Adaptive Deep Ant Colony Optimization–Asymmetric Strategy Network Twin Delayed Deep Deterministic Policy Gradient Algorithm: Path Planning for Mobile Robots in Dynamic Environments

Path planning is one of the main focal points and challenges in mobile robotics research. Traditional ant colony optimization (ACO) algorithms encounter issues such as low efficiency, slow convergence, and a tendency to become stuck in local optima and search stagnation when applied to complex dynam...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 13; no. 20; p. 4071
Main Authors: Li, Xiangcheng, Ruan, Zhaokai, Ou, Yang, Ban, Dongri, Sun, Youming, Qin, Tuanfa, Cai, Yiyi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2024
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Path planning is one of the main focal points and challenges in mobile robotics research. Traditional ant colony optimization (ACO) algorithms encounter issues such as low efficiency, slow convergence, and a tendency to become stuck in local optima and search stagnation when applied to complex dynamic environments. Addressing these challenges, this study introduces an adaptive deep ant colony optimization (ADACO) algorithm, which significantly improves efficiency and convergence speed through enhanced pheromone diffusion mechanisms and updating strategies, applied to global path planning. To adapt to dynamically changing environments and achieve more precise local path planning, an asymmetric strategy network TD3 algorithm (ATD3) is further proposed, which utilizes global path planning information within the strategy network only, creating a new hierarchical path planning algorithm—ADACO-ATD3. Simulation experiments demonstrate that the proposed algorithm significantly outperforms in terms of path length and number of iterations, effectively enhancing the mobile robot’s path planning performance in complex dynamic environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13204071