Deep Fuzzy Hashing Network for Efficient Image Retrieval

Hashing methods for efficient image retrieval aim at learning hash functions that map similar images to semantically correlated binary codes in the Hamming space with similarity well preserved. The traditional hashing methods usually represent image content by hand-crafted features. Deep hashing met...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 29; číslo 1; s. 166 - 176
Hlavní autoři: Lu, Huimin, Zhang, Ming, Xu, Xing, Li, Yujie, Shen, Heng Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hashing methods for efficient image retrieval aim at learning hash functions that map similar images to semantically correlated binary codes in the Hamming space with similarity well preserved. The traditional hashing methods usually represent image content by hand-crafted features. Deep hashing methods based on deep neural network (DNN) architectures can generate more effective image features and obtain better retrieval performance. However, the underlying data structure is hardly captured by existing DNN models. Moreover, the similarity (either visually or semantically) between pairwise images is ambiguous, even uncertain, to be measured in the existing deep hashing methods. In this article, we propose a novel hashing method termed deep fuzzy hashing network (DFHN) to overcome the shortcomings of existing deep hashing approaches. Our DFHN method combines the fuzzy logic technique and the DNN to learn more effective binary codes, which can leverage fuzzy rules to model the uncertainties underlying the data. Derived from fuzzy logic theory, the generalized hamming distance is devised in the convolutional layers and fully connected layers in our DFHN to model their outputs, which come from an efficient xor operation on given inputs and weights. Extensive experiments show that our DFHN method obtains competitive retrieval accuracy with highly efficient training speed compared with several state-of-the-art deep hashing approaches on two large-scale image datasets: CIFAR-10 and NUS-WIDE.
AbstractList Hashing methods for efficient image retrieval aim at learning hash functions that map similar images to semantically correlated binary codes in the Hamming space with similarity well preserved. The traditional hashing methods usually represent image content by hand-crafted features. Deep hashing methods based on deep neural network (DNN) architectures can generate more effective image features and obtain better retrieval performance. However, the underlying data structure is hardly captured by existing DNN models. Moreover, the similarity (either visually or semantically) between pairwise images is ambiguous, even uncertain, to be measured in the existing deep hashing methods. In this article, we propose a novel hashing method termed deep fuzzy hashing network (DFHN) to overcome the shortcomings of existing deep hashing approaches. Our DFHN method combines the fuzzy logic technique and the DNN to learn more effective binary codes, which can leverage fuzzy rules to model the uncertainties underlying the data. Derived from fuzzy logic theory, the generalized hamming distance is devised in the convolutional layers and fully connected layers in our DFHN to model their outputs, which come from an efficient xor operation on given inputs and weights. Extensive experiments show that our DFHN method obtains competitive retrieval accuracy with highly efficient training speed compared with several state-of-the-art deep hashing approaches on two large-scale image datasets: CIFAR-10 and NUS-WIDE.
Author Xu, Xing
Lu, Huimin
Zhang, Ming
Li, Yujie
Shen, Heng Tao
Author_xml – sequence: 1
  givenname: Huimin
  orcidid: 0000-0001-9794-3221
  surname: Lu
  fullname: Lu, Huimin
  email: dr.huimin.lu@ieee.org
  organization: Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
– sequence: 2
  givenname: Ming
  orcidid: 0000-0002-9732-4460
  surname: Zhang
  fullname: Zhang, Ming
  email: zmingcs@gmail.com
  organization: Center for Future Multimedia and the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Xing
  orcidid: 0000-0001-5685-3123
  surname: Xu
  fullname: Xu, Xing
  email: xing.xu@uestc.edu.cn
  organization: Center for Future Multimedia and the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Yujie
  orcidid: 0000-0002-0275-2797
  surname: Li
  fullname: Li, Yujie
  email: yzyjli@gmail.com
  organization: School of Information Engineering, Yangzhou University, Yangzhou, China
– sequence: 5
  givenname: Heng Tao
  orcidid: 0000-0002-2999-2088
  surname: Shen
  fullname: Shen, Heng Tao
  email: shenhengtao@hotmail.com
  organization: Center for Future Multimedia and the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9kMFOAjEURRujiYD-gG4mcT34OtNpp0uDICREEwMbNk2nvGIRZrBTNPD1DkJcuHD17uKe-5LTJudlVSIhNxS6lIK8nwyms1k3gQS6icyZlPSMtKhkNAZI2XmTgacxF8AvSbuulwCUZTRvkfwRcRMNtvv9Lhrq-s2Vi-gZw1fl3yNb-ahvrTMOyxCN1nqB0SsG7_BTr67IhdWrGq9Pt0Omg_6kN4zHL0-j3sM4NimnIRbGADDG54WmIHgu0QAVjKPQlhaQplJbiZkxes6SXMwLEIWkFqTWFkySph1yd9zd-Opji3VQy2rry-alSphgOW_mD6382DK-qmuPVhkXdHBVGbx2K0VBHTypH0_q4EmdPDVo8gfdeLfWfvc_dHuEHCL-AhIynjWivwEpV3Ut
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s11280_021_00976_2
crossref_primary_10_1007_s12652_021_02895_6
crossref_primary_10_3390_sym17020153
crossref_primary_10_1007_s42044_025_00277_1
crossref_primary_10_1016_j_cogr_2022_08_002
crossref_primary_10_1016_j_compeleceng_2022_108545
crossref_primary_10_1016_j_compeleceng_2022_107853
crossref_primary_10_1109_TFUZZ_2024_3402086
crossref_primary_10_1007_s11276_020_02382_4
crossref_primary_10_1016_j_compeleceng_2021_107173
crossref_primary_10_1007_s12652_020_02274_7
crossref_primary_10_1016_j_compeleceng_2024_109078
crossref_primary_10_1016_j_compeleceng_2022_107730
crossref_primary_10_1016_j_compeleceng_2024_109074
crossref_primary_10_1016_j_compeleceng_2024_109195
crossref_primary_10_1080_22797254_2023_2174706
crossref_primary_10_1016_j_compeleceng_2022_108261
crossref_primary_10_3233_IDA_215780
crossref_primary_10_1016_j_compeleceng_2024_109193
crossref_primary_10_1109_TITS_2022_3199805
crossref_primary_10_1016_j_compeleceng_2021_107508
crossref_primary_10_1155_2021_5595898
crossref_primary_10_1109_JIOT_2020_3024800
crossref_primary_10_32604_cmc_2024_052008
crossref_primary_10_1016_j_compeleceng_2022_107842
crossref_primary_10_1016_j_compeleceng_2023_108838
crossref_primary_10_1007_s11280_021_00968_2
crossref_primary_10_1016_j_compeleceng_2022_108538
crossref_primary_10_1109_TAI_2022_3153593
crossref_primary_10_1016_j_compeleceng_2022_107680
crossref_primary_10_1007_s11280_021_00938_8
crossref_primary_10_1016_j_compeleceng_2022_107684
crossref_primary_10_1016_j_compeleceng_2022_108258
crossref_primary_10_32604_cmc_2023_037134
crossref_primary_10_3390_electronics11142236
crossref_primary_10_1007_s11280_022_01037_y
crossref_primary_10_1109_TSC_2022_3149847
crossref_primary_10_3390_sym14020334
crossref_primary_10_1016_j_asoc_2023_110209
crossref_primary_10_1109_LSP_2024_3509333
crossref_primary_10_1109_TCE_2024_3419447
crossref_primary_10_1016_j_compeleceng_2022_108250
crossref_primary_10_1016_j_compeleceng_2022_108093
crossref_primary_10_1155_2021_8013337
crossref_primary_10_1016_j_asoc_2022_109960
crossref_primary_10_1145_3403948
crossref_primary_10_1007_s12652_021_03444_x
crossref_primary_10_1109_TFUZZ_2024_3425664
crossref_primary_10_1109_TITS_2022_3158253
crossref_primary_10_1007_s00530_024_01649_6
crossref_primary_10_1016_j_compeleceng_2023_108724
crossref_primary_10_1016_j_compeleceng_2023_108966
crossref_primary_10_1016_j_compeleceng_2021_107556
crossref_primary_10_1016_j_compeleceng_2021_107677
crossref_primary_10_1016_j_compeleceng_2021_107558
crossref_primary_10_1016_j_compeleceng_2021_107318
crossref_primary_10_1007_s11042_022_13991_w
crossref_primary_10_1007_s12652_021_03420_5
crossref_primary_10_1016_j_compeleceng_2021_107319
crossref_primary_10_1016_j_compeleceng_2021_107152
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_1016_j_compeleceng_2021_107670
crossref_primary_10_1016_j_compeleceng_2023_109011
crossref_primary_10_1016_j_procs_2022_09_174
crossref_primary_10_1016_j_compeleceng_2023_108841
crossref_primary_10_1016_j_compeleceng_2021_107673
crossref_primary_10_1016_j_compeleceng_2022_108168
crossref_primary_10_3390_math12142221
crossref_primary_10_3390_electronics10010014
crossref_primary_10_1007_s10586_023_04213_5
crossref_primary_10_1016_j_compeleceng_2022_108162
crossref_primary_10_1109_JIOT_2020_3011726
crossref_primary_10_1109_TFUZZ_2024_3436030
crossref_primary_10_3390_app151810034
crossref_primary_10_1007_s13042_022_01552_4
crossref_primary_10_1109_ACCESS_2021_3056330
crossref_primary_10_1109_TFUZZ_2024_3405541
crossref_primary_10_1016_j_jisa_2023_103673
crossref_primary_10_1016_j_compeleceng_2022_107866
crossref_primary_10_1016_j_compeleceng_2021_107206
crossref_primary_10_1016_j_compeleceng_2022_107747
crossref_primary_10_1016_j_compeleceng_2021_107041
crossref_primary_10_1007_s11042_022_13387_w
crossref_primary_10_1109_TITS_2022_3182568
crossref_primary_10_1016_j_compeleceng_2022_108312
crossref_primary_10_1016_j_compeleceng_2021_107321
crossref_primary_10_1016_j_eswa_2023_120731
crossref_primary_10_1016_j_compeleceng_2023_108696
crossref_primary_10_1016_j_ypmed_2023_107618
crossref_primary_10_1016_j_compeleceng_2022_108270
crossref_primary_10_1007_s11063_021_10537_3
crossref_primary_10_2478_ijanmc_2022_0038
crossref_primary_10_1109_LSP_2023_3289761
crossref_primary_10_1016_j_compeleceng_2022_107777
crossref_primary_10_1016_j_compeleceng_2023_108986
crossref_primary_10_1016_j_compeleceng_2022_107779
crossref_primary_10_1016_j_compeleceng_2021_107370
crossref_primary_10_1016_j_compeleceng_2022_108342
crossref_primary_10_1016_j_compeleceng_2023_108583
crossref_primary_10_1109_ACCESS_2024_3510801
crossref_primary_10_1109_TCE_2024_3412168
crossref_primary_10_1016_j_compeleceng_2021_107252
crossref_primary_10_1016_j_compeleceng_2023_109033
crossref_primary_10_1016_j_compeleceng_2022_108345
crossref_primary_10_1016_j_compeleceng_2023_108622
crossref_primary_10_1016_j_compeleceng_2021_107255
crossref_primary_10_1016_j_compeleceng_2022_108189
crossref_primary_10_1016_j_compeleceng_2022_108465
crossref_primary_10_1016_j_compeleceng_2023_108982
crossref_primary_10_1016_j_cogr_2023_09_001
crossref_primary_10_1016_j_compeleceng_2023_108580
crossref_primary_10_1109_JIOT_2020_3036695
crossref_primary_10_1080_01431161_2022_2135413
crossref_primary_10_1109_JIOT_2020_3016145
crossref_primary_10_1109_LSP_2022_3157517
crossref_primary_10_1016_j_compeleceng_2022_108459
crossref_primary_10_1109_TITS_2022_3141107
crossref_primary_10_1016_j_compeleceng_2021_107027
crossref_primary_10_1016_j_jbo_2024_100645
crossref_primary_10_1016_j_compeleceng_2021_107667
crossref_primary_10_1016_j_compeleceng_2023_108914
crossref_primary_10_3233_JIFS_211426
crossref_primary_10_1016_j_asoc_2022_109481
crossref_primary_10_1016_j_compeleceng_2022_108177
crossref_primary_10_1016_j_compeleceng_2024_109269
crossref_primary_10_1016_j_cogr_2022_07_001
crossref_primary_10_1016_j_compeleceng_2022_108570
crossref_primary_10_1109_ACCESS_2024_3450920
crossref_primary_10_1109_TCSII_2022_3181057
crossref_primary_10_1016_j_compeleceng_2021_107385
crossref_primary_10_1109_TCE_2024_3470846
crossref_primary_10_1016_j_compeleceng_2021_107024
crossref_primary_10_1007_s00521_023_09118_3
crossref_primary_10_1016_j_compeleceng_2022_107882
crossref_primary_10_1016_j_compeleceng_2022_108179
crossref_primary_10_1016_j_compeleceng_2022_108575
crossref_primary_10_1016_j_compeleceng_2024_109267
crossref_primary_10_1109_JIOT_2024_3353250
crossref_primary_10_3390_s23010370
crossref_primary_10_1007_s13042_023_01774_0
crossref_primary_10_1109_TIFS_2025_3531104
crossref_primary_10_3233_JIFS_189707
crossref_primary_10_1007_s12652_021_03002_5
crossref_primary_10_1109_JSTARS_2025_3585184
crossref_primary_10_1016_j_compeleceng_2022_107679
crossref_primary_10_1016_j_compeleceng_2022_108127
crossref_primary_10_1109_TITS_2022_3145815
crossref_primary_10_3390_fractalfract8110637
crossref_primary_10_1007_s12652_021_03255_0
crossref_primary_10_1016_j_compeleceng_2023_108927
crossref_primary_10_3390_rs15163924
crossref_primary_10_1109_ACCESS_2025_3570790
crossref_primary_10_1016_j_compeleceng_2023_109056
crossref_primary_10_1016_j_engappai_2024_107960
crossref_primary_10_1016_j_compeleceng_2022_108003
crossref_primary_10_32604_cmc_2024_055592
crossref_primary_10_1109_JSEN_2023_3314441
crossref_primary_10_1016_j_compeleceng_2022_108084
crossref_primary_10_1016_j_compeleceng_2021_107192
crossref_primary_10_1016_j_asoc_2022_109795
crossref_primary_10_1109_TITS_2021_3076607
crossref_primary_10_1016_j_cogr_2021_06_004
crossref_primary_10_4018_JCIT_381312
crossref_primary_10_1145_3450520
crossref_primary_10_1016_j_cogr_2021_06_003
crossref_primary_10_1109_TITS_2021_3083656
crossref_primary_10_1016_j_compeleceng_2022_108237
crossref_primary_10_1109_TCE_2024_3445139
crossref_primary_10_1016_j_compeleceng_2022_107941
crossref_primary_10_1007_s13042_022_01559_x
crossref_primary_10_1109_TCE_2024_3424456
crossref_primary_10_1016_j_compeleceng_2021_107648
crossref_primary_10_1016_j_compeleceng_2022_108077
crossref_primary_10_1016_j_compeleceng_2022_108473
crossref_primary_10_1016_j_compeleceng_2023_108893
crossref_primary_10_1016_j_compeleceng_2022_108075
crossref_primary_10_1007_s11042_022_13119_0
crossref_primary_10_1016_j_compeleceng_2022_108230
crossref_primary_10_1016_j_compeleceng_2023_108890
crossref_primary_10_1016_j_compeleceng_2023_108896
crossref_primary_10_1016_j_compeleceng_2022_108112
crossref_primary_10_1016_j_neucom_2021_12_073
crossref_primary_10_1016_j_compeleceng_2021_107366
crossref_primary_10_1007_s11280_022_01014_5
crossref_primary_10_1016_j_neucom_2024_128251
crossref_primary_10_1007_s11042_021_11649_7
crossref_primary_10_1007_s13042_024_02298_x
crossref_primary_10_1016_j_compeleceng_2021_107083
crossref_primary_10_3390_app13074140
Cites_doi 10.1109/TKDE.2020.2970050
10.1109/CVPRW.2015.7301269
10.1109/12.106218
10.1109/ICCV.2015.123
10.1109/ICCV.2009.5459469
10.1109/TIP.2017.2676345
10.1109/TIP.2015.2405340
10.1109/TPAMI.2012.48
10.1007/978-3-319-19683-1_31
10.1109/CVPR.2014.275
10.1109/CVPR.2015.7298947
10.1109/TPAMI.2018.2789887
10.1007/s10462-018-9630-6
10.1109/34.895972
10.1109/TPAMI.2012.193
10.1109/TCSVT.2017.2771332
10.1109/TCYB.2018.2883970
10.1109/TFUZZ.2016.2574915
10.1109/ICCCYB.2005.1511558
10.1109/TNNLS.2014.2346537
10.1109/CVPR.2017.243
10.1109/TIP.2015.2467315
10.1109/CVPR.2014.81
10.1109/91.298447
10.1109/CVPR.2016.90
10.1016/0165-0114(94)90279-8
10.1109/TIP.2016.2612883
10.1109/91.963761
10.1109/CVPR.2016.227
10.1016/S0031-3203(01)00162-5
10.1016/j.entcs.2009.07.045
10.1145/1646396.1646452
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPRW.2014.131
10.1109/CVPR.2009.5206848
10.1109/TNNLS.2020.2967597
10.1109/TCYB.2019.2928180
10.1016/j.neucom.2015.11.133
10.1007/978-3-642-35221-8
10.1109/CVPR.2015.7298594
10.1109/TPAMI.2019.2914897
10.1016/j.patcog.2017.02.034
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.2984991
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 176
ExternalDocumentID 10_1109_TFUZZ_2020_2984991
9056506
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102200
– fundername: Leading Initiative for Excellent Young Researchers of Ministry of Education, Culture, Sports, Science and Technology, Japan
  grantid: 16809746
– fundername: Sichuan Science and Technology Program, China
  grantid: 2019ZDZX0008; 2018GZDZX0032
– fundername: National Natural Science Foundation of China
  grantid: 61976049; 61632007
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-7cc00446dba107689ec01746e7af1b0339af9e5ccad4287db07b91f09aaf0c233
IEDL.DBID RIE
ISICitedReferencesCount 282
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605370700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Nov 30 05:01:11 EST 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 03:12:39 EST 2025
Wed Aug 27 02:32:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-7cc00446dba107689ec01746e7af1b0339af9e5ccad4287db07b91f09aaf0c233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0275-2797
0000-0002-9732-4460
0000-0001-9794-3221
0000-0002-2999-2088
0000-0001-5685-3123
PQID 2474860043
PQPubID 85428
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TFUZZ_2020_2984991
ieee_primary_9056506
crossref_primary_10_1109_TFUZZ_2020_2984991
proquest_journals_2474860043
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref14
ref53
ref52
babenk (ref39) 1994; 61
ref55
ref11
ref54
bay (ref2) 0
zhao (ref27) 0
ref17
kumar (ref46) 2019; 38
khan (ref32) 2019
szegedy (ref15) 0
ref51
ref50
zhu (ref57) 0
weiss (ref49) 0
ref48
ref47
ref42
ref41
gionis (ref18) 0
ref44
ref43
ronneberger (ref16) 0
ref8
ref7
ref9
fan (ref31) 0
ref4
ref3
ref6
ref5
ref40
krizhevsky (ref58) 2009
ref34
liu (ref19) 0
ref37
ref36
ref30
ref33
kulis (ref60) 0
ref1
lin (ref45) 2015; 26
ref24
ref23
norouzi (ref20) 0
ref26
ref22
ref21
xia (ref25) 0
babenko (ref38) 0
ref28
krizhevsky (ref10) 0
simonyan (ref35) 0
ref29
References_xml – start-page: 1106
  year: 0
  ident: ref10
  article-title: ImagNet classification with deep convolutional neural networks
  publication-title: Proc Annu Conf Neural Inf Process Syst
– start-page: 404
  year: 0
  ident: ref2
  article-title: SURF: Speeded up robust features
  publication-title: Proc Eur Conf Comput Vis
– ident: ref21
  doi: 10.1109/TKDE.2020.2970050
– ident: ref22
  doi: 10.1109/CVPRW.2015.7301269
– ident: ref29
  doi: 10.1109/12.106218
– ident: ref14
  doi: 10.1109/ICCV.2015.123
– ident: ref33
  doi: 10.1109/ICCV.2009.5459469
– ident: ref54
  doi: 10.1109/TIP.2017.2676345
– ident: ref53
  doi: 10.1109/TIP.2015.2405340
– start-page: 1753
  year: 0
  ident: ref49
  article-title: Spectral hashing
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref55
  doi: 10.1109/TPAMI.2012.48
– ident: ref40
  doi: 10.1007/978-3-319-19683-1_31
– ident: ref50
  doi: 10.1109/CVPR.2014.275
– start-page: 1556
  year: 0
  ident: ref27
  article-title: Deep semantic ranking based hashing for multi-label image retrieval
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref26
  doi: 10.1109/CVPR.2015.7298947
– ident: ref51
  doi: 10.1109/TPAMI.2018.2789887
– start-page: 234
  year: 0
  ident: ref16
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention
– ident: ref30
  doi: 10.1007/s10462-018-9630-6
– ident: ref6
  doi: 10.1109/34.895972
– ident: ref7
  doi: 10.1109/TPAMI.2012.193
– volume: 38
  start-page: 2561
  year: 2019
  ident: ref46
  article-title: Two-stage data encryption using chaotic neural networks
  publication-title: J Intell Fuzzy Syst
– ident: ref56
  doi: 10.1109/TCSVT.2017.2771332
– ident: ref23
  doi: 10.1109/TCYB.2018.2883970
– ident: ref43
  doi: 10.1109/TFUZZ.2016.2574915
– ident: ref47
  doi: 10.1109/ICCCYB.2005.1511558
– volume: 26
  start-page: 1442
  year: 2015
  ident: ref45
  article-title: An interval type-2 neural fuzzy system for online system identification and feature elimination
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2346537
– ident: ref37
  doi: 10.1109/CVPR.2017.243
– ident: ref28
  doi: 10.1109/TIP.2015.2467315
– start-page: 2553
  year: 0
  ident: ref15
  article-title: Deep neural networks for object detection
  publication-title: Proc Annu Conf Neural Inf Process Syst
– ident: ref12
  doi: 10.1109/CVPR.2014.81
– ident: ref42
  doi: 10.1109/91.298447
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– volume: 61
  start-page: 1
  year: 1994
  ident: ref39
  article-title: Invited review on the principles of fuzzy neural networks
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(94)90279-8
– ident: ref8
  doi: 10.1109/TIP.2016.2612883
– start-page: 353
  year: 0
  ident: ref20
  article-title: Minimal loss hashing for compact binary codes
  publication-title: Proc Int Conf Mach Learn
– ident: ref44
  doi: 10.1109/91.963761
– start-page: 2156
  year: 0
  ident: ref25
  article-title: Supervised hashing for image retrieval via image representation learning
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 1042
  year: 0
  ident: ref60
  article-title: Learning to hash with binary reconstructive embeddings
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref5
  doi: 10.1109/CVPR.2016.227
– ident: ref3
  doi: 10.1016/S0031-3203(01)00162-5
– ident: ref48
  doi: 10.1016/j.entcs.2009.07.045
– ident: ref59
  doi: 10.1145/1646396.1646452
– ident: ref1
  doi: 10.1023/B:VISI.0000029664.99615.94
– year: 2009
  ident: ref58
  article-title: Learning multiple layers of features from tiny images
– ident: ref11
  doi: 10.1109/CVPRW.2014.131
– ident: ref34
  doi: 10.1109/CVPR.2009.5206848
– start-page: 584
  year: 0
  ident: ref38
  article-title: Neural codes for image retrieval
  publication-title: Proc Eur Conf Comput Vis
– ident: ref17
  doi: 10.1109/TNNLS.2020.2967597
– start-page: 518
  year: 0
  ident: ref18
  article-title: Similarity search in high dimensions via hashing
  publication-title: Proc Int Conf Very Large Data Bases
– ident: ref4
  doi: 10.1109/TCYB.2019.2928180
– ident: ref9
  doi: 10.1016/j.neucom.2015.11.133
– year: 2019
  ident: ref32
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: arXiv 1901 06032
– ident: ref41
  doi: 10.1007/978-3-642-35221-8
– start-page: 2415
  year: 0
  ident: ref57
  article-title: Deep hashing network for efficient similarity retrieval
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 2074
  year: 0
  ident: ref19
  article-title: Supervised hashing with kernels
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref13
  doi: 10.1109/CVPR.2015.7298594
– ident: ref24
  doi: 10.1109/TPAMI.2019.2914897
– ident: ref52
  doi: 10.1016/j.patcog.2017.02.034
– start-page: 309
  year: 0
  ident: ref35
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– start-page: 1923
  year: 0
  ident: ref31
  article-title: Revisit fuzzy neural network: Demystifying batch normalization and ReLU with generalized hamming network
  publication-title: Proc Annu Conf Neural Inf Process Syst
SSID ssj0014518
Score 2.690849
Snippet Hashing methods for efficient image retrieval aim at learning hash functions that map similar images to semantically correlated binary codes in the Hamming...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Artificial neural networks
Binary codes
Data models
Data structures
Deep neural network (DNN)
Feature extraction
Fuzzy logic
fuzzy neural net-work (FNN)
Fuzzy neural networks
hashing learning
Image management
Image retrieval
Machine learning
Neural networks
Similarity
Title Deep Fuzzy Hashing Network for Efficient Image Retrieval
URI https://ieeexplore.ieee.org/document/9056506
https://www.proquest.com/docview/2474860043
Volume 29
WOSCitedRecordID wos000605370700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPTjfF6ZQcvGln0rRNcxRdmSBDZJOxS0nTFATdxj4E99ebpB8oiuCth4SU_PLy3sv7-AFccJJpK5grh_jSMyU5vpOETDpCyDAlCUmEbVb9_MAGg3A85o81uKpqYZRSNvlMdc2njeWnM7k2T2XXXGtr3_TX3mKM5bVaVcTA80le9hZQJ2A4KAtkML8eRqPJRLuCLu66PNQmPvmmhCyryo-r2OqXqPG_P9uHvcKORDc58AdQU9MmNEqOBlSIbBN2vzQcbEF4p9QcRevN5gP1cxolNMgTwZG2XlHPNpTQS6H7N33RoCfLt6UP4yGMot7wtu8U3AmOpAFZOUxKG6tNE0FMsI0rqWXPCxQTGUkwpVxkXPkav9Q4TWmCWaJxw1yIDEuX0iOoT2dTdQyIagtQhtrOSLLMUx4JFU4ZU5me5qbCxW0g5WbGsmgsbvgtXmPrYGAeWwBiA0BcANCGy2rOPG-r8efoltnyamSx223olJjFheQtY9djhlcLe_Tk91mnsOOavBT7jNKB-mqxVmewLd9XL8vFuT1UnxNWyBw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH8MFdSD001xOjUHb9otadOmOYpubDiHyCZjl5KmKQi6jX0I7q83SbuhKIK3HhJS8svLey_v4wdwyUmqrWCuHOJLakpyfCcOmXSEkGFCYhIL26z6ucO63XAw4I8FuF7XwiilbPKZqplPG8tPxnJhnsrqXGtr3_TX3vQpdUlWrbWOGVCfZIVvgecEDAerEhnM671mfzjUzqCLay4PtZFPvqkhy6vy4zK2GqZZ_N-_7cNebkmimwz6AyioUQmKK5YGlAttCXa_tBwsQ3in1AQ1F8vlB2plREqom6WCI22_ooZtKaGXQu03fdWgJ8u4pY_jIfSbjd5ty8nZExzpBWTuMClttDaJBTHhNq6klj4aKCZSEmPP4yLlytcIJsZtSmLMYo0c5kKkWLqedwQbo_FIHQPytA0oQ21pxGlKFSWhwgljKtXT3ES4uAJktZmRzFuLG4aL18i6GJhHFoDIABDlAFTgaj1nkjXW-HN02Wz5emS-2xWorjCLctmbRS5lhlkLU-_k91kXsN3qPXSiTrt7fwo7rslSsY8qVdiYTxfqDLbk-_xlNj23B-wTqKvLYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Fuzzy+Hashing+Network+for+Efficient+Image+Retrieval&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Lu%2C+Huimin&rft.au=Zhang%2C+Ming&rft.au=Xu%2C+Xing&rft.au=Li%2C+Yujie&rft.date=2021-01-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=1&rft.spage=166&rft.epage=176&rft_id=info:doi/10.1109%2FTFUZZ.2020.2984991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_2984991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon