NN2FPGA: Optimizing CNN Inference on FPGAs With Binary Integer Programming
Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array...
Uložené v:
| Vydané v: | IEEE transactions on computer-aided design of integrated circuits and systems Ročník 44; číslo 5; s. 1807 - 1818 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0070, 1937-4151 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array (FPGA)-based accelerators for ResNets and MobileNetV2 often experience decreased performance and increased computational latency due to the implementation of skip blocks. This article presents a novel framework for developing deep learning models on FPGAs that focuses on skip connections, with a unique approach to reduce buffering overhead. This results in a more efficient utilization of resources in the implementation of the skip layer. The nn2fpga compiler follows a thorough set of high-level synthesis (HLS) design principles and optimization strategies, exploiting in novel ways standard techniques to effectively map skip connection-based networks into static dataflow accelerators. To maximize throughput and efficiently use the available resources, our compiler employs a fast and effective design space exploration method based on a binary integer programming model which accurately assigns FPGA resources to the network layers, to maximize global throughput under resource constraints and then minimize resources for the achieved maximum throughput. Experimental results on the CIFAR-10 and ImageNet datasets demonstrate substantial gains in throughput (<inline-formula> <tex-math notation="LaTeX">\mathbf {3\times } </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mathbf {7\times } </tex-math></inline-formula> on the past HLS-based work) for ResNet8, ResNet20, and MobileNetV2 models deployed on various Xilinx FPGA boards. Notably, MobileNetV2 deployed on the ZCU102 achieves a throughput of 2115 frame per second, representing even a 10% speedup over a state-of-the-art highly optimized manual register-transfer level implementation, showing that HLS can actually improve over manual design, thanks to the faster exploration of the design space. |
|---|---|
| AbstractList | Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array (FPGA)-based accelerators for ResNets and MobileNetV2 often experience decreased performance and increased computational latency due to the implementation of skip blocks. This article presents a novel framework for developing deep learning models on FPGAs that focuses on skip connections, with a unique approach to reduce buffering overhead. This results in a more efficient utilization of resources in the implementation of the skip layer. The nn2fpga compiler follows a thorough set of high-level synthesis (HLS) design principles and optimization strategies, exploiting in novel ways standard techniques to effectively map skip connection-based networks into static dataflow accelerators. To maximize throughput and efficiently use the available resources, our compiler employs a fast and effective design space exploration method based on a binary integer programming model which accurately assigns FPGA resources to the network layers, to maximize global throughput under resource constraints and then minimize resources for the achieved maximum throughput. Experimental results on the CIFAR-10 and ImageNet datasets demonstrate substantial gains in throughput ([Formula Omitted]–[Formula Omitted] on the past HLS-based work) for ResNet8, ResNet20, and MobileNetV2 models deployed on various Xilinx FPGA boards. Notably, MobileNetV2 deployed on the ZCU102 achieves a throughput of 2115 frame per second, representing even a 10% speedup over a state-of-the-art highly optimized manual register-transfer level implementation, showing that HLS can actually improve over manual design, thanks to the faster exploration of the design space. Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more accurate and deeper models by addressing the vanishing gradient problem. However, the existing implementations of field-programmable gate array (FPGA)-based accelerators for ResNets and MobileNetV2 often experience decreased performance and increased computational latency due to the implementation of skip blocks. This article presents a novel framework for developing deep learning models on FPGAs that focuses on skip connections, with a unique approach to reduce buffering overhead. This results in a more efficient utilization of resources in the implementation of the skip layer. The nn2fpga compiler follows a thorough set of high-level synthesis (HLS) design principles and optimization strategies, exploiting in novel ways standard techniques to effectively map skip connection-based networks into static dataflow accelerators. To maximize throughput and efficiently use the available resources, our compiler employs a fast and effective design space exploration method based on a binary integer programming model which accurately assigns FPGA resources to the network layers, to maximize global throughput under resource constraints and then minimize resources for the achieved maximum throughput. Experimental results on the CIFAR-10 and ImageNet datasets demonstrate substantial gains in throughput (<inline-formula> <tex-math notation="LaTeX">\mathbf {3\times } </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mathbf {7\times } </tex-math></inline-formula> on the past HLS-based work) for ResNet8, ResNet20, and MobileNetV2 models deployed on various Xilinx FPGA boards. Notably, MobileNetV2 deployed on the ZCU102 achieves a throughput of 2115 frame per second, representing even a 10% speedup over a state-of-the-art highly optimized manual register-transfer level implementation, showing that HLS can actually improve over manual design, thanks to the faster exploration of the design space. |
| Author | Lavagno, Luciano Urso, Teodoro Lazarescu, Mihai T. Casu, Mario R. Pasini, Paolo Bosio, Roberto Minnella, Filippo |
| Author_xml | – sequence: 1 givenname: Roberto orcidid: 0009-0003-3431-9618 surname: Bosio fullname: Bosio, Roberto email: roberto_bosio@polito.it organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 2 givenname: Filippo orcidid: 0000-0001-6713-8942 surname: Minnella fullname: Minnella, Filippo organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 3 givenname: Teodoro orcidid: 0009-0005-4366-1102 surname: Urso fullname: Urso, Teodoro organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 4 givenname: Mario R. orcidid: 0000-0002-1026-0178 surname: Casu fullname: Casu, Mario R. organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 5 givenname: Luciano orcidid: 0000-0002-9762-6522 surname: Lavagno fullname: Lavagno, Luciano organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 6 givenname: Mihai T. orcidid: 0000-0003-0884-5158 surname: Lazarescu fullname: Lazarescu, Mihai T. organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 7 givenname: Paolo orcidid: 0000-0001-6233-0994 surname: Pasini fullname: Pasini, Paolo organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy |
| BookMark | eNpNkE1PwjAYxxuDiYB-ABMPTTwP-7KurTecghgyOJB4bMZ4iiOuw3Yc9NPbBQ-emjz9_Z-X3wgNXOsAoVtKJpQS_bDJp88TRlg64YJIIckFGlLNZZJSQQdoSJhUCSGSXKFRCAdCaCqYHqK3omCz9Xz6iFfHrm7qn9rtcV4UeOEseHAV4Nbhngj4ve4-8FPtSv8dvzvYg8dr3-592TQxdo0ubfkZ4ObvHaPN7GWTvybL1XyRT5dJxTPaJUrudlpX0lpVlSm3PJZ3NrOCSrGtSEYpk7JSfFumRGnBQYLmttwCEwpUysfo_tz26NuvE4TOHNqTd3Gi4fFilUrFWaTomap8G4IHa46-buLmhhLTGzO9MdMbM3_GYubunKkB4B8vMy2o4r97PGbX |
| CODEN | ITCSDI |
| Cites_doi | 10.1109/ICFPT51103.2020.00016 10.1145/3489517.3530631 10.1093/oso/9780199219858.001.0001 10.1109/MSP.2012.2211477 10.1109/JETCAS.2019.2905361 10.1016/j.patcog.2020.107281 10.1145/3020078.3021740 10.1109/TNNLS.2021.3084827 10.1109/TCAD.2022.3198246 10.5555/3454287.3455008 10.1145/3547141 10.23915/distill.00021 10.1109/ACCESS.2023.3236974 10.1145/2647868.2654889 10.3390/jlpea12020030 10.1145/3508352.3549439 10.1145/3373087.3375311 10.1016/j.neucom.2021.07.045 10.1145/3242897 10.1109/CCWC54503.2022.9720794 10.1109/CVPR.2018.00286 10.1145/3547276.3548515 10.1109/ACCESS.2022.3229767 10.23919/DATE54114.2022.9774574 10.48550/ARXIV.1511.08458 10.1145/3061639.3062207 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCAD.2024.3507570 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4151 |
| EndPage | 1818 |
| ExternalDocumentID | 10_1109_TCAD_2024_3507570 10769518 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Union, Greece, Germany, Netherlands, Spain, Italy, Sweden, Turkey, Lithuania, and Switzerland – fundername: Spoke 1 on Future HPC of the Italian Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC) – fundername: Key Digital Technologies Joint Undertaking under the REBECCA Project grantid: 101097224 – fundername: “Telecommunications of the Future” grantid: PE00000001 – fundername: MUR Mission 4—Next Generation EU – fundername: program “RESTART” – fundername: European Union - Next Generation EU under the Italian National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3 grantid: CUP E13C22001870001 |
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-87dd99c7ff8ca43f3c36df6f5175bc0611277c83ba408953e7e93fabe258e843 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473569900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0070 |
| IngestDate | Thu Jul 24 01:45:18 EDT 2025 Sat Nov 29 08:00:48 EST 2025 Wed Aug 27 02:04:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-87dd99c7ff8ca43f3c36df6f5175bc0611277c83ba408953e7e93fabe258e843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0003-3431-9618 0000-0002-1026-0178 0000-0002-9762-6522 0009-0005-4366-1102 0000-0001-6713-8942 0000-0003-0884-5158 0000-0001-6233-0994 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10769518 |
| PQID | 3193847832 |
| PQPubID | 85470 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCAD_2024_3507570 ieee_primary_10769518 proquest_journals_3193847832 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
| PublicationTitleAbbrev | TCAD |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Dunning (ref45) 2011 Zhang (ref4) 2018 Howard (ref5) 2017 ref37 Qin (ref14) 2020; 105 ref31 Liu (ref12) Abadi (ref23) 2015 ref11 ref33 ref32 ref2 ref1 He (ref9) Umuroglu (ref16) 2016 Zhang (ref6) 2017 Pappalardo (ref38) (ref41) 2020 ref19 Machura (ref30) 2022; 12 ref18 Pappalardo (ref34) 2022 Araujo (ref43) 2019 Liang (ref27) 2021; 461 (ref47) 2023 Krizhevsky (ref7) 2010 Choi (ref15); 1 (ref22) 2023 (ref17) 2022 ref24 ref46 Jin (ref36) ref48 ref25 ref20 Umuroglu (ref39) 2022 ref42 ref44 ref21 Yao Fu (ref40) 2017 ref28 Weng (ref10) 2021 ref29 ref8 ref3 (ref26) 2023 Gholami (ref35) 2021 |
| References_xml | – year: 2017 ident: ref6 article-title: ShuffleNet: An extremely efficient convolutional neural network for mobile devices publication-title: arXiv:1707.01083 – ident: ref21 doi: 10.1109/ICFPT51103.2020.00016 – ident: ref33 doi: 10.1145/3489517.3530631 – ident: ref44 doi: 10.1093/oso/9780199219858.001.0001 – year: 2017 ident: ref5 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref8 doi: 10.1109/MSP.2012.2211477 – ident: ref42 doi: 10.1109/JETCAS.2019.2905361 – volume: 105 year: 2020 ident: ref14 article-title: Binary neural networks: A survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107281 – ident: ref18 doi: 10.1145/3020078.3021740 – volume-title: VitisAI Develop Environment year: 2023 ident: ref22 – volume-title: Xilinx/brevitas year: 2022 ident: ref34 – start-page: 2091 volume-title: Proc. 35th AAAI Conf. Artif. Intell., AAAI 33rd Conf. Innov. Appl. Artif. Intell., IAAI 11th Symp. Educ. Adv. Artif. Intell. ident: ref12 article-title: SA-BNN: state-aware binary neural network – ident: ref1 doi: 10.1109/TNNLS.2021.3084827 – year: 2018 ident: ref4 article-title: Recent advances in convolutional neural network acceleration publication-title: arXiv:1807.08596 – ident: ref48 doi: 10.1109/TCAD.2022.3198246 – ident: ref24 doi: 10.5555/3454287.3455008 – volume: 1 start-page: 348 volume-title: Proc. Mach. Learn. Syst. ident: ref15 article-title: Accurate and efficient 2-bit quantized neural networks – ident: ref28 doi: 10.1145/3547141 – volume-title: Computing receptive fields of convolutional neural networks year: 2019 ident: ref43 doi: 10.23915/distill.00021 – year: 2021 ident: ref35 article-title: A survey of quantization methods for efficient neural network inference publication-title: arXiv:2103.13630 – ident: ref31 doi: 10.1109/ACCESS.2023.3236974 – ident: ref25 doi: 10.1145/2647868.2654889 – volume: 12 start-page: 30 issue: 2 year: 2022 ident: ref30 article-title: Embedded object detection with custom LittleNet, FINN and Vitis AI DCNN accelerators publication-title: J. Low Power Electron. Appl. doi: 10.3390/jlpea12020030 – ident: ref46 doi: 10.1145/3508352.3549439 – volume-title: DPUCZDX8G for Zynq UltraScale+ MPSoCs product guide (PG338) year: 2023 ident: ref26 – ident: ref20 doi: 10.1145/3373087.3375311 – volume-title: CIFAR-10 (Canadian institute for advanced research) year: 2010 ident: ref7 – volume: 461 start-page: 370 year: 2021 ident: ref27 article-title: Pruning and quantization for deep neural network acceleration: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.045 – ident: ref13 doi: 10.1145/3242897 – year: 2016 ident: ref16 article-title: FINN: a framework for fast, scalable binarized neural network inference publication-title: arXiv:1612.07119 – volume-title: TensorFlow: Large-scale machine learning on heterogeneous systems year: 2015 ident: ref23 – ident: ref29 doi: 10.1109/CCWC54503.2022.9720794 – volume-title: PuLP: A linear programming toolkit for Python year: 2011 ident: ref45 – ident: ref37 doi: 10.1109/CVPR.2018.00286 – start-page: 1 volume-title: Proc. 4th Workshop Accel. Mach. Learn. (AccML) ident: ref38 article-title: QONNX: Representing arbitrary-precision quantized neural networks – ident: ref32 doi: 10.1145/3547276.3548515 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref36 article-title: F8Net: Fixed-point 8-bit only multiplication for network quantization – ident: ref3 doi: 10.1109/ACCESS.2022.3229767 – ident: ref11 doi: 10.23919/DATE54114.2022.9774574 – volume-title: Vitis AI model zoo year: 2023 ident: ref47 – start-page: 770 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref9 article-title: Deep residual learning for image recognition – volume-title: Fastmachinelearning/qonnx year: 2022 ident: ref39 – ident: ref2 doi: 10.48550/ARXIV.1511.08458 – volume-title: Vitis High-Level Synthesis User Guide year: 2022 ident: ref17 – volume-title: 8-bit dot-product acceleration (WP487) year: 2017 ident: ref40 – ident: ref19 doi: 10.1145/3061639.3062207 – year: 2021 ident: ref10 article-title: Hardware-efficient residual networks for FPGAs publication-title: arXiv:2102.01351 – volume-title: Convolutional neural network with INT4 optimization on Xilinx devices year: 2020 ident: ref41 |
| SSID | ssj0014529 |
| Score | 2.4675262 |
| Snippet | Skip connections have emerged as a key component of modern convolutional neural networks (CNNs) for computer vision tasks, allowing for the creation of more... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1807 |
| SubjectTerms | Accelerators Accuracy Artificial neural networks Codesign Compilers Computational modeling Computer vision Convolutional codes Convolutional neural networks dataflow architecture Design of experiments Design optimization Field programmable gate arrays field-programmable gate array (FPGA) acceleration graph optimization High level synthesis Integer programming Machine learning Network latency Optimization pipelining quantization Quantization (signal) residual neural networks (NNs) Resource utilization System-on-chip Throughput |
| Title | NN2FPGA: Optimizing CNN Inference on FPGAs With Binary Integer Programming |
| URI | https://ieeexplore.ieee.org/document/10769518 https://www.proquest.com/docview/3193847832 |
| Volume | 44 |
| WOSCitedRecordID | wos001473569900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6iFQMMnEUUCvLAhJTSxIkPtlJRDqHQoYJuUWI70KEtalMGfj3PTooqIQa2yLIl53v2O_wugAsWKKk1T73cF8wLuc49ESjmcY3sMJVZGLm8tZcnHsdiNJKDKlnd5cIYY1zwmWnbT-fL1zO1tE9leMM5Q41A1KDGOSuTtX5cBtaD6B5UbMlYPMiVC9PvyKsh_hWagkHYpqj-RLYx8ZoQcl1VfrFiJ1_6u__c2R7sVIok6ZaU34cNMz2A7bXygofwGMdBf3DXvSbPyBgm4y8cJb04Jg-rLD8ymxI7Y0Fex8U7uXHJucS-Er6ZORmUsVsTXNaAYf922Lv3qt4JnqLML5DJaS2l4nkuVBrSnOKwzlkeobqQKRTifsC5EjRLw46QETXcSJqnmQkiYURIj6A-nU3NMRBXL4cJg7SkIWepYD5SEK2MTOkU1ZsmXK6wTD7KChmJsyw6MrHAJxb4pAK-CQ0L3trEErcmtFbwJ9UlWiTIHSgKT-Q5J38sO4WtwPbjdQGILagX86U5g031WYwX83N3Pr4B7cC1Dg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CggQM3IhyemBCCjSx44MNEOUqoUMFbFFiO9CBFvVg4Nfz7KSoEmJgiyxbcr5nv8PvAjjikVbGiCwoQskDJkwRyEjzQBhkh5nKWezz1p5aIknky4tqV8nqPhfGWuuDz-yJ-_S-fNPXY_dUhjdccNQI5CzMxYxFjTJd68dp4HyI_knFFY3Fo1w5McOGOu3gf6ExGLETigpQ7FoTT4kh31flFzP2Eqa58s-9rcJypUqS85L2azBje-uwNFVgcAPukiRqtq_Pz8gjsob37heOksskIbeTPD_S7xE3Y0ieu6M3cuHTc4l7J3y1A9Iuo7fecdkmdJpXncuboOqeEGjKwxGyOWOU0qIopM4YLSgOm4IXMSoMuUYxHkZCaEnzjDWkiqkVVtEiy20USysZ3YJar9-z20B8xRwuLVKTMsEzyUOkIdoZuTYZKjh1OJ5gmX6UNTJSb1s0VOqATx3waQV8HTYdeFMTS9zqsDeBP62u0TBF_kBRfCLX2flj2SEs3HQeWmnrNrnfhcXIdef14Yh7UBsNxnYf5vXnqDscHPiz8g2K5rhV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NN2FPGA%3A+Optimizing+CNN+Inference+on+FPGAs+With+Binary+Integer+Programming&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Bosio%2C+Roberto&rft.au=Minnella%2C+Filippo&rft.au=Urso%2C+Teodoro&rft.au=Casu%2C+Mario+R.&rft.date=2025-05-01&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=44&rft.issue=5&rft.spage=1807&rft.epage=1818&rft_id=info:doi/10.1109%2FTCAD.2024.3507570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCAD_2024_3507570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |