A Brief Analysis and Interpretation on Arithmetic Operations of Fuzzy Numbers

Fuzzy set theory is a generalized form of crisp set theory where elements are binary inclusion forms. In fuzzy set, it differs with degree of membership for every element in the set. There are several strategies for arithmetic operations on fuzzy numbers. Previous studies show that there are many ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Results in control and optimization Ročník 13; s. 100312
Hlavní autoři: Mukherjee, Asesh Kumar, Gazi, Kamal Hossain, Salahshour, Soheil, Ghosh, Arijit, Mondal, Sankar Prasad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2023
Elsevier
Témata:
ISSN:2666-7207, 2666-7207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fuzzy set theory is a generalized form of crisp set theory where elements are binary inclusion forms. In fuzzy set, it differs with degree of membership for every element in the set. There are several strategies for arithmetic operations on fuzzy numbers. Previous studies show that there are many approaches, such as the α−cut technique, extension principle, vertex method, etc., to execute arithmetic operations on fuzzy numbers. In this study we perform details analysis and interpretation on arithmetic operations based on the α−cut method in a new way.
ISSN:2666-7207
2666-7207
DOI:10.1016/j.rico.2023.100312