NN2FPGA: Optimizing CNN Inference on FPGAs With Binary Integer Programming

Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on computer-aided design of integrated circuits and systems Ročník 44; číslo 5; s. 1807 - 1818
Hlavní autori: Bosio, Roberto, Minnella, Filippo, Urso, Teodoro, Casu, Mario R., Lavagno, Luciano, Lazarescu, Mihai T., Pasini, Paolo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0070, 1937-4151
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array (FPGA)-based accelerators for ResNets and MobileNetV2 often experience decreased performance and increased computational latency due to the implementation of skip blocks. This article presents a novel framework for developing deep learning models on FPGAs that focuses on skip connections, with a unique approach to reduce buffering overhead. This results in a more efficient utilization of resources in the implementation of the skip layer. The nn2fpga compiler follows a thorough set of high-level synthesis (HLS) design principles and optimization strategies, exploiting in novel ways standard techniques to effectively map skip connection-based networks into static dataflow accelerators. To maximize throughput and efficiently use the available resources, our compiler employs a fast and effective design space exploration method based on a binary integer programming model which accurately assigns FPGA resources to the network layers, to maximize global throughput under resource constraints and then minimize resources for the achieved maximum throughput. Experimental results on the CIFAR-10 and ImageNet datasets demonstrate substantial gains in throughput (<inline-formula> <tex-math notation="LaTeX">\mathbf {3\times } </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mathbf {7\times } </tex-math></inline-formula> on the past HLS-based work) for ResNet8, ResNet20, and MobileNetV2 models deployed on various Xilinx FPGA boards. Notably, MobileNetV2 deployed on the ZCU102 achieves a throughput of 2115 frame per second, representing even a 10% speedup over a state-of-the-art highly optimized manual register-transfer level implementation, showing that HLS can actually improve over manual design, thanks to the faster exploration of the design space.
AbstractList Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array (FPGA)-based accelerators for ResNets and MobileNetV2 often experience decreased performance and increased computational latency due to the implementation of skip blocks. This article presents a novel framework for developing deep learning models on FPGAs that focuses on skip connections, with a unique approach to reduce buffering overhead. This results in a more efficient utilization of resources in the implementation of the skip layer. The nn2fpga compiler follows a thorough set of high-level synthesis (HLS) design principles and optimization strategies, exploiting in novel ways standard techniques to effectively map skip connection-based networks into static dataflow accelerators. To maximize throughput and efficiently use the available resources, our compiler employs a fast and effective design space exploration method based on a binary integer programming model which accurately assigns FPGA resources to the network layers, to maximize global throughput under resource constraints and then minimize resources for the achieved maximum throughput. Experimental results on the CIFAR-10 and ImageNet datasets demonstrate substantial gains in throughput ([Formula Omitted]–[Formula Omitted] on the past HLS-based work) for ResNet8, ResNet20, and MobileNetV2 models deployed on various Xilinx FPGA boards. Notably, MobileNetV2 deployed on the ZCU102 achieves a throughput of 2115 frame per second, representing even a 10% speedup over a state-of-the-art highly optimized manual register-transfer level implementation, showing that HLS can actually improve over manual design, thanks to the faster exploration of the design space.
Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array (FPGA)-based accelerators for ResNets and MobileNetV2 often experience decreased performance and increased computational latency due to the implementation of skip blocks. This article presents a novel framework for developing deep learning models on FPGAs that focuses on skip connections, with a unique approach to reduce buffering overhead. This results in a more efficient utilization of resources in the implementation of the skip layer. The nn2fpga compiler follows a thorough set of high-level synthesis (HLS) design principles and optimization strategies, exploiting in novel ways standard techniques to effectively map skip connection-based networks into static dataflow accelerators. To maximize throughput and efficiently use the available resources, our compiler employs a fast and effective design space exploration method based on a binary integer programming model which accurately assigns FPGA resources to the network layers, to maximize global throughput under resource constraints and then minimize resources for the achieved maximum throughput. Experimental results on the CIFAR-10 and ImageNet datasets demonstrate substantial gains in throughput (<inline-formula> <tex-math notation="LaTeX">\mathbf {3\times } </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mathbf {7\times } </tex-math></inline-formula> on the past HLS-based work) for ResNet8, ResNet20, and MobileNetV2 models deployed on various Xilinx FPGA boards. Notably, MobileNetV2 deployed on the ZCU102 achieves a throughput of 2115 frame per second, representing even a 10% speedup over a state-of-the-art highly optimized manual register-transfer level implementation, showing that HLS can actually improve over manual design, thanks to the faster exploration of the design space.
Author Lavagno, Luciano
Urso, Teodoro
Lazarescu, Mihai T.
Casu, Mario R.
Pasini, Paolo
Bosio, Roberto
Minnella, Filippo
Author_xml – sequence: 1
  givenname: Roberto
  orcidid: 0009-0003-3431-9618
  surname: Bosio
  fullname: Bosio, Roberto
  email: roberto_bosio@polito.it
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 2
  givenname: Filippo
  orcidid: 0000-0001-6713-8942
  surname: Minnella
  fullname: Minnella, Filippo
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 3
  givenname: Teodoro
  orcidid: 0009-0005-4366-1102
  surname: Urso
  fullname: Urso, Teodoro
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 4
  givenname: Mario R.
  orcidid: 0000-0002-1026-0178
  surname: Casu
  fullname: Casu, Mario R.
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 5
  givenname: Luciano
  orcidid: 0000-0002-9762-6522
  surname: Lavagno
  fullname: Lavagno, Luciano
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 6
  givenname: Mihai T.
  orcidid: 0000-0003-0884-5158
  surname: Lazarescu
  fullname: Lazarescu, Mihai T.
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 7
  givenname: Paolo
  orcidid: 0000-0001-6233-0994
  surname: Pasini
  fullname: Pasini, Paolo
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
BookMark eNpNkE1PwjAYxxuDiYB-ABMPTTwP-7KurTecghgyOJB4bMZ4iiOuw3Yc9NPbBQ-emjz9_Z-X3wgNXOsAoVtKJpQS_bDJp88TRlg64YJIIckFGlLNZZJSQQdoSJhUCSGSXKFRCAdCaCqYHqK3omCz9Xz6iFfHrm7qn9rtcV4UeOEseHAV4Nbhngj4ve4-8FPtSv8dvzvYg8dr3-592TQxdo0ubfkZ4ObvHaPN7GWTvybL1XyRT5dJxTPaJUrudlpX0lpVlSm3PJZ3NrOCSrGtSEYpk7JSfFumRGnBQYLmttwCEwpUysfo_tz26NuvE4TOHNqTd3Gi4fFilUrFWaTomap8G4IHa46-buLmhhLTGzO9MdMbM3_GYubunKkB4B8vMy2o4r97PGbX
CODEN ITCSDI
Cites_doi 10.1109/ICFPT51103.2020.00016
10.1145/3489517.3530631
10.1093/oso/9780199219858.001.0001
10.1109/MSP.2012.2211477
10.1109/JETCAS.2019.2905361
10.1016/j.patcog.2020.107281
10.1145/3020078.3021740
10.1109/TNNLS.2021.3084827
10.1109/TCAD.2022.3198246
10.5555/3454287.3455008
10.1145/3547141
10.23915/distill.00021
10.1109/ACCESS.2023.3236974
10.1145/2647868.2654889
10.3390/jlpea12020030
10.1145/3508352.3549439
10.1145/3373087.3375311
10.1016/j.neucom.2021.07.045
10.1145/3242897
10.1109/CCWC54503.2022.9720794
10.1109/CVPR.2018.00286
10.1145/3547276.3548515
10.1109/ACCESS.2022.3229767
10.23919/DATE54114.2022.9774574
10.48550/ARXIV.1511.08458
10.1145/3061639.3062207
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2024.3507570
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 1818
ExternalDocumentID 10_1109_TCAD_2024_3507570
10769518
Genre orig-research
GrantInformation_xml – fundername: European Union, Greece, Germany, Netherlands, Spain, Italy, Sweden, Turkey, Lithuania, and Switzerland
– fundername: Spoke 1 on Future HPC of the Italian Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC)
– fundername: Key Digital Technologies Joint Undertaking under the REBECCA Project
  grantid: 101097224
– fundername: “Telecommunications of the Future”
  grantid: PE00000001
– fundername: MUR Mission 4—Next Generation EU
– fundername: program “RESTART”
– fundername: European Union - Next Generation EU under the Italian National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3
  grantid: CUP E13C22001870001
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-87dd99c7ff8ca43f3c36df6f5175bc0611277c83ba408953e7e93fabe258e843
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473569900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0070
IngestDate Thu Jul 24 01:45:18 EDT 2025
Sat Nov 29 08:00:48 EST 2025
Wed Aug 27 02:04:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-87dd99c7ff8ca43f3c36df6f5175bc0611277c83ba408953e7e93fabe258e843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-3431-9618
0000-0002-1026-0178
0000-0002-9762-6522
0009-0005-4366-1102
0000-0001-6713-8942
0000-0003-0884-5158
0000-0001-6233-0994
OpenAccessLink https://ieeexplore.ieee.org/document/10769518
PQID 3193847832
PQPubID 85470
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCAD_2024_3507570
ieee_primary_10769518
proquest_journals_3193847832
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Dunning (ref45) 2011
Zhang (ref4) 2018
Howard (ref5) 2017
ref37
Qin (ref14) 2020; 105
ref31
Liu (ref12)
Abadi (ref23) 2015
ref11
ref33
ref32
ref2
ref1
He (ref9)
Umuroglu (ref16) 2016
Zhang (ref6) 2017
Pappalardo (ref38)
(ref41) 2020
ref19
Machura (ref30) 2022; 12
ref18
Pappalardo (ref34) 2022
Araujo (ref43) 2019
Liang (ref27) 2021; 461
(ref47) 2023
Krizhevsky (ref7) 2010
Choi (ref15); 1
(ref22) 2023
(ref17) 2022
ref24
ref46
Jin (ref36)
ref48
ref25
ref20
Umuroglu (ref39) 2022
ref42
ref44
ref21
Yao Fu (ref40) 2017
ref28
Weng (ref10) 2021
ref29
ref8
ref3
(ref26) 2023
Gholami (ref35) 2021
References_xml – year: 2017
  ident: ref6
  article-title: ShuffleNet: An extremely efficient convolutional neural network for mobile devices
  publication-title: arXiv:1707.01083
– ident: ref21
  doi: 10.1109/ICFPT51103.2020.00016
– ident: ref33
  doi: 10.1145/3489517.3530631
– ident: ref44
  doi: 10.1093/oso/9780199219858.001.0001
– year: 2017
  ident: ref5
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref8
  doi: 10.1109/MSP.2012.2211477
– ident: ref42
  doi: 10.1109/JETCAS.2019.2905361
– volume: 105
  year: 2020
  ident: ref14
  article-title: Binary neural networks: A survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107281
– ident: ref18
  doi: 10.1145/3020078.3021740
– volume-title: VitisAI Develop Environment
  year: 2023
  ident: ref22
– volume-title: Xilinx/brevitas
  year: 2022
  ident: ref34
– start-page: 2091
  volume-title: Proc. 35th AAAI Conf. Artif. Intell., AAAI 33rd Conf. Innov. Appl. Artif. Intell., IAAI 11th Symp. Educ. Adv. Artif. Intell.
