv91aGEqr7HRiraiLM0cx8oFAfxuxQabSQdmmRUxH40_zX5wqSNFMa1dOoxGRQ__nN7pvi48HI-zrPSHGX2b7X3lbYYA7mYRLTpVnvEmI8sSUCIasVal1xuBemSLuTG0cWNTziUNDnwrvYuPTzEYZLcgsncTbPoLHKbqYNLim8fer8A7RbWYyaHiOpFTB4LqszSKkKWghxS1beLdFqM3ceOM__kHP4VmLrdmwGQybsOKrF_D0BuPiSzgaspH3c9bSyv7gn9GKF2x60oTisHFZ56ZVrKFyZ3VKBdvP8z6bfJsd9ZmpinqL47FXMHuIz9mC1eqs8q-BJYUUqggD5a2KCucRxsVEbSZL6ZUsXA9E17XatWzrVPTjp0avi-RB3yEPPehfXTRvyEbuP_0DyYwmVYT3dqZdUYFvSKReekjoMAqkinqw3cmMbnXUQl8LzJv7m9_DE5QkPTnID9_CusBHNzGobVhdnl_4HVhzl8vTxfm7eggw0A8sUf8A8P5GTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Phishing+Detection+System+Using+CNN%2C+LSTM%2C+and+LSTM-CNN&rft.jtitle=Electronics+%28Basel%29&rft.au=Alshingiti%2C+Zainab&rft.au=Alaqel%2C+Rabeah&rft.au=Al-Muhtadi%2C+Jalal&rft.au=Haq%2C+Qazi+Emad+Ul&rft.date=2023-01-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=1&rft.spage=232&rft_id=info:doi/10.3390%2Felectronics12010232&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12010232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon