Accurate Fall Detection and Localization for Elderly People Based on Neural Network and Energy-Efficient Wireless Sensor Network

Falls are the main source of injury for elderly patients with epilepsy and Parkinson’s disease. Elderly people who carry battery powered health monitoring systems can move unhindered from one place to another according to their activities, thus improving their quality of life. This paper aims to det...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 11; číslo 11; s. 2866
Hlavní autoři: Gharghan, Sadik Kamel, Mohammed, Saleem Latteef, Al-Naji, Ali, Abu-AlShaeer, Mahmood Jawad, Jawad, Haider Mahmood, Jawad, Aqeel Mahmood, Chahl, Javaan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2018
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Falls are the main source of injury for elderly patients with epilepsy and Parkinson’s disease. Elderly people who carry battery powered health monitoring systems can move unhindered from one place to another according to their activities, thus improving their quality of life. This paper aims to detect when an elderly individual falls and to provide accurate location of the incident while the individual is moving in indoor environments such as in houses, medical health care centers, and hospitals. Fall detection is accurately determined based on a proposed sensor-based fall detection algorithm, whereas the localization of the elderly person is determined based on an artificial neural network (ANN). In addition, the power consumption of the fall detection system (FDS) is minimized based on a data-driven algorithm. Results show that an elderly fall can be detected with accuracy levels of 100% and 92.5% for line-of-sight (LOS) and non-line-of-sight (NLOS) environments, respectively. In addition, elderly indoor localization error is improved with a mean absolute error of 0.0094 and 0.0454 m for LOS and NLOS, respectively, after the application of the ANN optimization technique. Moreover, the battery life of the FDS is improved relative to conventional implementation due to reduced computational effort. The proposed FDS outperforms existing systems in terms of fall detection accuracy, localization errors, and power consumption.
AbstractList Falls are the main source of injury for elderly patients with epilepsy and Parkinson’s disease. Elderly people who carry battery powered health monitoring systems can move unhindered from one place to another according to their activities, thus improving their quality of life. This paper aims to detect when an elderly individual falls and to provide accurate location of the incident while the individual is moving in indoor environments such as in houses, medical health care centers, and hospitals. Fall detection is accurately determined based on a proposed sensor-based fall detection algorithm, whereas the localization of the elderly person is determined based on an artificial neural network (ANN). In addition, the power consumption of the fall detection system (FDS) is minimized based on a data-driven algorithm. Results show that an elderly fall can be detected with accuracy levels of 100% and 92.5% for line-of-sight (LOS) and non-line-of-sight (NLOS) environments, respectively. In addition, elderly indoor localization error is improved with a mean absolute error of 0.0094 and 0.0454 m for LOS and NLOS, respectively, after the application of the ANN optimization technique. Moreover, the battery life of the FDS is improved relative to conventional implementation due to reduced computational effort. The proposed FDS outperforms existing systems in terms of fall detection accuracy, localization errors, and power consumption.
The degree of danger from a fall for aging persons is frequently decided by the location of the fall, time of fall detection, duration and time of transfer and rescue services. [...]automatic detection of elderly people’s falls along with the locations of the incident is important so that medical rescue staff can be dispatched immediately and so that the family of the elderly can be informed about the incident through a specific wireless network or mobile telephone. [...]the power consumption of the sensor node is improved in the present study with the use of a data-driven algorithm (DDA) along with a low-power wireless communication module (i.e., Zigbee) and a standalone microcontroller. [...]the CN supported by a monitoring system such as PC, tablet, and notepad can estimate the location of the fallen subject to be sent to the caregivers. 3.3. [...]the fall detection accuracy is satisfactory, and results indicate that the proposed FDS is energy efficient and can be used for accurate fall detection.
Author Chahl, Javaan
Jawad, Haider Mahmood
Gharghan, Sadik Kamel
Jawad, Aqeel Mahmood
Mohammed, Saleem Latteef
Al-Naji, Ali
Abu-AlShaeer, Mahmood Jawad
Author_xml – sequence: 1
  givenname: Sadik Kamel
  orcidid: 0000-0002-9071-1775
  surname: Gharghan
  fullname: Gharghan, Sadik Kamel
– sequence: 2
  givenname: Saleem Latteef
  surname: Mohammed
  fullname: Mohammed, Saleem Latteef
– sequence: 3
  givenname: Ali
  orcidid: 0000-0002-8840-9235
  surname: Al-Naji
  fullname: Al-Naji, Ali
– sequence: 4
  givenname: Mahmood Jawad
  surname: Abu-AlShaeer
  fullname: Abu-AlShaeer, Mahmood Jawad
– sequence: 5
  givenname: Haider Mahmood
  surname: Jawad
  fullname: Jawad, Haider Mahmood
– sequence: 6
  givenname: Aqeel Mahmood
  surname: Jawad
  fullname: Jawad, Aqeel Mahmood
– sequence: 7
  givenname: Javaan
  orcidid: 0000-0001-6496-0543
  surname: Chahl
  fullname: Chahl, Javaan
BookMark eNptkVFrFDEQxxdpwVr74icI-CasJju72c1jrVctHFpooY9hLjspOWNyJjnK-eRHN70rKuIQmGHyn98MMy-aoxADNc0rwd8CKP6OgqjWTVI-a06EUrIVfISjv-LnzVnOa14NQADASfPz3JhtwkLsEr1nH6iQKS4GhmFmy2jQux-4T9iY2MLPlPyOXVPceGLvMdPM6t9nqgxfXXmI6eu-dhEo3e_ahbXOOAqF3blEnnJmNxRyZT2JXzbHFn2msyd_2txeLm4vPrXLLx-vLs6XrQEpSqu6Tkm0vRyknVZ27iSYUcCEIMhIhaiGvp-smlYoDAzjyKXAcWW7QfbEEU6bqwN2jrjWm-S-YdrpiE7vEzHda0zFGU_akuIddJM1CvrHt7I9TpOc1TxSXVplvT6wNil-31Iueh23KdTpdQdCwqBg4FX15qAyKeacyP7uKrh-vJf-c68q5v-IjSv7vZeEzv-v5BcxZJj3
CitedBy_id crossref_primary_10_1007_s00339_025_08795_2
crossref_primary_10_1007_s13369_020_05283_y
crossref_primary_10_3390_s19204452
crossref_primary_10_3390_s19132955
crossref_primary_10_1038_s41598_023_39483_x
crossref_primary_10_3390_s20185361
crossref_primary_10_1016_j_matpr_2022_01_087
crossref_primary_10_1109_JSEN_2025_3591931
crossref_primary_10_1016_j_bspc_2021_103242
crossref_primary_10_3390_biomimetics10050313
crossref_primary_10_1088_1757_899X_745_1_012103
crossref_primary_10_3390_healthcare10010172
crossref_primary_10_3389_frobt_2020_00071
crossref_primary_10_3390_s20102779
crossref_primary_10_3390_designs5040059
crossref_primary_10_3390_s21227560
crossref_primary_10_3390_s21030722
crossref_primary_10_1088_1757_899X_745_1_012096
crossref_primary_10_1016_j_patrec_2021_04_008
crossref_primary_10_1109_JSEN_2021_3090454
crossref_primary_10_1007_s11227_023_05386_x
crossref_primary_10_1109_JSEN_2020_2988667
crossref_primary_10_2147_CIA_S329668
crossref_primary_10_1109_JSYST_2020_3043827
crossref_primary_10_1016_j_measurement_2020_108276
crossref_primary_10_1109_ACCESS_2019_2933852
crossref_primary_10_1007_s13369_022_07188_4
crossref_primary_10_1016_j_heliyon_2021_e06078
crossref_primary_10_3390_app12052345
crossref_primary_10_1016_j_measurement_2020_107573
crossref_primary_10_3390_s20061574
crossref_primary_10_1155_2022_3450361
crossref_primary_10_1016_j_measurement_2024_114186
crossref_primary_10_1109_ACCESS_2022_3157719
crossref_primary_10_1109_ACCESS_2020_3016832
Cites_doi 10.1016/j.compag.2014.04.012
10.1016/j.pmcj.2015.06.010
10.1007/978-3-319-50212-0
10.3390/s17010198
10.1109/RADAR.2017.7944316
10.1016/j.pmcj.2016.05.002
10.1109/UIC-ATC.2010.44
10.1155/2015/657241
10.1155/2015/452078
10.1109/TMC.2016.2557792
10.1016/j.eswa.2013.07.031
10.1109/JSEN.2013.2257731
10.1016/j.asoc.2015.11.031
10.1155/2015/576364
10.1007/s13534-015-0174-2
10.1109/JIOT.2016.2624800
10.1109/ISMICT.2012.6203028
10.4236/wsn.2010.28072
10.1109/TMC.2016.2557795
10.3390/s150511741
10.1016/j.procs.2017.01.191
10.1109/TCE.2016.7514671
10.1109/JETCAS.2013.2256832
10.1007/978-981-10-3023-9
10.3390/s17010176
10.3390/s141019806
10.1007/s11390-017-1725-z
10.1007/s10044-017-0660-5
10.3390/electronics7020019
10.3390/s17020307
10.1109/ICCASE.2011.5997582
10.1109/TSP.2012.2199314
10.1109/JBHI.2013.2274479
10.1016/j.autcon.2017.09.015
10.1109/LWC.2016.2595576
10.1109/JBHI.2014.2361252
10.3390/s16040546
10.1109/DATE.2010.5457055
10.1155/2013/254629
10.1145/2248341.2248349
10.1371/journal.pone.0180318
10.3390/s17061393
10.3390/app7040316
10.1016/j.procs.2012.06.079
10.1109/MSP.2015.2502784
10.1016/j.procs.2011.07.010
10.1080/10739149.2015.1123161
10.1109/TSMCB.2003.811119
10.1145/2600617.2600621
10.1109/ICOIN.2012.6164365
10.1109/ICDMIC.2014.6954228
10.1007/s11276-017-1557-3
10.1049/iet-rsn.2014.0214
10.1016/j.gaitpost.2017.03.037
10.1016/j.adhoc.2011.12.008
10.3390/s150923004
10.17485/ijst/2017/v10i5/111274
10.3390/s17020341
10.1109/TII.2016.2587761
10.1007/s11227-016-1785-9
10.1109/LCOMM.2014.2318031
10.1016/j.neucom.2013.01.032
10.1016/j.jpdc.2018.07.003
10.1155/2014/896030
10.1007/978-3-319-59060-8
10.1155/2015/195297
10.1109/JSEN.2015.2483745
10.5121/ijcnc.2016.8105
10.1016/j.pmcj.2012.08.003
10.3390/s140610691
10.1016/j.micpro.2017.10.014
10.1007/s11036-013-0448-9
10.1109/TITB.2012.2226905
10.1016/j.mejo.2010.06.014
10.1016/j.asoc.2015.10.062
10.1007/s11517-016-1504-y
10.1117/12.2257902
10.3390/s16010117
10.1155/2013/935026
10.3390/s17081781
10.1007/s10586-013-0335-y
10.1016/j.dcan.2015.12.001
10.1016/j.procs.2017.01.188
10.3390/s140407181
10.1109/ICIT.2017.7915565
10.1007/s00391-012-0404-5
10.1109/TBME.2014.2367038
10.1109/TITB.2011.2171704
10.1155/2016/2308183
10.1080/10739149.2016.1268155
10.1155/2015/192454
10.1155/2016/5747961
10.3390/s141018543
10.1109/ACCESS.2018.2789918
10.1109/TC.2013.151
10.1155/2016/7314207
10.1007/s11227-017-2082-y
10.1109/JBHI.2014.2319372
10.1109/SECON.2012.6275823
10.3390/s16081043
10.1007/s00779-010-0292-x
10.1007/s11277-015-2362-x
10.1109/TSMCC.2010.2049649
10.3390/ijerph110404233
10.1007/978-3-642-37484-5
10.1109/ACCESS.2017.2716359
10.1016/j.neucom.2011.09.037
10.3390/s16081161
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en11112866
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_fe902328fc9349349bf4a886d9d7e333
10_3390_en11112866
GeographicLocations Baghdad Iraq
Australia
Iraq
GeographicLocations_xml – name: Iraq
– name: Baghdad Iraq
– name: Australia
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
IPNFZ
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-92296af4656f8bfd263c7138a31ec69aa95448f98ba1c3577061a7bf2564e0a3
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451814000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 18:57:22 EDT 2025
Mon Jun 30 11:15:07 EDT 2025
Tue Nov 18 22:01:22 EST 2025
Sat Nov 29 07:16:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-92296af4656f8bfd263c7138a31ec69aa95448f98ba1c3577061a7bf2564e0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9071-1775
0000-0001-6496-0543
0000-0002-8840-9235
OpenAccessLink https://doaj.org/article/fe902328fc9349349bf4a886d9d7e333
PQID 2316359350
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_fe902328fc9349349bf4a886d9d7e333
proquest_journals_2316359350
crossref_primary_10_3390_en11112866
crossref_citationtrail_10_3390_en11112866
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Barshan (ref_29) 2014; 14
ref_13
Charlon (ref_34) 2013; 40
ref_10
Huynh (ref_38) 2015; 2015
ref_98
ref_97
ref_95
Luque (ref_40) 2014; 14
Gharghan (ref_71) 2017; 12
ref_18
ref_15
Kulkarni (ref_104) 2010; 40
Kumar (ref_107) 2016; 8
Ozcan (ref_89) 2017; 47
Ndzi (ref_58) 2014; 105
Rescio (ref_31) 2013; 2013
Chen (ref_3) 2013; 2013
ref_23
ref_120
ref_121
Zaidi (ref_20) 2016; 5
Chen (ref_28) 2012; 16
Yu (ref_52) 2013; 17
ref_26
Su (ref_54) 2015; 62
Abbate (ref_47) 2012; 8
Kukolj (ref_65) 2004; 34
ref_72
ref_70
Cotuk (ref_62) 2014; 63
Liang (ref_115) 2014; 19
Gharghan (ref_21) 2016; 2016
ref_78
Pal (ref_19) 2010; 2
ref_75
ref_73
Amin (ref_1) 2016; 33
Xu (ref_14) 2014; 18
Habib (ref_45) 2014; 14
Li (ref_105) 2013; 117
ref_83
Gibson (ref_81) 2016; 39
Mi (ref_16) 2012; 10
ref_88
Wang (ref_69) 2016; 12
ref_87
Chen (ref_93) 2017; 45
ref_86
Kumar (ref_66) 2014; 39
ref_85
Zhu (ref_99) 2017; 5
Kwolek (ref_80) 2016; 40
Bian (ref_51) 2015; 19
ref_50
Liu (ref_17) 2012; 60
(ref_96) 2017; 34
Zhao (ref_106) 2015; 11
Cheng (ref_27) 2013; 17
Xu (ref_60) 2010; 2
Benocci (ref_24) 2010; 41
Wu (ref_111) 2018; 7
ref_59
Wang (ref_22) 2015; 5
Zhao (ref_42) 2012; 10
Sokolova (ref_57) 2013; 2013
Gharghan (ref_63) 2016; 16
Payal (ref_64) 2015; 82
Jun (ref_110) 2016; 9
Wang (ref_25) 2016; 62
Kianoush (ref_101) 2017; 4
ref_68
ref_67
Wang (ref_92) 2017; 16
Majumder (ref_43) 2014; 14
Permpol (ref_113) 2016; 29
Aziz (ref_100) 2017; 55
Chen (ref_79) 2016; 44
Dai (ref_44) 2010; 14
ref_114
ref_117
ref_116
ref_119
Wang (ref_74) 2017; 16
ref_36
ref_35
ref_33
Ismail (ref_94) 2017; 32
Felisberto (ref_30) 2015; 2015
ref_112
Mubashir (ref_12) 2013; 100
ref_39
Hakim (ref_84) 2017; 105
Lim (ref_32) 2014; 2014
ref_37
Huang (ref_49) 2011; 5
Delahoz (ref_11) 2014; 14
Fang (ref_82) 2017; 84
Garripoli (ref_56) 2015; 19
Shojafar (ref_7) 2017; 73
Huang (ref_76) 2014; 11
ref_103
Yang (ref_8) 2016; 2
ref_108
Nizam (ref_91) 2017; 105
ref_109
Hausdorff (ref_90) 2017; 55
Naranjo (ref_4) 2017; 73
Saleh (ref_5) 2018; 6
ref_41
ref_102
Zhang (ref_77) 2014; 17
ref_2
ref_48
ref_9
Ozcan (ref_53) 2013; 3
Sarker (ref_118) 2018; 56
Mellone (ref_46) 2012; 45
Sahu (ref_61) 2013; 13
ref_6
Sachs (ref_55) 2015; 9
References_xml – volume: 105
  start-page: 83
  year: 2014
  ident: ref_58
  article-title: Wireless sensor network coverage measurement and planning in mixed crop farming
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.04.012
– volume: 29
  start-page: 17
  year: 2016
  ident: ref_113
  article-title: Soft computing-based localizations in wireless sensor networks
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2015.06.010
– ident: ref_39
– ident: ref_78
  doi: 10.1007/978-3-319-50212-0
– ident: ref_98
  doi: 10.3390/s17010198
– ident: ref_86
  doi: 10.1109/RADAR.2017.7944316
– volume: 34
  start-page: 3
  year: 2017
  ident: ref_96
  article-title: Mobile activity recognition and fall detection system for elderly people using ameva algorithm
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.05.002
– ident: ref_41
  doi: 10.1109/UIC-ATC.2010.44
– volume: 11
  start-page: 9
  year: 2015
  ident: ref_106
  article-title: Amorphous localization algorithm based on BP artificial neural network
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2015/657241
– ident: ref_108
– volume: 2015
  start-page: 452078
  year: 2015
  ident: ref_38
  article-title: Optimization of an accelerometer and gyroscope-based fall detection algorithm
  publication-title: J. Sens.
  doi: 10.1155/2015/452078
– volume: 16
  start-page: 581
  year: 2017
  ident: ref_92
  article-title: Wifall: Device-free fall detection by wireless networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2557792
– volume: 40
  start-page: 7316
  year: 2013
  ident: ref_34
  article-title: Design and evaluation of a device worn for fall detection and localization: Application for the continuous monitoring of risks incurred by dependents in an alzheimer’s care unit
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.07.031
– volume: 13
  start-page: 3115
  year: 2013
  ident: ref_61
  article-title: Durt: Dual RSSI trend based localization for wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2257731
– volume: 40
  start-page: 305
  year: 2016
  ident: ref_80
  article-title: Fuzzy inference-based fall detection using kinect and body-worn accelerometer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.11.031
– ident: ref_50
  doi: 10.1155/2015/576364
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_22
  article-title: Low-power technologies for wearable telecare and telehealth systems: A review
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-015-0174-2
– volume: 4
  start-page: 351
  year: 2017
  ident: ref_101
  article-title: Device-free rf human body fall detection and localization in industrial workplaces
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2624800
– ident: ref_13
  doi: 10.1109/ISMICT.2012.6203028
– volume: 2
  start-page: 606
  year: 2010
  ident: ref_60
  article-title: Distance measurement model based on RSSI in WSN
  publication-title: Wirel. Sens. Netw.
  doi: 10.4236/wsn.2010.28072
– volume: 16
  start-page: 511
  year: 2017
  ident: ref_74
  article-title: Rt-fall: A real-time and contactless fall detection system with commodity wifi devices
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2557795
– ident: ref_70
  doi: 10.3390/s150511741
– volume: 105
  start-page: 131
  year: 2017
  ident: ref_91
  article-title: Human fall detection from depth images using position and velocity of subject
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.01.191
– volume: 62
  start-page: 128
  year: 2016
  ident: ref_25
  article-title: An outdoor intelligent healthcare monitoring device for the elderly
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2016.7514671
– volume: 3
  start-page: 125
  year: 2013
  ident: ref_53
  article-title: Automatic fall detection and activity classification by a wearable embedded smart camera
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2013.2256832
– ident: ref_83
  doi: 10.1007/978-981-10-3023-9
– volume: 2013
  start-page: 217286
  year: 2013
  ident: ref_3
  article-title: Implementation of fall detection and localized caring system
  publication-title: Math. Probl. Eng.
– ident: ref_116
  doi: 10.3390/s17010176
– volume: 14
  start-page: 19806
  year: 2014
  ident: ref_11
  article-title: Survey on fall detection and fall prevention using wearable and external sensors
  publication-title: Sensors
  doi: 10.3390/s141019806
– volume: 32
  start-page: 356
  year: 2017
  ident: ref_94
  article-title: Automatic fall detection using membership based histogram descriptors
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-017-1725-z
– ident: ref_97
– ident: ref_102
  doi: 10.1007/s10044-017-0660-5
– volume: 7
  start-page: 19
  year: 2018
  ident: ref_111
  article-title: Rfid 3D-landmarc localization algorithm based on quantum particle swarm optimization
  publication-title: Electronics
  doi: 10.3390/electronics7020019
– ident: ref_103
  doi: 10.3390/s17020307
– ident: ref_112
  doi: 10.1109/ICCASE.2011.5997582
– volume: 60
  start-page: 4350
  year: 2012
  ident: ref_17
  article-title: Distributed, robust acoustic source localization in a wireless sensor network
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2199314
– volume: 17
  start-page: 1002
  year: 2013
  ident: ref_52
  article-title: An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2274479
– volume: 84
  start-page: 214
  year: 2017
  ident: ref_82
  article-title: Accelerometer-based fall-portent detection algorithm for construction tiling operation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.09.015
– volume: 5
  start-page: 504
  year: 2016
  ident: ref_20
  article-title: Robust anns-based wsn localization in the presence of anisotropic signal attenuation
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2016.2595576
– volume: 19
  start-page: 92
  year: 2015
  ident: ref_56
  article-title: Embedded dsp-based telehealth radar system for remote in-door fall detection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2361252
– volume: 2
  start-page: 45
  year: 2010
  ident: ref_19
  article-title: Localization algorithms in wireless sensor networks: Current approaches and future challenges
  publication-title: Netw. Protoc. Algorithms
– ident: ref_2
  doi: 10.3390/s16040546
– ident: ref_10
  doi: 10.1109/DATE.2010.5457055
– volume: 2013
  start-page: 254629
  year: 2013
  ident: ref_31
  article-title: Supervised expert system for wearable mems accelerometer-based fall detector
  publication-title: J. Sens.
  doi: 10.1155/2013/254629
– ident: ref_120
  doi: 10.1145/2248341.2248349
– ident: ref_73
  doi: 10.1371/journal.pone.0180318
– ident: ref_68
  doi: 10.3390/s17061393
– ident: ref_88
  doi: 10.3390/app7040316
– volume: 10
  start-page: 617
  year: 2012
  ident: ref_42
  article-title: Fallalarm: Smart phone based fall detecting and positioning system
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2012.06.079
– volume: 33
  start-page: 71
  year: 2016
  ident: ref_1
  article-title: Radar signal processing for elderly fall detection: The future for in-home monitoring
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2502784
– volume: 5
  start-page: 58
  year: 2011
  ident: ref_49
  article-title: Zigbee-based indoor location system by k-nearest neighbor algorithm with weighted rssi
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2011.07.010
– volume: 12
  start-page: 433
  year: 2017
  ident: ref_71
  article-title: Energy-efficient remote temperature monitoring system for patients based on GSM modem and microcontroller
  publication-title: J. Commun.
– volume: 44
  start-page: 333
  year: 2016
  ident: ref_79
  article-title: Accelerometer-based fall detection using feature extraction and support vector machine algorithms
  publication-title: Instrum. Sci. Technol.
  doi: 10.1080/10739149.2015.1123161
– volume: 34
  start-page: 272
  year: 2004
  ident: ref_65
  article-title: Identification of complex systems based on neural and takagi-sugeno fuzzy model
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2003.811119
– volume: 14
  start-page: 41
  year: 2014
  ident: ref_43
  article-title: A multi-sensor approach for fall risk prediction and prevention in elderly
  publication-title: ACM SIGAPP Appl. Comput. Rev.
  doi: 10.1145/2600617.2600621
– ident: ref_67
  doi: 10.1109/ICOIN.2012.6164365
– ident: ref_109
  doi: 10.1109/ICDMIC.2014.6954228
– volume: 9
  start-page: 1323
  year: 2016
  ident: ref_110
  article-title: A novel hybrid localization method for wireless sensor network
  publication-title: Int. J. Smart Sens. Intell. Syst.
– ident: ref_85
  doi: 10.1007/s11276-017-1557-3
– volume: 9
  start-page: 125
  year: 2015
  ident: ref_55
  article-title: M-sequence-based ultra-wideband sensor network for vitality monitoring of elders at home
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2014.0214
– volume: 55
  start-page: 6
  year: 2017
  ident: ref_90
  article-title: Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.03.037
– volume: 47
  start-page: 31
  year: 2017
  ident: ref_89
  article-title: Autonomous fall detection with wearable cameras by using relative entropy distance measure
  publication-title: IEEE Trans. Hum.-Mach. Syst.
– volume: 10
  start-page: 946
  year: 2012
  ident: ref_16
  article-title: Practical and secure localization and key distribution for wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2011.12.008
– ident: ref_9
  doi: 10.3390/s150923004
– ident: ref_23
  doi: 10.17485/ijst/2017/v10i5/111274
– ident: ref_114
  doi: 10.3390/s17020341
– volume: 12
  start-page: 2302
  year: 2016
  ident: ref_69
  article-title: Low-power fall detector using triaxial accelerometry and barometric pressure sensing
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2587761
– volume: 73
  start-page: 733
  year: 2017
  ident: ref_4
  article-title: P-sep: A prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1785-9
– volume: 18
  start-page: 1055
  year: 2014
  ident: ref_14
  article-title: Rss-based source localization when path-loss model parameters are unknown
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2014.2318031
– volume: 117
  start-page: 72
  year: 2013
  ident: ref_105
  article-title: A dynamic neural network approach for solving nonlinear inequalities defined on a graph and its application to distributed, routing-free, range-free localization of wsns
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.032
– ident: ref_6
  doi: 10.1016/j.jpdc.2018.07.003
– volume: 2014
  start-page: 896030
  year: 2014
  ident: ref_32
  article-title: Fall-detection algorithm using 3-axis acceleration: Combination with simple threshold and hidden markov model
  publication-title: J. Appl. Math.
  doi: 10.1155/2014/896030
– ident: ref_117
  doi: 10.1007/978-3-319-59060-8
– ident: ref_15
  doi: 10.1155/2015/195297
– volume: 16
  start-page: 529
  year: 2016
  ident: ref_63
  article-title: Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2483745
– volume: 8
  start-page: 61
  year: 2016
  ident: ref_107
  article-title: Localization for wireless sensor networks: A neural network approach
  publication-title: Int. J. Comput. Networks Commun.
  doi: 10.5121/ijcnc.2016.8105
– volume: 8
  start-page: 883
  year: 2012
  ident: ref_47
  article-title: A smartphone-based fall detection system
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2012.08.003
– volume: 14
  start-page: 10691
  year: 2014
  ident: ref_29
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s140610691
– volume: 56
  start-page: 34
  year: 2018
  ident: ref_118
  article-title: Energy efficient wearable sensor node for IoT-based fall detection systems
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2017.10.014
– volume: 19
  start-page: 303
  year: 2014
  ident: ref_115
  article-title: Energy-efficient motion related activity recognition on mobile devices for pervasive healthcare
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-013-0448-9
– volume: 17
  start-page: 38
  year: 2013
  ident: ref_27
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/TITB.2012.2226905
– volume: 41
  start-page: 703
  year: 2010
  ident: ref_24
  article-title: Accelerometer-based fall detection using optimized zigbee data streaming
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2010.06.014
– volume: 39
  start-page: 94
  year: 2016
  ident: ref_81
  article-title: Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.062
– volume: 55
  start-page: 45
  year: 2017
  ident: ref_100
  article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. Machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1504-y
– ident: ref_87
– ident: ref_95
  doi: 10.1117/12.2257902
– ident: ref_48
  doi: 10.3390/s16010117
– volume: 2013
  start-page: 935026
  year: 2013
  ident: ref_57
  article-title: Lateral inhibition in accumulative computation and fuzzy sets for human fall pattern recognition in colour and infrared imagery
  publication-title: Sci. World J.
  doi: 10.1155/2013/935026
– ident: ref_59
  doi: 10.3390/s17081781
– ident: ref_72
– volume: 17
  start-page: 711
  year: 2014
  ident: ref_77
  article-title: A smartphone based real-time daily activity monitoring system
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-013-0335-y
– volume: 2
  start-page: 24
  year: 2016
  ident: ref_8
  article-title: 3D depth image analysis for indoor fall detection of elderly people
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2015.12.001
– volume: 105
  start-page: 46
  year: 2017
  ident: ref_84
  article-title: Smartphone based data mining for fall detection: Analysis and design
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.01.188
– volume: 14
  start-page: 7181
  year: 2014
  ident: ref_45
  article-title: Smartphone-based solutions for fall detection and prevention: Challenges and open issues
  publication-title: Sensors
  doi: 10.3390/s140407181
– ident: ref_121
  doi: 10.1109/ICIT.2017.7915565
– volume: 45
  start-page: 722
  year: 2012
  ident: ref_46
  article-title: Smartphone-based solutions for fall detection and prevention: The farseeing approach
  publication-title: Z. Gerontol. Geriatr.
  doi: 10.1007/s00391-012-0404-5
– volume: 62
  start-page: 865
  year: 2015
  ident: ref_54
  article-title: Doppler radar fall activity detection using the wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2367038
– volume: 39
  start-page: 820
  year: 2014
  ident: ref_66
  article-title: Localization estimation using artificial intelligence technique in wireless sensor networks
  publication-title: J. Korea Inf. Commun. Soc.
– volume: 16
  start-page: 6
  year: 2012
  ident: ref_28
  article-title: A reliable transmission protocol for zigbee-based wireless patient monitoring
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2171704
– ident: ref_35
  doi: 10.1155/2016/2308183
– volume: 45
  start-page: 382
  year: 2017
  ident: ref_93
  article-title: Enhanced characterization of an accelerometer-based fall detection algorithm using a repository
  publication-title: Instrum. Sci. Technol.
  doi: 10.1080/10739149.2016.1268155
– volume: 2015
  start-page: 192454
  year: 2015
  ident: ref_30
  article-title: A distributed multiagent system architecture for body area networks applied to healthcare monitoring
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/192454
– ident: ref_36
  doi: 10.1155/2016/5747961
– ident: ref_37
– ident: ref_18
– volume: 14
  start-page: 18543
  year: 2014
  ident: ref_40
  article-title: Comparison and characterization of android-based fall detection systems
  publication-title: Sensors
  doi: 10.3390/s141018543
– volume: 6
  start-page: 6478
  year: 2018
  ident: ref_5
  article-title: Energy-efficient architecture for wireless sensor networks in healthcare applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789918
– volume: 63
  start-page: 2866
  year: 2014
  ident: ref_62
  article-title: The impact of transmission power control strategies on lifetime of wireless sensor networks
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2013.151
– volume: 2016
  start-page: 7314207
  year: 2016
  ident: ref_21
  article-title: Energy efficiency of ultra-low-power bicycle wireless sensor networks based on a combination of power reduction techniques
  publication-title: J. Sens.
  doi: 10.1155/2016/7314207
– volume: 73
  start-page: 5239
  year: 2017
  ident: ref_7
  article-title: Flaps: Bandwidth and delay-efficient distributed data searching in fog-supported p2p content delivery networks
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2082-y
– volume: 19
  start-page: 430
  year: 2015
  ident: ref_51
  article-title: Fall detection based on body part tracking using a depth camera
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2319372
– ident: ref_119
  doi: 10.1109/SECON.2012.6275823
– ident: ref_26
  doi: 10.3390/s16081043
– volume: 14
  start-page: 633
  year: 2010
  ident: ref_44
  article-title: Mobile phone-based pervasive fall detection
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-010-0292-x
– volume: 82
  start-page: 2519
  year: 2015
  ident: ref_64
  article-title: Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-015-2362-x
– volume: 40
  start-page: 663
  year: 2010
  ident: ref_104
  article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2010.2049649
– volume: 11
  start-page: 4233
  year: 2014
  ident: ref_76
  article-title: A zigbee-based location-aware fall detection system for improving elderly telecare
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph110404233
– ident: ref_75
  doi: 10.1007/978-3-642-37484-5
– volume: 5
  start-page: 11364
  year: 2017
  ident: ref_99
  article-title: Tagcare: Using rfids to monitor the status of the elderly living alone
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2716359
– volume: 100
  start-page: 144
  year: 2013
  ident: ref_12
  article-title: A survey on fall detection: Principles and approaches
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.09.037
– ident: ref_33
  doi: 10.3390/s16081161
SSID ssj0000331333
Score 2.4164667
SecondaryResourceType review_article
Snippet Falls are the main source of injury for elderly patients with epilepsy and Parkinson’s disease. Elderly people who carry battery powered health monitoring...
The degree of danger from a fall for aging persons is frequently decided by the location of the fall, time of fall detection, duration and time of transfer and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2866
SubjectTerms accelerometer sensor
Accelerometers
Accuracy
Blood pressure
Cameras
data-driven algorithm
Engineering
fall detection
Global positioning systems
GPS
Health care
International conferences
Localization
Methods
neural network
Neural networks
Older people
Sensors
tilt sensor
Wireless networks
wireless sensor network (WSN)
ZigBee
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VwAEOpeUh0ga0UnvhYCX2-rF7qgg44lBFUcuBm7Ve71ZIlhPyQOLGT2dmvUkqteKC5JM9fkgzO_PNeuYbgO8JwRBTJgF6SGrJ0bjmeMIDVH2CyVhkw6Rywyay8Vjc38uJ33Bb-LLKtU90jrqaatoj7yMOwdgoeTL4MXsMaGoU_V31IzR2YJeYyuIO7A7z8eTXZpdlwDkmYbzlJeWY3_dNQ04iEo4WcRuJHGH_P_7YBZnR4Xs_7xN89PCSXbX28Bk-mOYIDv4iHTyGlyutV0QQwUaqrtmNWbpqrIappmI_KbT51kyGeJblNMW7fmYTV2nOhhj0KobXiNQDXzRuq8jdvblrIwxyR0qBsYxRZW2NnpT9xlwZn-WFT-BulN9d3wZ-DkOgeRouAxlFMlWWmNWsKG0VpVxjbisUD41OpVIywSTPSlGqUPMkyxAjqKy0iKZiM1D8FDrNtDFnwKo0VnKQCo5AJJZxiem3TK2OBeKiUJWiC5drlRTac5TTqIy6wFyF1Fds1deFbxvZWcvM8V-pIWl2I0Fs2u7EdP6n8IuzsAatkkfCasljOkobKyHSSlaZQfPpQm-t9MIv8UWx1fiXty9_hX1EWaJtYOxBZzlfmXPY00_Lh8X8wlvsKxZY8_w
  priority: 102
  providerName: ProQuest
Title Accurate Fall Detection and Localization for Elderly People Based on Neural Network and Energy-Efficient Wireless Sensor Network
URI https://www.proquest.com/docview/2316359350
https://doaj.org/article/fe902328fc9349349bf4a886d9d7e333
Volume 11
WOSCitedRecordID wos000451814000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHvQgPnF1XQJ68VB22-kjOe5qFwV3KbqH9VTSNAGhVNmH4EX86U7S7gMUvAilhzZpSh4z3wcz3xByFRgYorLAQQtpUnIknjkIwMGlD5CMedoNcltsIhoO2XjMk7VSXyYmrJIHriaurRX2AI9pycE3V6Z9wViY8zxSAFbnE4dbI1PWBgMg-YJKjxSQ17dVaYyDx6wc4soDWaH-H3bYOpf-PtmrUSHtVn9zQDZUeUh217QCj8hXV8q50XWgfVEU9FbNbBBVSUWZ0wfjkeqMSoowlMam-HbxQRMbIE576Ktyiu-MFgcONKyCv23f2Gb_ObHVkkAXRE1AbIEGkD4hxcVv1Y2Pyagfj27unLp8giMhdGcO9zweCm0E0TTLdO6FIJGSMgGukiEXggfIzTRnmXAlBFGErl1EmUYQ5KuOgBOyWb6W6pTQPPQF74QMED_43M-QNfNQS58hnHFFxhrkejGjqaylxU2FiyJFimFmP13NfoNcLtu-VYIav7bqmYVZtjAi2PYBbo203hrpX1ujQZqLZU3rkzlNEc8ixuIQdM7-Y4xzsoMQilXZiU2yOZvM1QXZlu-zl-mkRbZ68TB5bNnNiffBZ4zPkvtB8vwNz97osA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwKK8ilhawBBw4RE3iPOxDhVq6q666Xa3EHsrJchwbIUXZsrsF9cYf4j92xkl2kUDcekDKKZk4kv15Hs7MNwBvU3JDbJEGqCGpJMfgnuMpD3DpUwzGYhelpW82kU8m4uJCTrfgV1cLQ2mVnU70irqcGzojP0A_BG2j5Gn44fJbQF2j6O9q10KjgcWZvf6BIdvycHSC6_sujoeD2cfToO0qEBieRatAxrHMtCOeMCcKV8YZNxipCc0jazKptUwxZHFSFDoyPM1ztHg6Lxz6BokNNcdh78B2glgXPdiejs6nn9eHOiHnGPPxhgaVcxke2Jp0Uiw8C-PG8Pn-AH-of2_Thg__s9l4BDut88yOGrQ_hi1bP4EHv1EqPoWfR8ZcEf0FG-qqYid25XPNaqbrko3JcLeFpwy9dTagHuXVNZv6PHp2jCa9ZPiMKEvwQ5MmR96_O_BFksHAU26gpWaUN1yhnWCfbL3EsVrhXZjdxgw8g149r-1zYGWWaBlmgqOblcikEELIzJlEoNcX6UL04X2HAGVaBnZqBFIpjMQILWqDlj68WcteNrwjf5U6JiCtJYgr3N-YL76oVvUoZ3HP8Vg4I3lCV-ESLURWyjK3iNY-7HcYU60CW6oNwF78-_FruHc6Ox-r8Whytgf30Z8UTanmPvRWiyv7Eu6a76uvy8WrdrMwULcMyBvPRU61
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE4lK8iQgusBBw4WLG9_tg9VKgliYhaIkv0UE6r9XoXIVlOSVJQb_wt_l1n1naCBOLWA5JP9tqW7DfzZuyZNwCvUwpDbJkG6CGpJcegzfGUB_jqU0zGYhellR82kc9m4vxcFlvwq--FobLK3id6R13NDX0jH2IcgtwoeRoOXVcWUYwm7y6-BTRBiv609uM0Woic2KsfmL4tD6cjfNdv4ngyPnv_IegmDASGZ9EqkHEsM-1IM8yJ0lVxxg1mbULzyJpMai1TTF-cFKWODE_zHNlP56XDOCGxoeZ42VuwgxF5gia2U0w_Fp_XH3hCzjH_460kKucyHNqG_FMsvCLjhgT9rIA_qMDz2-T-f_xkHsBuF1Szo9YKHsKWbR7Bvd-kFh_DzyNjLkkWg010XbORXfkatIbppmKnROhdQyrDKJ6NaXZ5fcUKX1_PjpHqK4bHSMoEbzRra-f9uWPfPBmMvRQHMjijeuIa-YN9ss0Sr9Ut3oOzm3gCT2C7mTf2KbAqS7QMM8Ex_EpkUgohZOZMIjAajHQpBvC2R4MynTI7DQipFWZohBy1Qc4AXq3XXrR6JH9ddUygWq8gDXG_Y774ojqXpJxFW-SxcEbyhLbSJVqIrJJVbhG5Azjo8aY6x7ZUG7A9-_fhl3AHUahOp7OTfbiLYaZoOzgPYHu1uLTP4bb5vvq6XLzo7IaBumE8XgOdZVd1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Fall+Detection+and+Localization+for+Elderly+People+Based+on+Neural+Network+and+Energy-Efficient+Wireless+Sensor+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Sadik+Kamel+Gharghan&rft.au=Saleem+Latteef+Mohammed&rft.au=Ali+Al-Naji&rft.au=Mahmood+Jawad+Abu-AlShaeer&rft.date=2018-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=11&rft.spage=2866&rft_id=info:doi/10.3390%2Fen11112866&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe902328fc9349349bf4a886d9d7e333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon