A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN
In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information...
Saved in:
| Published in: | Electronics (Basel) Vol. 12; no. 1; p. 232 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.01.2023
|
| Subjects: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior. |
|---|---|
| AbstractList | In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior. |
| Audience | Academic |
| Author | Alaqel, Rabeah Saleem, Kashif Faheem, Muhammad Hamza Haq, Qazi Emad Ul Alshingiti, Zainab Al-Muhtadi, Jalal |
| Author_xml | – sequence: 1 givenname: Zainab surname: Alshingiti fullname: Alshingiti, Zainab – sequence: 2 givenname: Rabeah surname: Alaqel fullname: Alaqel, Rabeah – sequence: 3 givenname: Jalal surname: Al-Muhtadi fullname: Al-Muhtadi, Jalal – sequence: 4 givenname: Qazi Emad Ul surname: Haq fullname: Haq, Qazi Emad Ul – sequence: 5 givenname: Kashif orcidid: 0000-0001-8062-3301 surname: Saleem fullname: Saleem, Kashif – sequence: 6 givenname: Muhammad Hamza orcidid: 0000-0002-1643-6728 surname: Faheem fullname: Faheem, Muhammad Hamza |
| BookMark | eNp9kE1PAjEQhhuDiYj8Ai-beGWxH7vb7RHxM1nQBDxvumUWSqCL7XLg3zuIB2OM7aHzvp1nJnkvScc1Dgi5ZnQohKK3sAHT-sZZExinjHLBz0iXU6lixRXv_KgvSD-ENcWjmMgF7ZLJKLoH2EUFaO-sW8Z3OsAielvZsEKJny1Ot42LZofQwjZ6D0d7PJ0OomI2nwwi7RZfVYzeFTmv9SZA__vtkfnjw3z8HBevTy_jUREbkbE2VhmXoLOUZ7muKRNVpWRltEZVSym5rFJaiYRlJmMowaQaZF4leZqIpDaiR25OY3e--dhDaMt1s_cON5ZcZowxniuJXcNT11JvoLSublqvDd4FbK3BDGuL_kgmgiVUqAQBcQKMb0LwUJc7b7faH0pGy2PU5R9RI6V-Uca2-hgZrrObf9lPxWmGbg |
| CitedBy_id | crossref_primary_10_1051_itmconf_20257802010 crossref_primary_10_1109_ACCESS_2024_3352629 crossref_primary_10_1109_ACCESS_2024_3420243 crossref_primary_10_2298_CSIS240930019Z crossref_primary_10_7717_peerj_cs_2640 crossref_primary_10_1002_spy2_70011 crossref_primary_10_3390_electronics14030414 crossref_primary_10_1109_ACCESS_2025_3589620 crossref_primary_10_1007_s41870_025_02703_w crossref_primary_10_1155_2023_2415288 crossref_primary_10_1051_e3sconf_202340203027 crossref_primary_10_3390_electronics12214545 crossref_primary_10_1016_j_csa_2024_100036 crossref_primary_10_1016_j_aej_2024_09_115 crossref_primary_10_1016_j_jisa_2024_103953 crossref_primary_10_32604_jai_2024_054314 crossref_primary_10_1007_s11227_024_06124_7 crossref_primary_10_1016_j_cosrev_2025_100810 crossref_primary_10_1016_j_ijhydene_2025_150716 crossref_primary_10_3390_app14010460 crossref_primary_10_3233_IDT_240026 crossref_primary_10_3390_s24072077 crossref_primary_10_1080_00051144_2024_2415797 crossref_primary_10_51583_IJLTEMAS_2025_140600083 crossref_primary_10_1109_OJCOMS_2024_3462503 crossref_primary_10_1016_j_engfailanal_2024_109191 crossref_primary_10_1177_18724981251321395 crossref_primary_10_3390_electronics14081581 crossref_primary_10_1109_ACCESS_2025_3591843 crossref_primary_10_3390_electronics12234823 crossref_primary_10_37394_232018_2025_13_51 crossref_primary_10_3390_agronomy15051180 crossref_primary_10_3390_info15110701 crossref_primary_10_1080_19942060_2025_2541686 crossref_primary_10_1177_1088467X251341783 crossref_primary_10_1016_j_compeleceng_2024_109374 crossref_primary_10_1109_ACCESS_2024_3491429 crossref_primary_10_3390_s23094403 crossref_primary_10_1108_IJPCC_03_2024_0081 crossref_primary_10_3390_math12111720 crossref_primary_10_3390_app13095275 crossref_primary_10_1109_ACCESS_2024_3436812 crossref_primary_10_1016_j_cose_2024_103736 crossref_primary_10_3390_electronics13091662 crossref_primary_10_1109_ACCESS_2024_3351946 crossref_primary_10_23919_PCMP_2023_000187 crossref_primary_10_3390_s24124022 crossref_primary_10_51173_ijds_v2i2_35 crossref_primary_10_1007_s11760_024_03204_2 crossref_primary_10_1177_24723444251353784 crossref_primary_10_1016_j_foodchem_2025_146354 crossref_primary_10_1016_j_knosys_2025_114271 crossref_primary_10_1016_j_procs_2025_04_007 crossref_primary_10_1016_j_procs_2025_04_003 crossref_primary_10_1007_s11042_023_17993_0 |
| Cites_doi | 10.3389/fnhum.2016.00687 10.1109/ACCESS.2020.3013699 10.1088/1742-6596/1738/1/012131 10.1109/ICASSP40776.2020.9053670 10.1108/JEIM-01-2020-0036 10.1145/3301326.3301336 10.1016/j.proeng.2012.01.930 10.1109/ICCAIS48893.2020.9096869 10.1109/TrustCom/BigDataSE.2019.00024 10.1007/s42979-021-00535-6 10.1016/j.neucom.2019.02.056 10.3390/app11199210 10.1109/ITNEC48623.2020.9084799 10.1007/978-981-13-2203-7_52 10.20532/cit.2019.1004702 10.1109/ACCESS.2019.2912200 10.1109/ICCCS49678.2020.9277459 10.1109/ICWS49710.2020.00030 10.1007/s10462-020-09838-1 10.1007/s13369-020-04802-1 10.3844/jcssp.2021.610.623 10.1109/BDCloud.2018.00099 10.3390/electronics9091514 10.1007/s11235-020-00733-2 10.1109/ICCICT50803.2021.9510059 10.1109/HORA52670.2021.9461378 10.1109/IJCNN48605.2020.9207707 10.1109/SKIMA47702.2019.8982427 10.1109/ACCESS.2022.3151903 10.21833/ijaas.2020.07.007 10.1109/ACCESS.2021.3137636 10.1109/ECRIME.2017.7945048 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/electronics12010232 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A743140394 10_3390_electronics12010232 |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-9627ea65268af013bb97bcaa8aff77727b50b3416c61772ec5ae78b485434fc3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908705000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Tue Aug 12 16:42:06 EDT 2025 Tue Nov 04 18:41:32 EST 2025 Tue Nov 18 21:24:02 EST 2025 Sat Nov 29 07:15:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-9627ea65268af013bb97bcaa8aff77727b50b3416c61772ec5ae78b485434fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8062-3301 0000-0002-1643-6728 |
| OpenAccessLink | https://www.proquest.com/docview/2761112897?pq-origsite=%requestingapplication% |
| PQID | 2761112897 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2761112897 gale_infotracacademiconefile_A743140394 crossref_primary_10_3390_electronics12010232 crossref_citationtrail_10_3390_electronics12010232 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Alsariera (ref_5) 2020; 45 Ariyadasa (ref_37) 2020; 7 ref_14 ref_36 ref_35 ref_34 ref_10 ref_31 Bagui (ref_11) 2021; 17 ref_30 Do (ref_17) 2022; 10 Chai (ref_33) 2021; 6 ref_19 Zhang (ref_41) 2021; 1738 ref_38 ref_15 Qazi (ref_9) 2017; 10 Feng (ref_13) 2019; 27 ref_25 Mosquera (ref_18) 2020; 53 ref_24 ref_23 ref_22 ref_21 Shrestha (ref_16) 2019; 7 ref_20 Lakshmi (ref_39) 2012; 30 ref_42 ref_40 ref_1 Sarker (ref_12) 2021; 2 Tang (ref_43) 2022; 10 ref_3 ref_2 ref_29 ref_28 ref_27 ref_26 Alsariera (ref_6) 2020; 8 ref_8 Mahdavifar (ref_32) 2019; 347 Basit (ref_4) 2021; 76 ref_7 |
| References_xml | – ident: ref_7 – volume: 10 start-page: 687 year: 2017 ident: ref_9 article-title: Single Trial EEG Patterns for the Prediction of Individual Differences in Fluid Intelligence publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00687 – volume: 8 start-page: 142532 year: 2020 ident: ref_6 article-title: Ai meta-learners and extra-trees algorithm for the detection of phishing websites publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013699 – ident: ref_30 – volume: 1738 start-page: 012131 year: 2021 ident: ref_41 article-title: Research on phishing webpage detection technology based on CNN-BiLSTM algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1738/1/012131 – ident: ref_3 – ident: ref_25 doi: 10.1109/ICASSP40776.2020.9053670 – ident: ref_28 doi: 10.1108/JEIM-01-2020-0036 – ident: ref_38 doi: 10.1145/3301326.3301336 – volume: 30 start-page: 798 year: 2012 ident: ref_39 article-title: Efficient prediction of phishing websites using supervised learning algorithms publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.01.930 – volume: 6 start-page: 100134 year: 2021 ident: ref_33 article-title: Deep learning in computer vision: A critical review of emerging techniques and application scenarios publication-title: Mach. Learn. Appl. – ident: ref_26 doi: 10.1109/ICCAIS48893.2020.9096869 – ident: ref_14 doi: 10.1109/TrustCom/BigDataSE.2019.00024 – ident: ref_40 – volume: 2 start-page: 154 year: 2021 ident: ref_12 article-title: Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00535-6 – volume: 347 start-page: 149 year: 2019 ident: ref_32 article-title: Application of deep learning to cybersecurity: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.056 – ident: ref_27 doi: 10.3390/app11199210 – ident: ref_1 – ident: ref_19 doi: 10.1109/ITNEC48623.2020.9084799 – ident: ref_36 doi: 10.1007/978-981-13-2203-7_52 – volume: 27 start-page: 41 year: 2019 ident: ref_13 article-title: A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients publication-title: J. Comput. Inf. Technol. doi: 10.20532/cit.2019.1004702 – ident: ref_8 – volume: 7 start-page: 53040 year: 2019 ident: ref_16 article-title: Review of Deep Learning Algorithms and Architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – ident: ref_21 doi: 10.1109/ICCCS49678.2020.9277459 – ident: ref_31 – ident: ref_29 doi: 10.1109/ICWS49710.2020.00030 – ident: ref_2 – volume: 53 start-page: 5929 year: 2020 ident: ref_18 article-title: A review on the long short-term memory model publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09838-1 – volume: 45 start-page: 10459 year: 2020 ident: ref_5 article-title: Phishing website detection: Forest by penalizing attributes algorithm and its enhanced variations publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04802-1 – ident: ref_10 – volume: 17 start-page: 610 year: 2021 ident: ref_11 article-title: Machine learning and deep learning for phishing email classification using one-hot encoding publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2021.610.623 – ident: ref_15 – ident: ref_22 doi: 10.1109/BDCloud.2018.00099 – ident: ref_20 doi: 10.3390/electronics9091514 – volume: 76 start-page: 139 year: 2021 ident: ref_4 article-title: A comprehensive survey of AI-enabled phishing attacks detection techniques publication-title: Telecommun. Syst. doi: 10.1007/s11235-020-00733-2 – ident: ref_42 doi: 10.1109/ICCICT50803.2021.9510059 – ident: ref_24 doi: 10.1109/HORA52670.2021.9461378 – ident: ref_23 doi: 10.1109/IJCNN48605.2020.9207707 – ident: ref_34 doi: 10.1109/SKIMA47702.2019.8982427 – volume: 10 start-page: 36429 year: 2022 ident: ref_17 article-title: Deep Learning for Phishing Detection: Taxonomy, current challenges and Future Directions publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151903 – volume: 7 start-page: 56 year: 2020 ident: ref_37 article-title: Detecting phishing attacks using a combined model of LSTM and CNN publication-title: Int. J. Adv. Appl. Sci. doi: 10.21833/ijaas.2020.07.007 – volume: 10 start-page: 1509 year: 2022 ident: ref_43 article-title: A deep learning-based framework for phishing website detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3137636 – ident: ref_35 doi: 10.1109/ECRIME.2017.7945048 |
| SSID | ssj0000913830 |
| Score | 2.5910645 |
| Snippet | In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 232 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Classification Cybercrime Cybersecurity Data encryption Data security Datasets Deep learning Electronic mail systems Feature selection Human performance Identity theft Internet Literature reviews Machine learning Methods Neural networks Personal information Phishing Safety and security measures Security Shopping Theft URLs Websites |
| Title | A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN |
| URI | https://www.proquest.com/docview/2761112897 |
| Volume | 12 |
| WOSCitedRecordID | wos000908705000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6K85AGJpRZNnOeE2lIEEo0i6AAske04gIRCoYWR385d4vKQEAtLlNiJZeVs3-ez_X0AByRkVbhOwKXyJPcQcXBZKARyxvEjR6NHyCvK_IswSaLr6zi1Abex3VY5HROrgTp_0hQjP3Jxvo3YIIrD49EzJ9UoWl21EhqzMEdMZV4D5rr9JL38jLIQ62Uk2jXdkMD5_dGXuszYoZVgV7g_XNLvA3PlbU6X_1vPFViyOJN16oaxCjOmXIPFb-yD6zDosBNjRsxSrN7xLnq0nKX3dVgKMyfVPq2S1bTmrNpewHpJ0mIXV8NBi8kyr-44pm3A8LQ_7J1xq67AtQicCSfVHSMDonuRBQJBpeJQaSnxqQgRc4fKbyv0cYFGkBO6RvvShJHyIjqMWmixCY3yqTRbwIJcuHHutGOjYi_XBiGNTzRfohAmFrlugjv9v5m2zOMkgPGY4QyEjJL9YpQmtD4_GtXEG3-_fkiGy6hbYtla2tMFWEMiuMo6hJS8toi9JuxODZfZ_jrOvqy2_Xf2DiyQ4HwdhNmFxuTl1ezBvH6bPIxf9m3z24fZwXsfr6l_i2np-SC9-QCCfOcD |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH6iUKn0ULpQdcpSH1r1MhaJnc0HVA2bQMxEI3UOqBfLdhyohMKUmYL6o_of-14WFglx49BbEifO4i_vfc_L9wA-UyKrUoQJNzYyPELGwU1pkcj5MM5Chx6hqCXzh2meZycnarwAf7u1MDStsrOJtaEuLhz1kW8JjLeRG2Qq_Tb9xSlrFI2udik0Glgc-z_XGLLNto_2sH2_CHGwP9k95G1WAe5kEs45ZZvxJiGZE1MiAbJWpdYZg3tlilwztXFg0bYnDp17KryLjU8zG2W0CLN0Eqt9BktRhLES_j7j-MdNlw5JbGYyaLSNpFTB1m0qm1lIw85Cinv-72EvULu2g5X_7KO8hlcth2aDBvRvYMFXb-HlHWXFdzAasD3vp6yVjz3lO-itCzY-a7rcsHBez0GrWCPZzuqpE2w3z_ts-H0y6jNTFfUWx2OrMHmK13kPi9VF5T8ASwopVBEGylsVFc4jXYtJwkyW0itZuB6Irjm1a1XVKbnHucboijCgH8BAD_o3F00bUZHHT_9KONFkcrBuZ9qVE_iEJN6lB8QCo0CqqAfrHU50a4tm-hYkHx8v_gQvDiejoR4e5cdrsCzw3k1n0zoszi9_-w147q7mP2eXmzXuGegnhtQ_pW09eg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUqFyoBSoWGjBh1Zc1trEzssHhJYuK6puo5XYQ8XFsh2HVkLp0t0W8dP4d8zk0YdU9dYDtyTO2-OZb8bjbwB2qZBVKcKEGxsZHiHi4Ka0COR8GGehQ4tQ1JT5kzTPs-NjNV2Bv91aGEqr7HRiraiLM0cx8oFAfxuxQabSQdmmRUxH40_zX5wqSNFMa1dOoxGRQ__nN7pvi48HI-zrPSHGX2b7X3lbYYA7mYRLTpVnvEmI8sSUCIasVal1xuBemSLuTG0cWNTziUNDnwrvYuPTzEYZLcgsncTbPoLHKbqYNLim8fer8A7RbWYyaHiOpFTB4LqszSKkKWghxS1beLdFqM3ceOM__kHP4VmLrdmwGQybsOKrF_D0BuPiSzgaspH3c9bSyv7gn9GKF2x60oTisHFZ56ZVrKFyZ3VKBdvP8z6bfJsd9ZmpinqL47FXMHuIz9mC1eqs8q-BJYUUqggD5a2KCucRxsVEbSZL6ZUsXA9E17XatWzrVPTjp0avi-RB3yEPPehfXTRvyEbuP_0DyYwmVYT3dqZdUYFvSKReekjoMAqkinqw3cmMbnXUQl8LzJv7m9_DE5QkPTnID9_CusBHNzGobVhdnl_4HVhzl8vTxfm7eggw0A8sUf8A8P5GTQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Phishing+Detection+System+Using+CNN%2C+LSTM%2C+and+LSTM-CNN&rft.jtitle=Electronics+%28Basel%29&rft.au=Alshingiti%2C+Zainab&rft.au=Alaqel%2C+Rabeah&rft.au=Al-Muhtadi%2C+Jalal&rft.au=Haq%2C+Qazi+Emad+Ul&rft.date=2023-01-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=1&rft.spage=232&rft_id=info:doi/10.3390%2Felectronics12010232&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12010232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |