SSTGCNs: Spectral-Spatial-Temporal Long-Range Dependencies Joint Feature Extraction With Graph Convolutional Networks for Adaptive Change Detection
Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the bitemporal hyperspectral to identify subtle changes in the surface. Currently, most methods are extracting spatial-spectral features, ignoring...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 18; S. 28257 - 28268 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the bitemporal hyperspectral to identify subtle changes in the surface. Currently, most methods are extracting spatial-spectral features, ignoring the interaction between bitemporal images. In addition, there is a long-distance dependence between the spectrum and pixels of hyperspectral images. How to capture the dependence between long-distance bands and pixels is a problem that needs to be solved at present. To solve the above problems, this article proposes spectral-spatial-temporal long-range dependencies joint feature extraction with graph convolutional networks. First, the network uses spectral-spatial-temporal feature extraction module to capture spectral-spatial-temporal features and increase the interactive features of bitime phase images. Second, a long-distance dependence capture module is designed to capture the long-distance dependence between bands and pixels through the long-range spectral-spatial dependence module. Finally, through redundancy suppression and adaptive feature fusion, redundant features are removed and high-information features are fused to improve the model's feature expression ability and generalization ability. To verify the effectiveness of the model, we conducted experiments on three public Hyperspectral Change Detection datasets. The experimental results showed that the overall accuracy (OA) and Kappa coefficient (Kappa) indicators of our model on the USA data were improved by 0.55% and 1.44%, respectively, compared with the latest methods. On the China dataset, the proposed method compared the latest AIWSEN, OA, and Kappa to obtain suboptimal results, while the precision (P), recall (R), and F1-scores achieved the optimal results, which were 2.59%, 0.89%, and 1.14% higher than the state-of-the-art method, respectively. The OA, P, R, and F1 indicators on the River dataset achieve optimal results: 0.36%, 1.32%, 0.5%, and 0.91% improvements, respectively, over the state-of-the-art methods. Explain that our change detection method works better for spectral data containing more information. |
|---|---|
| AbstractList | Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the bitemporal hyperspectral to identify subtle changes in the surface. Currently, most methods are extracting spatial–spectral features, ignoring the interaction between bitemporal images. In addition, there is a long-distance dependence between the spectrum and pixels of hyperspectral images. How to capture the dependence between long-distance bands and pixels is a problem that needs to be solved at present. To solve the above problems, this article proposes spectral–spatial–temporal long-range dependencies joint feature extraction with graph convolutional networks. First, the network uses spectral–spatial–temporal feature extraction module to capture spectral–spatial–temporal features and increase the interactive features of bitime phase images. Second, a long-distance dependence capture module is designed to capture the long-distance dependence between bands and pixels through the long-range spectral–spatial dependence module. Finally, through redundancy suppression and adaptive feature fusion, redundant features are removed and high-information features are fused to improve the model’s feature expression ability and generalization ability. To verify the effectiveness of the model, we conducted experiments on three public Hyperspectral Change Detection datasets. The experimental results showed that the overall accuracy (OA) and Kappa coefficient (Kappa) indicators of our model on the USA data were improved by 0.55% and 1.44%, respectively, compared with the latest methods. On the China dataset, the proposed method compared the latest AIWSEN, OA, and Kappa to obtain suboptimal results, while the precision (P), recall (R), and F1-scores achieved the optimal results, which were 2.59%, 0.89%, and 1.14% higher than the state-of-the-art method, respectively. The OA, P, R, and F1 indicators on the River dataset achieve optimal results: 0.36%, 1.32%, 0.5%, and 0.91% improvements, respectively, over the state-of-the-art methods. Explain that our change detection method works better for spectral data containing more information. |
| Author | Lian, Jie Li, Xuyang Wang, Dong Chang, Zhanyuan Wei, Yuwen Jin, Mingxiao |
| Author_xml | – sequence: 1 givenname: Zhanyuan orcidid: 0000-0002-2259-2276 surname: Chang fullname: Chang, Zhanyuan email: changzhanyuan@shnu.edu.cn organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China – sequence: 2 givenname: Yuwen surname: Wei fullname: Wei, Yuwen email: 1000484328@smail.shnu.edu.cn organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China – sequence: 3 givenname: Jie orcidid: 0000-0002-2005-2022 surname: Lian fullname: Lian, Jie email: lianjie@shnu.edu.cn organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China – sequence: 4 givenname: Mingxiao surname: Jin fullname: Jin, Mingxiao email: 1000569139@smail.shnu.edu.cn organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China – sequence: 5 givenname: Dong surname: Wang fullname: Wang, Dong email: 1000569189@smail.shnu.edu.cn organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China – sequence: 6 givenname: Xuyang surname: Li fullname: Li, Xuyang email: 1000569179@smail.shnu.edu.cn organization: College of information mechanical and electrical engineering, Shanghai Normal University, Shanghai, China |
| BookMark | eNpFkdFu0zAUhiM0JLrBE8CFJa5TbB_bSbirwlY2VUNairi0HOekTeniYLsDnoMXJlkquDrSr_N99tF_mVz0rsckecvokjFafLirtquHaskpl0tQXAkQL5IFZ5KlTIK8SBasgCJlgopXyWUIB0oVzwpYJH-qarsu78NHUg1oozfHtBpM7Ma5xcfBjQHZuH6XPph-h-QTDtg32NsOA7lzXR_JDZp48kiuf420jZ3rybcu7snam2FPStc_ueNpikfTPcafzn8PpHWerBozxO4JSbk_uyM-86-Tl605BnxznlfJ15vrbfk53XxZ35arTWpBsZjmrMgkBVUAIrcCW5EhMKEMGGG5sPV0ukKbGwayzpGhBMYyWjdg6lw2cJXczt7GmYMefPdo_G_tTKefA-d32vjY2SNqq3ir6hoyy1uhMmmsVFkuWiGR5qBgdL2fXYN3P04Yoj64kx9vDhp4BoxOvx23YN6y3oXgsf33KqN6alLPTeqpSX1ucqTezVSHiP8JxlnBgcJfBGac-Q |
| CODEN | IJSTHZ |
| Cites_doi | 10.1109/TGRS.2024.3469930 10.1109/TGRS.2023.3260969 10.1109/TGRS.2025.3531478 10.1109/TGRS.2024.3496073 10.1109/LGRS.2022.3216878 10.1109/tgrs.2023.3344583 10.1016/j.jfranklin.2024.107424 10.1109/JSTARS.2023.3339238 10.1109/tgrs.2022.3176642 10.1109/JSTARS.2023.3251646 10.1109/TGRS.2023.3339247 10.1109/tgrs.2024.3498034 10.1109/TGRS.2022.3160007 10.1109/TGRS.2024.3403237 10.1109/TGRS.2025.3564364 10.1109/ACCESS.2020.3008036 10.1109/tgrs.2024.3373820 10.1109/TGRS.2024.3374600 10.1109/TGRS.2022.3212418 10.1109/TGRS.2023.3296383 10.1109/TGRS.2024.3403971 10.1109/TGRS.2025.3526211 10.1109/TGRS.2024.3451457 10.1109/I2CT61223.2024.10544351 10.1109/TGRS.2024.3430985 10.1109/TGRS.2023.3341893 10.1109/JSTARS.2024.3483560 10.1109/tgrs.2022.3203075 10.1007/978-981-33-4501-0_11 10.1109/TGRS.2024.3410131 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2025.3626434 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 28268 |
| ExternalDocumentID | oai_doaj_org_article_c62f6bb37c2f4675ac56784f45e08363 10_1109_JSTARS_2025_3626434 11219230 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shanghai Sailing Program grantid: 19YF1437200 – fundername: Natural Science Foundation of Shanghai grantid: 23ZR1446100 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c361t-8197503693ee2c4ef47e3146a3a4c24cb15356ec8a135b8e1e531170bd3ab85d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001618689100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Mon Nov 24 19:21:16 EST 2025 Sat Nov 29 13:42:10 EST 2025 Sat Nov 29 06:51:10 EST 2025 Wed Nov 26 07:27:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-8197503693ee2c4ef47e3146a3a4c24cb15356ec8a135b8e1e531170bd3ab85d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2259-2276 0000-0002-2005-2022 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11219230 |
| PQID | 3273108197 |
| PQPubID | 75722 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c62f6bb37c2f4675ac56784f45e08363 crossref_primary_10_1109_JSTARS_2025_3626434 proquest_journals_3273108197 ieee_primary_11219230 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref29 doi: 10.1109/TGRS.2024.3469930 – ident: ref15 doi: 10.1109/TGRS.2023.3260969 – ident: ref30 doi: 10.1109/TGRS.2025.3531478 – ident: ref24 doi: 10.1109/TGRS.2024.3496073 – ident: ref13 doi: 10.1109/LGRS.2022.3216878 – ident: ref16 doi: 10.1109/tgrs.2023.3344583 – ident: ref25 doi: 10.1016/j.jfranklin.2024.107424 – ident: ref22 doi: 10.1109/JSTARS.2023.3339238 – ident: ref2 doi: 10.1109/tgrs.2022.3176642 – ident: ref8 doi: 10.1109/JSTARS.2023.3251646 – ident: ref9 doi: 10.1109/TGRS.2023.3339247 – ident: ref4 doi: 10.1109/tgrs.2024.3498034 – ident: ref10 doi: 10.1109/TGRS.2022.3160007 – ident: ref6 doi: 10.1109/TGRS.2024.3403237 – ident: ref26 doi: 10.1109/TGRS.2025.3564364 – ident: ref17 doi: 10.1109/ACCESS.2020.3008036 – ident: ref27 doi: 10.1109/tgrs.2024.3373820 – ident: ref28 doi: 10.1109/TGRS.2024.3374600 – ident: ref19 doi: 10.1109/TGRS.2022.3212418 – ident: ref14 doi: 10.1109/TGRS.2023.3296383 – ident: ref21 doi: 10.1109/TGRS.2024.3403971 – ident: ref3 doi: 10.1109/TGRS.2025.3526211 – ident: ref7 doi: 10.1109/TGRS.2024.3451457 – ident: ref18 doi: 10.1109/I2CT61223.2024.10544351 – ident: ref23 doi: 10.1109/TGRS.2024.3430985 – ident: ref20 doi: 10.1109/TGRS.2023.3341893 – ident: ref11 doi: 10.1109/JSTARS.2024.3483560 – ident: ref12 doi: 10.1109/tgrs.2022.3203075 – ident: ref5 doi: 10.1007/978-981-33-4501-0_11 – ident: ref1 doi: 10.1109/TGRS.2024.3410131 |
| SSID | ssj0062793 |
| Score | 2.375663 |
| Snippet | Hyperspectral image change detection plays an important role in ground observation tasks, making full use of the rich spectral and spatial information in the... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 28257 |
