Solving the Path Planning Problem in Mobile Robotics with the Multi-Objective Evolutionary Algorithm

Path planning problems involve finding a feasible path from the starting point to the target point. In mobile robotics, path planning (PP) is one of the most researched subjects at present. Since the path planning problem is an NP-hard problem, it can be solved by multi-objective evolutionary algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 8; číslo 9; s. 1425
Hlavní autoři: Xue, Yang, Sun, Jian-Qiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2018
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Path planning problems involve finding a feasible path from the starting point to the target point. In mobile robotics, path planning (PP) is one of the most researched subjects at present. Since the path planning problem is an NP-hard problem, it can be solved by multi-objective evolutionary algorithms (MOEAs). In this article, we propose a multi-objective method for solving the path planning problem. It is a population evolutionary algorithm and solves three different objectives (path length, safety, and smoothness) to acquire precise and effective solutions. In addition, five scenarios and another existing method are used to test the proposed algorithm. The results show the advantages of the algorithm. In particular, different quality metrics are used to assess the obtained results. In the end, the research indicates that the proposed multi-objective evolutionary algorithm is a good choice for solving the path planning problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app8091425