Fault Prognostics for Photovoltaic Inverter Based on Fast Clustering Algorithm and Gaussian Mixture Model

The fault prognostics of the photovoltaic (PV) power generation system is expected to be a significant challenge as more and more PV systems with increasingly large capacities continue to come into existence. The PV inverter is the core component of the PV system, and it is essential to develop appr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 13; číslo 18; s. 4901
Hlavní autori: He, Zhenyu, Zhang, Xiaochen, Liu, Chao, Han, Te
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2020
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The fault prognostics of the photovoltaic (PV) power generation system is expected to be a significant challenge as more and more PV systems with increasingly large capacities continue to come into existence. The PV inverter is the core component of the PV system, and it is essential to develop approaches that accurately predict the occurrence of inverter faults to ensure the PV system’s safety. This paper proposes a fault prognostics method which makes full use of the similarities between inverter clusters. First, a feature space was constructed using the t-distributed stochastic neighbor embedding (t-SNE) algorithm. Then, the fast clustering algorithm was used to search the center inverter of each sampling time from the feature space. The status of the center inverter was adopted to establish the health baseline. Finally, the Gaussian mixture model was established with two data clusters based on the central inverter and the inverter to be predicted. The divergence of the two clusters could be used to predict the inverter’s fault. The performance of the proposed method was evaluated with real PV monitoring data. The experimental results showed that the proposed method successfully predicted the occurrence of an inverter fault 3 months in advance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en13184901