Adaptive Deep Ant Colony Optimization–Asymmetric Strategy Network Twin Delayed Deep Deterministic Policy Gradient Algorithm: Path Planning for Mobile Robots in Dynamic Environments

Path planning is one of the main focal points and challenges in mobile robotics research. Traditional ant colony optimization (ACO) algorithms encounter issues such as low efficiency, slow convergence, and a tendency to become stuck in local optima and search stagnation when applied to complex dynam...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 13; číslo 20; s. 4071
Hlavní autoři: Li, Xiangcheng, Ruan, Zhaokai, Ou, Yang, Ban, Dongri, Sun, Youming, Qin, Tuanfa, Cai, Yiyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2024
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Path planning is one of the main focal points and challenges in mobile robotics research. Traditional ant colony optimization (ACO) algorithms encounter issues such as low efficiency, slow convergence, and a tendency to become stuck in local optima and search stagnation when applied to complex dynamic environments. Addressing these challenges, this study introduces an adaptive deep ant colony optimization (ADACO) algorithm, which significantly improves efficiency and convergence speed through enhanced pheromone diffusion mechanisms and updating strategies, applied to global path planning. To adapt to dynamically changing environments and achieve more precise local path planning, an asymmetric strategy network TD3 algorithm (ATD3) is further proposed, which utilizes global path planning information within the strategy network only, creating a new hierarchical path planning algorithm—ADACO-ATD3. Simulation experiments demonstrate that the proposed algorithm significantly outperforms in terms of path length and number of iterations, effectively enhancing the mobile robot’s path planning performance in complex dynamic environments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13204071