  ident: ref12
  article-title: SA-BNN: state-aware binary neural network
– ident: ref1
  doi: 10.1109/TNNLS.2021.3084827
– year: 2018
  ident: ref4
  article-title: Recent advances in convolutional neural network acceleration
  publication-title: arXiv:1807.08596
– ident: ref48
  doi: 10.1109/TCAD.2022.3198246
– ident: ref24
  doi: 10.5555/3454287.3455008
– volume: 1
  start-page: 348
  volume-title: Proc. Mach. Learn. Syst.
  ident: ref15
  article-title: Accurate and efficient 2-bit quantized neural networks
– ident: ref28
  doi: 10.1145/3547141
– volume-title: Computing receptive fields of convolutional neural networks
  year: 2019
  ident: ref43
  doi: 10.23915/distill.00021
– year: 2021
  ident: ref35
  article-title: A survey of quantization methods for efficient neural network inference
  publication-title: arXiv:2103.13630
– ident: ref31
  doi: 10.1109/ACCESS.2023.3236974
– ident: ref25
  doi: 10.1145/2647868.2654889
– volume: 12
  start-page: 30
  issue: 2
  year: 2022
  ident: ref30
  article-title: Embedded object detection with custom LittleNet, FINN and Vitis AI DCNN accelerators
  publication-title: J. Low Power Electron. Appl.
  doi: 10.3390/jlpea12020030
– ident: ref46
  doi: 10.1145/3508352.3549439
– volume-title: DPUCZDX8G for Zynq UltraScale+ MPSoCs product guide (PG338)
  year: 2023
  ident: ref26
– ident: ref20
  doi: 10.1145/3373087.3375311
– volume-title: CIFAR-10 (Canadian institute for advanced research)
  year: 2010
  ident: ref7
– volume: 461
  start-page: 370
  year: 2021
  ident: ref27
  article-title: Pruning and quantization for deep neural network acceleration: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.045
– ident: ref13
  doi: 10.1145/3242897
– year: 2016
  ident: ref16
  article-title: FINN: a framework for fast, scalable binarized neural network inference
  publication-title: arXiv:1612.07119
– volume-title: TensorFlow: Large-scale machine learning on heterogeneous systems
  year: 2015
  ident: ref23
– ident: ref29
  doi: 10.1109/CCWC54503.2022.9720794
– volume-title: PuLP: A linear programming toolkit for Python
  year: 2011
  ident: ref45
– ident: ref37
  doi: 10.1109/CVPR.2018.00286
– start-page: 1
  volume-title: Proc. 4th Workshop Accel. Mach. Learn. (AccML)
  ident: ref38
  article-title: QONNX: Representing arbitrary-precision quantized neural networks
– ident: ref32
  doi: 10.1145/3547276.3548515
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref36
  article-title: F8Net: Fixed-point 8-bit only multiplication for network quantization
– ident: ref3
  doi: 10.1109/ACCESS.2022.3229767
– ident: ref11
  doi: 10.23919/DATE54114.2022.9774574
– volume-title: Vitis AI model zoo
  year: 2023
  ident: ref47
– start-page: 770
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref9
  article-title: Deep residual learning for image recognition
– volume-title: Fastmachinelearning/qonnx
  year: 2022
  ident: ref39
– ident: ref2
  doi: 10.48550/ARXIV.1511.08458
– volume-title: Vitis High-Level Synthesis User Guide
  year: 2022
  ident: ref17
– volume-title: 8-bit dot-product acceleration (WP487)
  year: 2017
  ident: ref40
– ident: ref19
  doi: 10.1145/3061639.3062207
– year: 2021
  ident: ref10
  article-title: Hardware-efficient residual networks for FPGAs
  publication-title: arXiv:2102.01351
– volume-title: Convolutional neural network with INT4 optimization on Xilinx devices
  year: 2020
  ident: ref41
SSID ssj0014529
Score 2.4675262
Snippet Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1807
SubjectTerms Accelerators
Accuracy
Artificial neural networks
Codesign
Compilers
Computational modeling
Computer vision
Convolutional codes
Convolutional neural networks
dataflow architecture
Design of experiments
Design optimization
Field programmable gate arrays
field-programmable gate array (FPGA) acceleration
graph optimization
High level synthesis
Integer programming
Machine learning
Network latency
Optimization
pipelining
quantization
Quantization (signal)
residual neural networks (NNs)
Resource utilization
System-on-chip
Throughput
Title NN2FPGA: Optimizing CNN Inference on FPGAs With Binary Integer Programming
URI https://ieeexplore.ieee.org/document/10769518
https://www.proquest.com/docview/3193847832
Volume 44
WOSCitedRecordID wos001473569900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6iFQMMnEUUCvLAhJTSxIkPtlJRDqHQoYJuUWI70KEtalMGfj3PTooqIQa2yLIl53v2O_wugAsWKKk1T73cF8wLuc49ESjmcY3sMJVZGLm8tZcnHsdiNJKDKlnd5cIYY1zwmWnbT-fL1zO1tE9leMM5Q41A1KDGOSuTtX5cBtaD6B5UbMlYPMiVC9PvyKsh_hWagkHYpqj-RLYx8ZoQcl1VfrFiJ1_6u__c2R7sVIok6ZaU34cNMz2A7bXygofwGMdBf3DXvSbPyBgm4y8cJb04Jg-rLD8ymxI7Y0Fex8U7uXHJucS-Er6ZORmUsVsTXNaAYf922Lv3qt4JnqLML5DJaS2l4nkuVBrSnOKwzlkeobqQKRTifsC5EjRLw46QETXcSJqnmQkiYURIj6A-nU3NMRBXL4cJg7SkIWepYD5SEK2MTOkU1ZsmXK6wTD7KChmJsyw6MrHAJxb4pAK-CQ0L3trEErcmtFbwJ9UlWiTIHSgKT-Q5J38sO4WtwPbjdQGILagX86U5g031WYwX83N3Pr4B7cC1Dg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CggQM3IhyemBCCjSx44MNEOUqoUMFbFFiO9CBFvVg4Nfz7KSoEmJgiyxbcr5nv8PvAjjikVbGiCwoQskDJkwRyEjzQBhkh5nKWezz1p5aIknky4tqV8nqPhfGWuuDz-yJ-_S-fNPXY_dUhjdccNQI5CzMxYxFjTJd68dp4HyI_knFFY3Fo1w5McOGOu3gf6ExGLETigpQ7FoTT4kh31flFzP2Eqa58s-9rcJypUqS85L2azBje-uwNFVgcAPukiRqtq_Pz8gjsob37heOksskIbeTPD_S7xE3Y0ieu6M3cuHTc4l7J3y1A9Iuo7fecdkmdJpXncuboOqeEGjKwxGyOWOU0qIopM4YLSgOm4IXMSoMuUYxHkZCaEnzjDWkiqkVVtEiy20USysZ3YJar9-z20B8xRwuLVKTMsEzyUOkIdoZuTYZKjh1OJ5gmX6UNTJSb1s0VOqATx3waQV8HTYdeFMTS9zqsDeBP62u0TBF_kBRfCLX2flj2SEs3HQeWmnrNrnfhcXIdef14Yh7UBsNxnYf5vXnqDscHPiz8g2K5rhV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NN2FPGA%3A+Optimizing+CNN+Inference+on+FPGAs+With+Binary+Integer+Programming&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Bosio%2C+Roberto&rft.au=Minnella%2C+Filippo&rft.au=Urso%2C+Teodoro&rft.au=Casu%2C+Mario+R.&rft.date=2025-05-01&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=44&rft.issue=5&rft.spage=1807&rft.epage=1818&rft_id=info:doi/10.1109%2FTCAD.2024.3507570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCAD_2024_3507570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon