An Enhanced PSO Algorithm for Scheduling Workflow Tasks in Cloud Computing

This paper proposes an enhanced Particle Swarm Optimization (PSO) algorithm in order to deal with the issue that the time and cost of the PSO algorithm is quite high when scheduling workflow tasks in a cloud computing environment. To reduce particle dimensions and ensure initial particle quality, in...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 12; no. 12; p. 2580
Main Authors: Anbarkhan, Samar Hussni, Rakrouki, Mohamed Ali
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2023
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes an enhanced Particle Swarm Optimization (PSO) algorithm in order to deal with the issue that the time and cost of the PSO algorithm is quite high when scheduling workflow tasks in a cloud computing environment. To reduce particle dimensions and ensure initial particle quality, intensive tasks are combined when scheduling workflow tasks. Next, the particle initialization is optimized to ensure better initial particle quality and reduced search space. Then, a suitable self-adaptive function is integrated to determine the best direction of the particles. The experiments show that the proposed enhanced PSO algorithm has better convergence speed and better performance in the execution of workflow tasks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12122580