| SubjectTerms | Accuracy Adaptation models Adaptively fused features Artificial neural networks Change detection Computational modeling Correlation Data mining Data models Datasets Distance Feature extraction Hyperspectral imaging long-range dependencies Modules Osteoarthritis Pixels Redundancy Spatial data Spatial dependencies spectral–spatial–temporal features Temporal variations Transformers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQVSQ2iEcRA6XygiWmSfxK2A3TdhBCI9QZRHeW7Th0JJSpJmkF38EPc6_tKSAWbNhGkZ34PnyuH-cQ8rKBYPa6Dqzr2sCE6BxzhSyY1a22gB-krW0Um9CLRX1x0Xz8TeoLz4QleuA0cMdeVZ1yjmtfdRDU0noJ-VV0QgYkVo48n4VudsVUysGq0pFuF9BJw5BAJvMNlUVzDA4_PV9CZVjJ18jFIrj4Y06K1P1Za-WvBB1nnbMH5H6Gi3SaPvMhuRP6R-TuPMrxfn9MfiyXq_lsMbyhqCOPixYMNYbBp9gqcU59pR82_Rd2jncI6ElWvIV4Huj7zbofKULA622gp9_GbbrjQD-vx0s6RyJrOtv0N9k3oaVFOjI-UAC6dNraK0yVNN1PgLbHeKqrPyCfzk5Xs3csyywwz1U5MsAEuJmpGh5C5UXohA4cEqjlVvhKeAdJUarga1ty6epQBojbUheu5dbVsuVPyF6_6cNTQrUvlLO4tdhq0dbS6bpRHinClIZCp5mQV7uBNleJTcPEKqRoTLKLQbuYbJcJeYvGuH0VqbDjA3AQkx3E_MtBJuQATfmrv7JCVFtMyOHOtibH7WA4oLkSUZJ-9j_6fk7u4f-kJZtDsjdur8MLsu9vxvWwPYou-xNUyexm priority: 102 providerName: Directory of Open Access Journals |
| Title | SSTGCNs: Spectral-Spatial-Temporal Long-Range Dependencies Joint Feature Extraction With Graph Convolutional Networks for Adaptive Change Detection |
| URI | https://ieeexplore.ieee.org/document/11219230 https://www.proquest.com/docview/3273108197 https://doaj.org/article/c62f6bb37c2f4675ac56784f45e08363 |
| Volume | 18 |
| WOSCitedRecordID | wos001618689100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgAokL5aOoS0vlA0fcJvFXwm1Z2kUIrVB3Eb1FtuPASlVSbbIV_A7-MDO2F4QQB25RlDiR3sz4je15Q8jLCpzZ6dKztm08E6K1zGYyY0Y32gB_kKY0odmEXizKq6vqYypWD7Uw3vtw-Myf4mXYy296t8WlsjPgBkhIIEO_q7WKxVq7sKsKHRR2gZBUDDVjksRQnlVnYOPTyyUkg4U8RfkVwcUf01BQ60_tVf6KyWGiudj_z198RB4mRkmn0QQekzu-e0Luz0PH3u9PyY_lcjWfLYbXFFvN47oGwzbEYHZsFWWprumHvvvCLrHMgL5NTXHB5Qf6vl93I0WWuN14ev5t3MQyCPp5PX6lc9S6prO-u03mCyMt4qnygQIXptPG3GA0pbGEAcYew8Gv7oB8ujhfzd6x1ImBOa7ykQFtwP1OVXHvCyd8K7TnEGMNN8IVwlmIm1J5V5qcS1v63INr5zqzDTe2lA1_Rva6vvOHhGqXKWtw97HRoiml1WWlHKqIKQ25UDUhr3bA1DdRcKMOiUpW1RHHGnGsE44T8gbB-_UoqmWHG4BKnZyvdqpolbVcu6KFiUEaJ2GOFq2QHsW5-YQcIJK_v5dAnJDjnS3UybWHmgPhy5FI6ef_eO2IPMBfjAs1x2Rv3Gz9C3LP3Y7rYXMSsv6TYLs_ATn162c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVQAcGGZxEDBbxgidsktuOE3TC0U2CIUGcQ3Vm248BIKKkmmQq-gx_mXscDQogFuyhKnEj3dfy45xDyvIRgdqrwrGlqz4RoLLOJTJhRtTKAH6QpTBCbUFVVnJ-XH2KzeuiF8d6Hw2f-EC_DXn7duS0ulR0BNkBAAjP0qyidlY7tWrvEm2cqcOwCJCkZssZEkqE0KY_Ay6dnS5gOZvIQCVgEF38UosDXHwVW_srKodSc3P7Pn7xDbkVMSaejE9wlV3x7j1yfB83e7_fJj-VyNZ9V_UuKYvO4ssFQiBgcj61GYqqvdNG1n9kZNhrQ11EWF4K-p2-7dTtQxInbjafH34bN2AhBP62HL3SObNd01rWX0YFhpGo8V95TQMN0WpsLzKd0bGKAsYdw9KvdJx9PjlezUxa1GJjjeTowAA6445mX3PvMCd8I5TlkWcONcJlwFjKnzL0rTMqlLXzqIbhTldiaG1vImj8ge23X-oeEKpfk1uD-Y61EXUirijJ3yCOWK5gNlRPyYmcYfTFSbugwVUlKPdpRox11tOOEvELj_XoU-bLDDbCKjuGnXZ41ubVcuayB0iCNk1ClRSOkR3puPiH7aMnf34tGnJCDnS_oGNy95gD5UoRS6tE_XntGbpyu3i_04k317jG5ib87LtsckL1hs_VPyDV3Oaz7zdPgwT8BD5TtuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSTGCNs%3A+Spectral-Spatial-Temporal+Long-Range+Dependencies+Joint+Feature+Extraction+With+Graph+Convolutional+Networks+for+Adaptive+Change+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chang%2C+Zhanyuan&rft.au=Wei%2C+Yuwen&rft.au=Lian%2C+Jie&rft.au=Jin%2C+Mingxiao&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=28257&rft.epage=28268&rft_id=info:doi/10.1109%2FJSTARS.2025.3626434&rft.externalDocID=11219230 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |