SSTGCNs: Spectral-Spatial-Temporal Long-Range Dependencies Joint Feature Extraction With Graph Convolutional Networks for Adaptive Change Detection

Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the bitemporal hyperspectral to identify subtle changes in the surface. Currently, most methods are extracting spatial-spectral features, ignoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 18; S. 28257 - 28268
Hauptverfasser: Chang, Zhanyuan, Wei, Yuwen, Lian, Jie, Jin, Mingxiao, Wang, Dong, Li, Xuyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the bitemporal hyperspectral to identify subtle changes in the surface. Currently, most methods are extracting spatial-spectral features, ignoring the interaction between bitemporal images. In addition, there is a long-distance dependence between the spectrum and pixels of hyperspectral images. How to capture the dependence between long-distance bands and pixels is a problem that needs to be solved at present. To solve the above problems, this article proposes spectral-spatial-temporal long-range dependencies joint feature extraction with graph convolutional networks. First, the network uses spectral-spatial-temporal feature extraction module to capture spectral-spatial-temporal features and increase the interactive features of bitime phase images. Second, a long-distance dependence capture module is designed to capture the long-distance dependence between bands and pixels through the long-range spectral-spatial dependence module. Finally, through redundancy suppression and adaptive feature fusion, redundant features are removed and high-information features are fused to improve the model's feature expression ability and generalization ability. To verify the effectiveness of the model, we conducted experiments on three public Hyperspectral Change Detection datasets. The experimental results showed that the overall accuracy (OA) and Kappa coefficient (Kappa) indicators of our model on the USA data were improved by 0.55% and 1.44%, respectively, compared with the latest methods. On the China dataset, the proposed method compared the latest AIWSEN, OA, and Kappa to obtain suboptimal results, while the precision (P), recall (R), and F1-scores achieved the optimal results, which were 2.59%, 0.89%, and 1.14% higher than the state-of-the-art method, respectively. The OA, P, R, and F1 indicators on the River dataset achieve optimal results: 0.36%, 1.32%, 0.5%, and 0.91% improvements, respectively, over the state-of-the-art methods. Explain that our change detection method works better for spectral data containing more information.
AbstractList Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the bitemporal hyperspectral to identify subtle changes in the surface. Currently, most methods are extracting spatial–spectral features, ignoring the interaction between bitemporal images. In addition, there is a long-distance dependence between the spectrum and pixels of hyperspectral images. How to capture the dependence between long-distance bands and pixels is a problem that needs to be solved at present. To solve the above problems, this article proposes spectral–spatial–temporal long-range dependencies joint feature extraction with graph convolutional networks. First, the network uses spectral–spatial–temporal feature extraction module to capture spectral–spatial–temporal features and increase the interactive features of bitime phase images. Second, a long-distance dependence capture module is designed to capture the long-distance dependence between bands and pixels through the long-range spectral–spatial dependence module. Finally, through redundancy suppression and adaptive feature fusion, redundant features are removed and high-information features are fused to improve the model’s feature expression ability and generalization ability. To verify the effectiveness of the model, we conducted experiments on three public Hyperspectral Change Detection datasets. The experimental results showed that the overall accuracy (OA) and Kappa coefficient (Kappa) indicators of our model on the USA data were improved by 0.55% and 1.44%, respectively, compared with the latest methods. On the China dataset, the proposed method compared the latest AIWSEN, OA, and Kappa to obtain suboptimal results, while the precision (P), recall (R), and F1-scores achieved the optimal results, which were 2.59%, 0.89%, and 1.14% higher than the state-of-the-art method, respectively. The OA, P, R, and F1 indicators on the River dataset achieve optimal results: 0.36%, 1.32%, 0.5%, and 0.91% improvements, respectively, over the state-of-the-art methods. Explain that our change detection method works better for spectral data containing more information.
Author Lian, Jie
Li, Xuyang
Wang, Dong
Chang, Zhanyuan
Wei, Yuwen
Jin, Mingxiao
Author_xml – sequence: 1
  givenname: Zhanyuan
  orcidid: 0000-0002-2259-2276
  surname: Chang
  fullname: Chang, Zhanyuan
  email: changzhanyuan@shnu.edu.cn
  organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China
– sequence: 2
  givenname: Yuwen
  surname: Wei
  fullname: Wei, Yuwen
  email: 1000484328@smail.shnu.edu.cn
  organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-2005-2022
  surname: Lian
  fullname: Lian, Jie
  email: lianjie@shnu.edu.cn
  organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China
– sequence: 4
  givenname: Mingxiao
  surname: Jin
  fullname: Jin, Mingxiao
  email: 1000569139@smail.shnu.edu.cn
  organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China
– sequence: 5
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  email: 1000569189@smail.shnu.edu.cn
  organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China
– sequence: 6
  givenname: Xuyang
  surname: Li
  fullname: Li, Xuyang
  email: 1000569179@smail.shnu.edu.cn
  organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China
BookMark eNpFkdFu0zAUhiM0JLrBE8CFJa5TbB_bSbirwlY2VUNairi0HOekTeniYLsDnoMXJlkquDrSr_N99tF_mVz0rsckecvokjFafLirtquHaskpl0tQXAkQL5IFZ5KlTIK8SBasgCJlgopXyWUIB0oVzwpYJH-qarsu78NHUg1oozfHtBpM7Ma5xcfBjQHZuH6XPph-h-QTDtg32NsOA7lzXR_JDZp48kiuf420jZ3rybcu7snam2FPStc_ueNpikfTPcafzn8PpHWerBozxO4JSbk_uyM-86-Tl605BnxznlfJ15vrbfk53XxZ35arTWpBsZjmrMgkBVUAIrcCW5EhMKEMGGG5sPV0ukKbGwayzpGhBMYyWjdg6lw2cJXczt7GmYMefPdo_G_tTKefA-d32vjY2SNqq3ir6hoyy1uhMmmsVFkuWiGR5qBgdL2fXYN3P04Yoj64kx9vDhp4BoxOvx23YN6y3oXgsf33KqN6alLPTeqpSX1ucqTezVSHiP8JxlnBgcJfBGac-Q
CODEN IJSTHZ
Cites_doi 10.1109/TGRS.2024.3469930
10.1109/TGRS.2023.3260969
10.1109/TGRS.2025.3531478
10.1109/TGRS.2024.3496073
10.1109/LGRS.2022.3216878
10.1109/tgrs.2023.3344583
10.1016/j.jfranklin.2024.107424
10.1109/JSTARS.2023.3339238
10.1109/tgrs.2022.3176642
10.1109/JSTARS.2023.3251646
10.1109/TGRS.2023.3339247
10.1109/tgrs.2024.3498034
10.1109/TGRS.2022.3160007
10.1109/TGRS.2024.3403237
10.1109/TGRS.2025.3564364
10.1109/ACCESS.2020.3008036
10.1109/tgrs.2024.3373820
10.1109/TGRS.2024.3374600
10.1109/TGRS.2022.3212418
10.1109/TGRS.2023.3296383
10.1109/TGRS.2024.3403971
10.1109/TGRS.2025.3526211
10.1109/TGRS.2024.3451457
10.1109/I2CT61223.2024.10544351
10.1109/TGRS.2024.3430985
10.1109/TGRS.2023.3341893
10.1109/JSTARS.2024.3483560
10.1109/tgrs.2022.3203075
10.1007/978-981-33-4501-0_11
10.1109/TGRS.2024.3410131
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3626434
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 28268
ExternalDocumentID oai_doaj_org_article_c62f6bb37c2f4675ac56784f45e08363
10_1109_JSTARS_2025_3626434
11219230
Genre orig-research
GrantInformation_xml – fundername: Shanghai Sailing Program
  grantid: 19YF1437200
– fundername: Natural Science Foundation of Shanghai
  grantid: 23ZR1446100
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c361t-8197503693ee2c4ef47e3146a3a4c24cb15356ec8a135b8e1e531170bd3ab85d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001618689100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Mon Nov 24 19:21:16 EST 2025
Sat Nov 29 13:42:10 EST 2025
Sat Nov 29 06:51:10 EST 2025
Wed Nov 26 07:27:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-8197503693ee2c4ef47e3146a3a4c24cb15356ec8a135b8e1e531170bd3ab85d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2259-2276
0000-0002-2005-2022
OpenAccessLink https://ieeexplore.ieee.org/document/11219230
PQID 3273108197
PQPubID 75722
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c62f6bb37c2f4675ac56784f45e08363
crossref_primary_10_1109_JSTARS_2025_3626434
proquest_journals_3273108197
ieee_primary_11219230
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref29
  doi: 10.1109/TGRS.2024.3469930
– ident: ref15
  doi: 10.1109/TGRS.2023.3260969
– ident: ref30
  doi: 10.1109/TGRS.2025.3531478
– ident: ref24
  doi: 10.1109/TGRS.2024.3496073
– ident: ref13
  doi: 10.1109/LGRS.2022.3216878
– ident: ref16
  doi: 10.1109/tgrs.2023.3344583
– ident: ref25
  doi: 10.1016/j.jfranklin.2024.107424
– ident: ref22
  doi: 10.1109/JSTARS.2023.3339238
– ident: ref2
  doi: 10.1109/tgrs.2022.3176642
– ident: ref8
  doi: 10.1109/JSTARS.2023.3251646
– ident: ref9
  doi: 10.1109/TGRS.2023.3339247
– ident: ref4
  doi: 10.1109/tgrs.2024.3498034
– ident: ref10
  doi: 10.1109/TGRS.2022.3160007
– ident: ref6
  doi: 10.1109/TGRS.2024.3403237
– ident: ref26
  doi: 10.1109/TGRS.2025.3564364
– ident: ref17
  doi: 10.1109/ACCESS.2020.3008036
– ident: ref27
  doi: 10.1109/tgrs.2024.3373820
– ident: ref28
  doi: 10.1109/TGRS.2024.3374600
– ident: ref19
  doi: 10.1109/TGRS.2022.3212418
– ident: ref14
  doi: 10.1109/TGRS.2023.3296383
– ident: ref21
  doi: 10.1109/TGRS.2024.3403971
– ident: ref3
  doi: 10.1109/TGRS.2025.3526211
– ident: ref7
  doi: 10.1109/TGRS.2024.3451457
– ident: ref18
  doi: 10.1109/I2CT61223.2024.10544351
– ident: ref23
  doi: 10.1109/TGRS.2024.3430985
– ident: ref20
  doi: 10.1109/TGRS.2023.3341893
– ident: ref11
  doi: 10.1109/JSTARS.2024.3483560
– ident: ref12
  doi: 10.1109/tgrs.2022.3203075
– ident: ref5
  doi: 10.1007/978-981-33-4501-0_11
– ident: ref1
  doi: 10.1109/TGRS.2024.3410131
SSID ssj0062793
Score 2.375663
Snippet Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 28257
SubjectTerms Accuracy
Adaptation models
Adaptively fused features
Artificial neural networks
Change detection
Computational modeling
Correlation
Data mining
Data models
Datasets
Distance
Feature extraction
Hyperspectral imaging
long-range dependencies
Modules
Osteoarthritis
Pixels
Redundancy
Spatial data
Spatial dependencies
spectral–spatial–temporal features
Temporal variations
Transformers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQVSQ2iEcRA6XygiWmSfxK2A3TdhBCI9QZRHeW7Th0JJSpJmkF38EPc6_tKSAWbNhGkZ34PnyuH-cQ8rKBYPa6Dqzr2sCE6BxzhSyY1a22gB-krW0Um9CLRX1x0Xz8TeoLz4QleuA0cMdeVZ1yjmtfdRDU0noJ-VV0QgYkVo48n4VudsVUysGq0pFuF9BJw5BAJvMNlUVzDA4_PV9CZVjJ18jFIrj4Y06K1P1Za-WvBB1nnbMH5H6Gi3SaPvMhuRP6R-TuPMrxfn9MfiyXq_lsMbyhqCOPixYMNYbBp9gqcU59pR82_Rd2jncI6ElWvIV4Huj7zbofKULA622gp9_GbbrjQD-vx0s6RyJrOtv0N9k3oaVFOjI-UAC6dNraK0yVNN1PgLbHeKqrPyCfzk5Xs3csyywwz1U5MsAEuJmpGh5C5UXohA4cEqjlVvhKeAdJUarga1ty6epQBojbUheu5dbVsuVPyF6_6cNTQrUvlLO4tdhq0dbS6bpRHinClIZCp5mQV7uBNleJTcPEKqRoTLKLQbuYbJcJeYvGuH0VqbDjA3AQkx3E_MtBJuQATfmrv7JCVFtMyOHOtibH7WA4oLkSUZJ-9j_6fk7u4f-kJZtDsjdur8MLsu9vxvWwPYou-xNUyexm
  priority: 102
  providerName: Directory of Open Access Journals
Title SSTGCNs: Spectral-Spatial-Temporal Long-Range Dependencies Joint Feature Extraction With Graph Convolutional Networks for Adaptive Change Detection
URI https://ieeexplore.ieee.org/document/11219230
https://www.proquest.com/docview/3273108197
https://doaj.org/article/c62f6bb37c2f4675ac56784f45e08363
Volume 18
WOSCitedRecordID wos001618689100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgAokL5aOoS0vlA0fcJvFXwm1Z2kUIrVB3Eb1FtuPASlVSbbIV_A7-MDO2F4QQB25RlDiR3sz4je15Q8jLCpzZ6dKztm08E6K1zGYyY0Y32gB_kKY0odmEXizKq6vqYypWD7Uw3vtw-Myf4mXYy296t8WlsjPgBkhIIEO_q7WKxVq7sKsKHRR2gZBUDDVjksRQnlVnYOPTyyUkg4U8RfkVwcUf01BQ60_tVf6KyWGiudj_z198RB4mRkmn0QQekzu-e0Luz0PH3u9PyY_lcjWfLYbXFFvN47oGwzbEYHZsFWWprumHvvvCLrHMgL5NTXHB5Qf6vl93I0WWuN14ev5t3MQyCPp5PX6lc9S6prO-u03mCyMt4qnygQIXptPG3GA0pbGEAcYew8Gv7oB8ujhfzd6x1ImBOa7ykQFtwP1OVXHvCyd8K7TnEGMNN8IVwlmIm1J5V5qcS1v63INr5zqzDTe2lA1_Rva6vvOHhGqXKWtw97HRoiml1WWlHKqIKQ25UDUhr3bA1DdRcKMOiUpW1RHHGnGsE44T8gbB-_UoqmWHG4BKnZyvdqpolbVcu6KFiUEaJ2GOFq2QHsW5-YQcIJK_v5dAnJDjnS3UybWHmgPhy5FI6ef_eO2IPMBfjAs1x2Rv3Gz9C3LP3Y7rYXMSsv6TYLs_ATn162c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVQAcGGZxEDBbxgidsktuOE3TC0U2CIUGcQ3Vm248BIKKkmmQq-gx_mXscDQogFuyhKnEj3dfy45xDyvIRgdqrwrGlqz4RoLLOJTJhRtTKAH6QpTBCbUFVVnJ-XH2KzeuiF8d6Hw2f-EC_DXn7duS0ulR0BNkBAAjP0qyidlY7tWrvEm2cqcOwCJCkZssZEkqE0KY_Ay6dnS5gOZvIQCVgEF38UosDXHwVW_srKodSc3P7Pn7xDbkVMSaejE9wlV3x7j1yfB83e7_fJj-VyNZ9V_UuKYvO4ssFQiBgcj61GYqqvdNG1n9kZNhrQ11EWF4K-p2-7dTtQxInbjafH34bN2AhBP62HL3SObNd01rWX0YFhpGo8V95TQMN0WpsLzKd0bGKAsYdw9KvdJx9PjlezUxa1GJjjeTowAA6445mX3PvMCd8I5TlkWcONcJlwFjKnzL0rTMqlLXzqIbhTldiaG1vImj8ge23X-oeEKpfk1uD-Y61EXUirijJ3yCOWK5gNlRPyYmcYfTFSbugwVUlKPdpRox11tOOEvELj_XoU-bLDDbCKjuGnXZ41ubVcuayB0iCNk1ClRSOkR3puPiH7aMnf34tGnJCDnS_oGNy95gD5UoRS6tE_XntGbpyu3i_04k317jG5ib87LtsckL1hs_VPyDV3Oaz7zdPgwT8BD5TtuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSTGCNs%3A+Spectral-Spatial-Temporal+Long-Range+Dependencies+Joint+Feature+Extraction+With+Graph+Convolutional+Networks+for+Adaptive+Change+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chang%2C+Zhanyuan&rft.au=Wei%2C+Yuwen&rft.au=Lian%2C+Jie&rft.au=Jin%2C+Mingxiao&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=28257&rft.epage=28268&rft_id=info:doi/10.1109%2FJSTARS.2025.3626434&rft.externalDocID=11219230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon