Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)

The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 9; číslo 18; s. 3755
Hlavní autori: Chen, Wei, Hong, Haoyuan, Panahi, Mahdi, Shahabi, Himan, Wang, Yi, Shirzadi, Ataollah, Pirasteh, Saied, Alesheikh, Ali Asghar, Khosravi, Khabat, Panahi, Somayeh, Rezaie, Fatemeh, Li, Shaojun, Jaafari, Abolfazl, Bui, Dieu Tien, Bin Ahmad, Baharin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2019
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world.
AbstractList The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world.
Author Pirasteh, Saied
Bin Ahmad, Baharin
Shirzadi, Ataollah
Alesheikh, Ali Asghar
Bui, Dieu Tien
Shahabi, Himan
Jaafari, Abolfazl
Chen, Wei
Wang, Yi
Panahi, Somayeh
Panahi, Mahdi
Khosravi, Khabat
Li, Shaojun
Hong, Haoyuan
Rezaie, Fatemeh
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 2
  givenname: Haoyuan
  orcidid: 0000-0001-6224-069X
  surname: Hong
  fullname: Hong, Haoyuan
– sequence: 3
  givenname: Mahdi
  orcidid: 0000-0001-7601-9208
  surname: Panahi
  fullname: Panahi, Mahdi
– sequence: 4
  givenname: Himan
  orcidid: 0000-0001-5091-6947
  surname: Shahabi
  fullname: Shahabi, Himan
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-1347-7030
  surname: Wang
  fullname: Wang, Yi
– sequence: 6
  givenname: Ataollah
  orcidid: 0000-0001-9668-8687
  surname: Shirzadi
  fullname: Shirzadi, Ataollah
– sequence: 7
  givenname: Saied
  orcidid: 0000-0002-3177-037X
  surname: Pirasteh
  fullname: Pirasteh, Saied
– sequence: 8
  givenname: Ali Asghar
  orcidid: 0000-0001-9537-9401
  surname: Alesheikh
  fullname: Alesheikh, Ali Asghar
– sequence: 9
  givenname: Khabat
  orcidid: 0000-0001-5773-4003
  surname: Khosravi
  fullname: Khosravi, Khabat
– sequence: 10
  givenname: Somayeh
  surname: Panahi
  fullname: Panahi, Somayeh
– sequence: 11
  givenname: Fatemeh
  surname: Rezaie
  fullname: Rezaie, Fatemeh
– sequence: 12
  givenname: Shaojun
  surname: Li
  fullname: Li, Shaojun
– sequence: 13
  givenname: Abolfazl
  orcidid: 0000-0002-3441-6560
  surname: Jaafari
  fullname: Jaafari, Abolfazl
– sequence: 14
  givenname: Dieu Tien
  surname: Bui
  fullname: Bui, Dieu Tien
– sequence: 15
  givenname: Baharin
  surname: Bin Ahmad
  fullname: Bin Ahmad, Baharin
BookMark eNptkd9u0zAUxiM0JMbYDU9giZsNKWDHiRNflsFKpUKRuqmX0Yl90rpK48x2hbrn2YPitPwTwhe2dfz59x1952Vy1tsek-Q1o-84l_Q9DINkFS-L4llyntFSpDxn5dlf9xfJpfdbGpdkvGL0PHlaDhAMdOSbQ21UMLYntiVz6LXvjEay3HuFQzCN6Uw4kHtv-jWZzpbpB_CoyUcIQL6Yfqzeodr05mGPfkRMvt7OluS7CRuy2kCHZBEpO_MIR49Jt7Yuvu3I1WoxuSbRj0wdHsjKdu0vKTpyNV0trl8lz1voPF7-PC-S-9tPdzef0_liOruZzFPFBQupQCVaBqJpZJZpzXmWoa6qMldlK3LJGyapKhAyxaXQRQVYFUw2TZFXqomB8ItkduJqC9t6cGYH7lBbMPWxYN26BheM6rBG2pQNRyraXOQoJTRKC0kFAEoe98h6c2INzo6RhHpr966P7ddZwXnsh4nR8e1JpZz13mH725XRehxq_WeoUUz_ESsTjnEGB6b735cfUUKmhA
CitedBy_id crossref_primary_10_1016_j_catena_2020_104777
crossref_primary_10_1016_j_jhydrol_2022_128001
crossref_primary_10_3390_app10155047
crossref_primary_10_1016_j_asr_2024_03_038
crossref_primary_10_1016_j_gsf_2020_07_012
crossref_primary_10_3390_pr12040783
crossref_primary_10_1177_01445987231178938
crossref_primary_10_1007_s11069_021_04743_4
crossref_primary_10_1016_j_jhydrol_2020_124602
crossref_primary_10_3390_app10010016
crossref_primary_10_1155_2022_1111683
crossref_primary_10_1016_j_envpol_2022_120203
crossref_primary_10_1007_s00477_025_03101_1
crossref_primary_10_1080_10106049_2021_2022009
crossref_primary_10_1016_j_gsf_2020_03_005
crossref_primary_10_1515_geo_2022_0550
crossref_primary_10_1080_10106049_2021_1914746
crossref_primary_10_3390_app10072469
crossref_primary_10_1007_s12145_022_00830_7
crossref_primary_10_1016_j_catena_2020_104805
crossref_primary_10_1038_s41598_024_65547_7
crossref_primary_10_1007_s00477_021_02032_x
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_1007_s12517_021_07768_y
crossref_primary_10_1016_j_gsf_2020_09_007
crossref_primary_10_3390_app10010029
crossref_primary_10_1016_j_asr_2024_06_018
crossref_primary_10_3390_rs15184501
crossref_primary_10_1007_s11069_025_07415_9
crossref_primary_10_3390_rs13071326
crossref_primary_10_3390_rs15204952
crossref_primary_10_1016_j_asoc_2021_108254
crossref_primary_10_1016_j_jhydrol_2020_125423
crossref_primary_10_3390_su15010006
crossref_primary_10_1007_s12145_024_01455_8
crossref_primary_10_1016_j_seppur_2024_126509
crossref_primary_10_1016_j_catena_2020_104833
crossref_primary_10_3233_JIFS_223421
crossref_primary_10_1016_j_ijsrc_2022_04_003
crossref_primary_10_3390_f11030324
crossref_primary_10_3390_su17051973
crossref_primary_10_1080_10106049_2021_1912194
crossref_primary_10_3390_sym12061022
crossref_primary_10_3390_app10062039
crossref_primary_10_1038_s41598_025_90550_x
crossref_primary_10_1007_s12145_021_00644_z
crossref_primary_10_3390_rs15194703
crossref_primary_10_3390_ijgi9100566
crossref_primary_10_3390_e24111630
crossref_primary_10_1016_j_conbuildmat_2022_128862
crossref_primary_10_1007_s13762_022_04714_7
crossref_primary_10_1007_s11227_025_06919_2
crossref_primary_10_3390_rs12010140
crossref_primary_10_1007_s11053_024_10329_1
crossref_primary_10_1109_ACCESS_2023_3287319
crossref_primary_10_1080_10106049_2020_1737972
crossref_primary_10_1080_10106049_2021_1948109
crossref_primary_10_1088_1361_6501_ace927
crossref_primary_10_2166_ws_2025_007
crossref_primary_10_3390_ijgi9030144
crossref_primary_10_3390_rs12152478
crossref_primary_10_1016_j_jenvman_2021_114367
crossref_primary_10_1155_2022_5490758
crossref_primary_10_3389_fenvs_2023_1218954
crossref_primary_10_1016_j_jhydrol_2023_130096
crossref_primary_10_3390_rs13061196
crossref_primary_10_1016_j_catena_2022_106379
crossref_primary_10_1007_s00366_022_01695_6
crossref_primary_10_1016_j_fuel_2020_118701
crossref_primary_10_1016_j_engappai_2020_103971
crossref_primary_10_1016_j_jrmge_2024_04_029
crossref_primary_10_1007_s12518_023_00488_w
crossref_primary_10_1016_j_eswa_2022_117012
crossref_primary_10_1007_s10708_020_10162_y
crossref_primary_10_1155_2022_4882521
crossref_primary_10_1016_j_suscom_2023_100924
crossref_primary_10_1016_j_gsf_2020_06_013
crossref_primary_10_3390_su13020457
crossref_primary_10_1007_s12517_020_05697_w
crossref_primary_10_1016_j_actatropica_2024_107483
crossref_primary_10_3390_rs12020266
crossref_primary_10_1080_10106049_2021_1986578
crossref_primary_10_1080_10106049_2022_2136253
crossref_primary_10_3390_rs12244134
crossref_primary_10_3390_w12010113
crossref_primary_10_1007_s11269_022_03307_w
crossref_primary_10_3390_app10020425
crossref_primary_10_3390_app10093225
crossref_primary_10_1080_00207721_2020_1799110
crossref_primary_10_1080_13658816_2020_1808897
crossref_primary_10_1016_j_scitotenv_2019_134979
crossref_primary_10_3390_rs12142180
crossref_primary_10_1016_j_accre_2023_11_002
crossref_primary_10_1007_s11629_022_7685_y
crossref_primary_10_1016_j_catena_2019_104451
crossref_primary_10_3390_ijerph17082749
crossref_primary_10_1007_s10668_023_03356_0
crossref_primary_10_1016_j_gsf_2021_101211
crossref_primary_10_1007_s11600_021_00577_7
crossref_primary_10_3390_rs14020347
crossref_primary_10_1007_s11053_025_10518_6
crossref_primary_10_1007_s11356_023_27799_0
crossref_primary_10_1016_j_scitotenv_2020_137231
crossref_primary_10_3390_su11226323
crossref_primary_10_3390_land12020468
crossref_primary_10_1007_s10064_021_02546_2
crossref_primary_10_1007_s12145_022_00878_5
crossref_primary_10_1016_j_asr_2020_05_016
crossref_primary_10_3390_rs15041007
crossref_primary_10_3390_su15054218
crossref_primary_10_1007_s10661_022_10206_5
crossref_primary_10_3390_rs17101752
crossref_primary_10_1080_10106049_2021_2009920
crossref_primary_10_3390_w12010016
crossref_primary_10_3390_sym12030325
crossref_primary_10_1007_s11069_020_04371_4
crossref_primary_10_3390_su13105369
crossref_primary_10_1038_s41598_024_72663_x
crossref_primary_10_1155_2022_2058442
crossref_primary_10_3390_ijerph17144933
crossref_primary_10_1016_j_matpr_2021_11_561
crossref_primary_10_1016_j_gsf_2020_10_009
crossref_primary_10_3390_ijgi9080479
crossref_primary_10_3390_ijgi9070443
crossref_primary_10_1016_j_gsf_2021_101154
crossref_primary_10_3390_s20061576
crossref_primary_10_1007_s11053_021_09913_6
crossref_primary_10_1080_17538947_2025_2513589
Cites_doi 10.1016/j.ijepes.2016.04.034
10.1016/j.geomorph.2015.06.040
10.1016/j.scitotenv.2017.10.114
10.3390/app8122540
10.1080/19475705.2017.1401560
10.1016/j.enggeo.2016.10.006
10.1016/j.catena.2018.01.005
10.1109/21.256541
10.1016/j.asej.2016.08.023
10.1007/s12665-017-6689-3
10.20944/preprints201608.0032.v1
10.1080/17538947.2016.1169561
10.1016/j.geomorph.2017.04.039
10.1016/j.geomorph.2011.12.040
10.3390/rs10101527
10.1016/j.jenvman.2018.01.044
10.3390/app9173495
10.1007/s11053-019-09465-w
10.1007/s12665-018-7268-y
10.1016/j.scitotenv.2019.06.320
10.1016/j.cageo.2012.08.023
10.1080/10106049.2018.1425738
10.3390/su10103376
10.1007/s12145-018-0354-6
10.1080/10106049.2018.1474276
10.1016/j.matdes.2015.12.005
10.1016/j.geomorph.2017.03.031
10.1016/j.geomorph.2014.02.003
10.3390/s18113777
10.1007/s12665-016-6374-y
10.2307/1379766
10.3390/f10020157
10.1007/s12665-017-6932-y
10.1007/s10346-015-0614-1
10.1016/j.geomorph.2017.12.008
10.1016/j.jhydrol.2019.03.013
10.1016/j.jenvman.2019.06.102
10.1016/j.catena.2018.01.012
10.1016/j.jhydrol.2019.05.089
10.3390/app8071046
10.3390/rs11131589
10.1016/j.scitotenv.2018.01.124
10.3390/su11164386
10.1016/j.geomorph.2017.07.032
10.1080/10106049.2019.1588393
10.1016/j.geomorph.2015.06.001
10.1007/s10064-017-1202-5
10.3390/app7101000
10.1080/10106049.2018.1499820
10.1016/j.catena.2016.12.006
10.1016/j.catena.2017.05.034
10.1007/s12517-012-0532-7
10.1016/j.advengsoft.2016.01.008
10.1016/j.catena.2017.09.025
10.1016/j.scitotenv.2018.01.266
10.1002/ar.20407
10.1061/(ASCE)CP.1943-5487.0000557
10.1007/978-3-642-39649-6_34
10.1016/j.scitotenv.2019.05.312
10.1111/j.1467-9671.2005.00229.x
10.1016/j.scitotenv.2019.01.329
10.1016/j.cageo.2008.08.007
10.3390/rs10101538
10.1016/j.geomorph.2017.06.013
10.3390/w10091210
10.1007/s11269-018-2102-6
10.1007/s00366-018-0644-0
10.1016/j.eswa.2017.04.029
10.1109/TSMC.1985.6313399
10.1016/j.jenvman.2018.03.089
10.1016/j.catena.2018.08.025
10.1007/s10346-015-0557-6
10.1007/s10666-016-9538-y
10.3390/app9142824
10.3390/rs11080931
10.1016/j.asoc.2016.12.022
10.5194/hess-22-4771-2018
10.1016/j.geomorph.2017.09.007
10.1080/19475705.2017.1289250
10.5194/hess-21-4573-2017
10.1016/j.ijepes.2015.03.024
10.1007/s11069-018-3536-0
10.3390/e20110884
10.1007/s10064-018-1401-8
10.1007/s10346-013-0391-7
10.1016/j.atmosres.2017.04.017
10.1007/s11069-017-2997-x
10.1016/j.envsoft.2017.06.012
10.1016/j.catena.2018.04.003
10.1007/s11069-012-0217-2
10.1007/s10064-017-1004-9
10.1007/s00254-001-0454-2
10.1007/s11069-017-2992-2
10.1007/s10064-018-1273-y
10.1007/s12665-017-6558-0
10.1007/s10346-015-0565-6
10.1016/j.cageo.2011.10.031
10.1109/TGRS.2010.2050328
10.1016/j.agrformet.2018.12.015
10.1016/j.isatra.2017.08.009
10.3390/s18082464
10.1080/10106049.2017.1323964
10.1007/s10346-014-0533-6
10.1007/s11069-018-3286-z
10.1016/j.catena.2016.09.007
10.1016/j.scitotenv.2018.06.389
10.1007/s10064-018-1281-y
10.1007/s12665-017-6981-2
10.1007/s10346-015-0587-0
10.1016/j.ijleo.2016.11.173
10.1007/s10346-016-0708-4
10.3390/s19112444
10.1016/j.scitotenv.2018.04.055
10.1007/s10346-016-0711-9
10.1016/j.ijhydene.2017.04.044
10.1007/978-0-387-30164-8
10.1016/j.jhydrol.2019.03.073
10.1016/j.renene.2017.04.036
10.1016/j.geomorph.2008.02.011
10.1016/j.jhydrol.2018.08.027
10.3846/jbem.2010.12
10.1007/s10064-017-1125-1
10.1016/j.catena.2017.05.016
10.1016/j.advengsoft.2013.12.007
10.1080/19475705.2016.1250112
10.1016/j.catena.2018.12.018
10.1007/s11069-013-0728-5
10.1016/j.catena.2013.11.014
10.1038/s41598-018-33755-7
10.1002/ldr.3255
10.1016/j.scitotenv.2018.11.235
10.1016/j.catena.2018.12.033
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9183755
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_e0b7b3e06f464e99abcd6906aae936aa
10_3390_app9183755
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-6ec6f1a6bb922dd3322ed8874c7f6493b190c5ea2c396d58ae8519bb548cb9133
IEDL.DBID DOA
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489115200115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:05:46 EDT 2025
Mon Jun 30 11:16:26 EDT 2025
Tue Nov 18 22:34:29 EST 2025
Sat Nov 29 07:09:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-6ec6f1a6bb922dd3322ed8874c7f6493b190c5ea2c396d58ae8519bb548cb9133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5773-4003
0000-0001-9668-8687
0000-0002-3177-037X
0000-0002-3441-6560
0000-0001-9537-9401
0000-0001-6224-069X
0000-0001-5091-6947
0000-0002-1347-7030
0000-0001-7601-9208
OpenAccessLink https://doaj.org/article/e0b7b3e06f464e99abcd6906aae936aa
PQID 2533649163
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_e0b7b3e06f464e99abcd6906aae936aa
proquest_journals_2533649163
crossref_primary_10_3390_app9183755
crossref_citationtrail_10_3390_app9183755
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_93
ref_136
Pham (ref_79) 2019; 175
Shirzadi (ref_80) 2017; 76
ref_90
Hong (ref_5) 2017; 76
Rezakazemi (ref_110) 2017; 42
ref_98
Nguyen (ref_44) 2017; 14
Hoang (ref_43) 2018; 92
ref_95
ref_134
Yao (ref_26) 2008; 101
Bui (ref_132) 2018; 8
Rahmati (ref_72) 2018; 565
Chen (ref_135) 2019; 684
Pham (ref_78) 2018; 303
Takagi (ref_112) 1985; 15
Pradhan (ref_116) 2016; 83
Shahabi (ref_25) 2014; 115
Kavzoglu (ref_27) 2014; 11
Pham (ref_28) 2017; 76
He (ref_83) 2019; 663
Mirjalili (ref_103) 2016; 95
Ahmadlou (ref_130) 2019; 34
Azareh (ref_69) 2019; 655
Khosravi (ref_131) 2018; 22
Polykretis (ref_50) 2019; 78
ref_24
ref_23
Chen (ref_99) 2017; 8
Crozier (ref_4) 2017; 295
Jaafari (ref_84) 2019; 175
ref_123
Pham (ref_31) 2018; 77
Zhu (ref_14) 2014; 214
Zavadskas (ref_106) 2010; 11
Hoang (ref_32) 2016; 30
Pradhan (ref_19) 2012; 171–172
Hong (ref_105) 2018; 621
Gorsevski (ref_22) 2016; 13
ref_70
Peruccacci (ref_12) 2017; 290
Chen (ref_57) 2019; 575
Bovenga (ref_1) 2017; 151
Wang (ref_55) 2019; 247
ref_75
ref_74
Valavi (ref_61) 2018; 217
Ali (ref_121) 2017; 111
Kritikos (ref_47) 2014; 12
Pourghasemi (ref_126) 2013; 69
Phootrakornchai (ref_108) 2015; 73
Gao (ref_9) 2017; 21
Gorsevski (ref_45) 2005; 9
Hoang (ref_34) 2017; 14
Miraki (ref_71) 2019; 33
Zhang (ref_120) 2017; 71
Zhang (ref_13) 2017; 76
Aghdam (ref_52) 2017; 76
Chen (ref_113) 2019; 572
Pradhan (ref_118) 2017; 9
Pourghasemi (ref_125) 2012; 63
Sahoo (ref_117) 2017; 52
ref_89
Jaafari (ref_66) 2019; 266
ref_88
Hof (ref_115) 2007; 290
Samia (ref_10) 2017; 292
Lagomarsino (ref_36) 2017; 22
Roodposhti (ref_68) 2017; 193
Youssef (ref_35) 2015; 13
Khosravi (ref_56) 2019; 573
Chen (ref_96) 2018; 164
Watkins (ref_114) 1979; 60
Keyport (ref_16) 2018; 64
ref_58
Pourghasemi (ref_127) 2013; 6
Chen (ref_53) 2017; 157
Chen (ref_87) 2019; 34
Pham (ref_33) 2016; 9
Chen (ref_77) 2018; 626
Chen (ref_124) 2019; 172
Yilmaz (ref_20) 2009; 35
Chen (ref_17) 2017; 8
Chen (ref_133) 2018; 77
Hong (ref_39) 2018; 163
ref_59
Kim (ref_38) 2018; 33
ref_60
Chen (ref_97) 2019; 78
Chen (ref_51) 2017; 297
Chen (ref_92) 2018; 33
Mirjalili (ref_104) 2014; 69
ref_67
ref_65
ref_64
Jang (ref_107) 1993; 23
Shirzadi (ref_100) 2017; 157
Xu (ref_128) 2012; 145
Pradhan (ref_48) 2012; 45
Prakash (ref_81) 2018; 14
Pham (ref_21) 2017; 149
Pradhan (ref_49) 2010; 48
Pradhan (ref_82) 2013; 51
Rahmati (ref_73) 2019; 688
Tuan (ref_54) 2016; 13
Dewan (ref_109) 2016; 92
Minaei (ref_86) 2019; 12
Singh (ref_76) 2018; 211
ref_111
ref_30
Vasu (ref_11) 2016; 215
Kumar (ref_18) 2017; 295
Khosravi (ref_63) 2018; 627
Paci (ref_3) 2017; 63
Safran (ref_7) 2015; 248
Chapi (ref_62) 2017; 95
Hong (ref_29) 2016; 8
Zhu (ref_15) 2018; 166
Tsangaratos (ref_37) 2016; 13
Hong (ref_85) 2019; 96
Ercanoglu (ref_46) 2002; 41
Zhang (ref_119) 2017; 130
Torizin (ref_2) 2017; 89
ref_42
Chen (ref_91) 2018; 644
ref_41
ref_102
ref_40
ref_101
Khairuzzaman (ref_122) 2017; 86
Chen (ref_129) 2018; 634
Zhao (ref_8) 2017; 89
Persichillo (ref_6) 2018; 160
Moayedi (ref_137) 2019; 35
References_xml – volume: 83
  start-page: 325
  year: 2016
  ident: ref_116
  article-title: Grey wolf optimization applied to economic load dispatch problems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.04.034
– volume: 248
  start-page: 237
  year: 2015
  ident: ref_7
  article-title: Plugs or Flood-Makers? The Unstable Landslide Dams of Eastern Oregon
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.040
– volume: 64
  start-page: 1
  year: 2018
  ident: ref_16
  article-title: A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 621
  start-page: 1124
  year: 2018
  ident: ref_105
  article-title: Flood susceptibility assessment in hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.114
– ident: ref_93
  doi: 10.3390/app8122540
– volume: 8
  start-page: 1955
  year: 2017
  ident: ref_99
  article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1401560
– volume: 215
  start-page: 36
  year: 2016
  ident: ref_11
  article-title: A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.10.006
– volume: 163
  start-page: 399
  year: 2018
  ident: ref_39
  article-title: Landslide susceptibility mapping using j48 decision tree with adaboost, bagging and rotation forest ensembles in the Guangchang Area (China)
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.005
– volume: 23
  start-page: 665
  year: 1993
  ident: ref_107
  article-title: Anfis: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. ManCybern.
  doi: 10.1109/21.256541
– volume: 9
  start-page: 2015
  year: 2017
  ident: ref_118
  article-title: Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.08.023
– volume: 76
  start-page: 371
  year: 2017
  ident: ref_28
  article-title: A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using gis
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6689-3
– ident: ref_101
  doi: 10.20944/preprints201608.0032.v1
– volume: 9
  start-page: 1077
  year: 2016
  ident: ref_33
  article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least squares support vector machines and differential evolution optimization: A Case Study in Central Vietnam
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1169561
– volume: 63
  start-page: 143
  year: 2017
  ident: ref_3
  article-title: A nation-wide system for landslide mapping and risk management in italy: The second not-ordinary plan of environmental remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 292
  start-page: 16
  year: 2017
  ident: ref_10
  article-title: Characterization and quantification of path dependency in landslide susceptibility
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.04.039
– volume: 145
  start-page: 70
  year: 2012
  ident: ref_128
  article-title: Gis-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang river watershed, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– ident: ref_75
  doi: 10.3390/rs10101527
– volume: 211
  start-page: 125
  year: 2018
  ident: ref_76
  article-title: Developing robust arsenic awareness prediction models using machine learning algorithms
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.01.044
– ident: ref_65
  doi: 10.3390/app9173495
– ident: ref_74
  doi: 10.1007/s11053-019-09465-w
– volume: 77
  start-page: 146
  year: 2018
  ident: ref_31
  article-title: Bagging based support vector machines for spatial prediction of landslides
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7268-y
– volume: 688
  start-page: 855
  year: 2019
  ident: ref_73
  article-title: Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and uneec methods
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.320
– volume: 51
  start-page: 350
  year: 2013
  ident: ref_82
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using gis
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 33
  start-page: 1398
  year: 2018
  ident: ref_92
  article-title: A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1425738
– ident: ref_64
  doi: 10.3390/su10103376
– volume: 12
  start-page: 1
  year: 2019
  ident: ref_86
  article-title: Big data in geohazard; pattern mining and large scale analysis of landslides in Iran
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-018-0354-6
– volume: 34
  start-page: 1252
  year: 2019
  ident: ref_130
  article-title: Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (anfis) and biogeography-based optimization (bbo) and bat algorithms (ba)
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1474276
– volume: 92
  start-page: 288
  year: 2016
  ident: ref_109
  article-title: Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (anfis) and neural network
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.005
– volume: 290
  start-page: 39
  year: 2017
  ident: ref_12
  article-title: Rainfall thresholds for possible landslide occurrence in Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.03.031
– volume: 214
  start-page: 128
  year: 2014
  ident: ref_14
  article-title: An expert knowledge-based approach to landslide susceptibility mapping using gis and fuzzy logic
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.02.003
– ident: ref_98
  doi: 10.3390/s18113777
– volume: 76
  start-page: 60
  year: 2017
  ident: ref_80
  article-title: Shallow landslide susceptibility assessment using a novel hybrid intelligence approach
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-6374-y
– volume: 60
  start-page: 155
  year: 1979
  ident: ref_114
  article-title: Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus
  publication-title: J. Mammal.
  doi: 10.2307/1379766
– ident: ref_88
  doi: 10.3390/f10020157
– volume: 76
  start-page: 600
  year: 2017
  ident: ref_13
  article-title: Landslide zoning analysis in zhouqu under different rainfall warning levels
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6932-y
– volume: 13
  start-page: 839
  year: 2015
  ident: ref_35
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 303
  start-page: 256
  year: 2018
  ident: ref_78
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.008
– volume: 572
  start-page: 435
  year: 2019
  ident: ref_113
  article-title: Spatial prediction of groundwater potentiality using anfis ensembled with teaching-learning-based and biogeography-based optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.013
– volume: 247
  start-page: 712
  year: 2019
  ident: ref_55
  article-title: Flood susceptibility mapping in dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.06.102
– volume: 164
  start-page: 135
  year: 2018
  ident: ref_96
  article-title: Gis-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.012
– volume: 575
  start-page: 864
  year: 2019
  ident: ref_57
  article-title: Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.089
– ident: ref_40
  doi: 10.3390/app8071046
– ident: ref_58
  doi: 10.3390/rs11131589
– volume: 626
  start-page: 1121
  year: 2018
  ident: ref_77
  article-title: Landslide susceptibility modelling using gis-based machine learning techniques for Chongren County, Jiangxi Province, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.124
– ident: ref_102
  doi: 10.3390/su11164386
– volume: 295
  start-page: 480
  year: 2017
  ident: ref_4
  article-title: A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.07.032
– volume: 34
  start-page: 1
  year: 2019
  ident: ref_87
  article-title: Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2019.1588393
– ident: ref_42
  doi: 10.1016/j.geomorph.2015.06.001
– ident: ref_136
  doi: 10.1007/s10064-017-1202-5
– ident: ref_23
  doi: 10.3390/app7101000
– ident: ref_95
  doi: 10.1080/10106049.2018.1499820
– volume: 151
  start-page: 49
  year: 2017
  ident: ref_1
  article-title: Landslide monitoring for risk mitigation by using corner reflector and satellite sar interferometry: The large landslide of Carlantino (Italy)
  publication-title: Catena
  doi: 10.1016/j.catena.2016.12.006
– volume: 157
  start-page: 310
  year: 2017
  ident: ref_53
  article-title: Performance evaluation of gis-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (anfis) with genetic algorithm (ga), differential evolution (de), and particle swarm optimization (pso) for landslide spatial modelling
  publication-title: Catena
  doi: 10.1016/j.catena.2017.05.034
– volume: 171–172
  start-page: 12
  year: 2012
  ident: ref_19
  article-title: Landslide susceptibility assessment in the hoa binh province of vietnam: A comparison of the levenberg-marquardt and bayesian regularized neural networks
  publication-title: Geomorphology
– volume: 6
  start-page: 2351
  year: 2013
  ident: ref_127
  article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0532-7
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_103
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 160
  start-page: 261
  year: 2018
  ident: ref_6
  article-title: The role of human activities on sediment connectivity of shallow landslides
  publication-title: Catena
  doi: 10.1016/j.catena.2017.09.025
– volume: 627
  start-page: 744
  year: 2018
  ident: ref_63
  article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz Watershed, Northern Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.266
– volume: 290
  start-page: 1
  year: 2007
  ident: ref_115
  article-title: Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (cetacea, mysticeti, balaenopteridae)
  publication-title: Anat. Rec.
  doi: 10.1002/ar.20407
– volume: 30
  start-page: 1
  year: 2016
  ident: ref_32
  article-title: A novel relevance vector machine classifier with cuckoo search optimization for spatial prediction of landslides
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000557
– ident: ref_24
  doi: 10.1007/978-3-642-39649-6_34
– volume: 684
  start-page: 31
  year: 2019
  ident: ref_135
  article-title: Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.312
– volume: 9
  start-page: 455
  year: 2005
  ident: ref_45
  article-title: Spatial prediction of landslide hazard using fuzzy k-means and dempster-shafer theory
  publication-title: Trans. Gis
  doi: 10.1111/j.1467-9671.2005.00229.x
– volume: 663
  start-page: 1
  year: 2019
  ident: ref_83
  article-title: Landslide spatial modelling using novel bivariate statistical based naïve bayes, rbf classifier, and rbf network machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.329
– volume: 35
  start-page: 1125
  year: 2009
  ident: ref_20
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from kat landslides (Tokat-Turkey)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.08.007
– ident: ref_59
  doi: 10.3390/rs10101538
– volume: 295
  start-page: 115
  year: 2017
  ident: ref_18
  article-title: Landslide susceptibility mapping & prediction using support vector machine for Mandakini river basin, Garhwal Himalaya, India
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.06.013
– ident: ref_60
  doi: 10.3390/w10091210
– volume: 33
  start-page: 281
  year: 2019
  ident: ref_71
  article-title: Mapping groundwater potential using a novel hybrid intelligence approach
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2102-6
– volume: 35
  start-page: 967
  year: 2019
  ident: ref_137
  article-title: Modification of landslide susceptibility mapping using optimized pso-ann technique
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-018-0644-0
– volume: 86
  start-page: 64
  year: 2017
  ident: ref_122
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.029
– volume: 15
  start-page: 116
  year: 1985
  ident: ref_112
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst. ManCybern.
  doi: 10.1109/TSMC.1985.6313399
– volume: 217
  start-page: 1
  year: 2018
  ident: ref_61
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.03.089
– volume: 172
  start-page: 212
  year: 2019
  ident: ref_124
  article-title: Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2018.08.025
– volume: 13
  start-page: 361
  year: 2016
  ident: ref_54
  article-title: Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 22
  start-page: 201
  year: 2017
  ident: ref_36
  article-title: A tool for classification and regression using random forest methodology: Applications to landslide susceptibility mapping and soil thickness modeling
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-016-9538-y
– ident: ref_89
  doi: 10.3390/app9142824
– ident: ref_90
  doi: 10.3390/rs11080931
– volume: 52
  start-page: 64
  year: 2017
  ident: ref_117
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.022
– volume: 22
  start-page: 4771
  year: 2018
  ident: ref_131
  article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-4771-2018
– volume: 297
  start-page: 69
  year: 2017
  ident: ref_51
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.007
– volume: 8
  start-page: 950
  year: 2017
  ident: ref_17
  article-title: GIS-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1289250
– volume: 21
  start-page: 4573
  year: 2017
  ident: ref_9
  article-title: Characterizing the spatial variations and correlations of large rainstorms for landslide study
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-4573-2017
– volume: 73
  start-page: 170
  year: 2015
  ident: ref_108
  article-title: Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (anfis)
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.03.024
– volume: 96
  start-page: 173
  year: 2019
  ident: ref_85
  article-title: Landslide susceptibility assessment at the Wuning area, China: A comparison between multi-criteria decision making, bivariate statistical and machine learning methods
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3536-0
– ident: ref_94
  doi: 10.3390/e20110884
– volume: 78
  start-page: 4397
  year: 2019
  ident: ref_97
  article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1401-8
– volume: 11
  start-page: 425
  year: 2014
  ident: ref_27
  article-title: Landslide susceptibility mapping using gis-based multi-criteria decision analysis, support vector machines, and logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume: 193
  start-page: 73
  year: 2017
  ident: ref_68
  article-title: Drought sensitivity mapping using two one-class support vector machine algorithms
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.04.017
– volume: 89
  start-page: 859
  year: 2017
  ident: ref_8
  article-title: A study of landslide deformation fields with a digital correlation method
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2997-x
– volume: 95
  start-page: 229
  year: 2017
  ident: ref_62
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.06.012
– volume: 166
  start-page: 317
  year: 2018
  ident: ref_15
  article-title: A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.04.003
– volume: 63
  start-page: 965
  year: 2012
  ident: ref_125
  article-title: Application of fuzzy logic and analytical hierarchy process (ahp) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0217-2
– volume: 77
  start-page: 611
  year: 2018
  ident: ref_133
  article-title: Prioritization of landslide conditioning factors and its spatial modeling in shangnan county, china using gis-based data mining algorithms
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1004-9
– volume: 41
  start-page: 720
  year: 2002
  ident: ref_46
  article-title: Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-001-0454-2
– volume: 89
  start-page: 757
  year: 2017
  ident: ref_2
  article-title: Statistical landslide susceptibility assessment of the mansehra and torghar districts, khyber pakhtunkhwa province, pakistan
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2992-2
– ident: ref_41
  doi: 10.1007/s10064-018-1273-y
– volume: 76
  start-page: 237
  year: 2017
  ident: ref_52
  article-title: Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (fr and woe) and adaptive neuro-fuzzy inference system (anfis) at Southern Zagros Mountains in Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6558-0
– volume: 13
  start-page: 305
  year: 2016
  ident: ref_37
  article-title: Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece
  publication-title: Landslides
  doi: 10.1007/s10346-015-0565-6
– volume: 45
  start-page: 199
  year: 2012
  ident: ref_48
  article-title: Landslide susceptibility mapping at Hoa Binh Province (Vietnam) using an adaptive neuro-fuzzy inference system and gis
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.10.031
– volume: 48
  start-page: 4164
  year: 2010
  ident: ref_49
  article-title: Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia)
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2050328
– volume: 266
  start-page: 198
  year: 2019
  ident: ref_66
  article-title: Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.12.015
– volume: 71
  start-page: 206
  year: 2017
  ident: ref_120
  article-title: An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.08.009
– ident: ref_134
  doi: 10.3390/s18082464
– volume: 33
  start-page: 1000
  year: 2018
  ident: ref_38
  article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1323964
– volume: 12
  start-page: 1051
  year: 2014
  ident: ref_47
  article-title: Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a gis-based approach: Application to Western Southern Alps of New Zealand
  publication-title: Landslides
  doi: 10.1007/s10346-014-0533-6
– volume: 92
  start-page: 1871
  year: 2018
  ident: ref_43
  article-title: Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with gis: A case study in Vietnam
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3286-z
– ident: ref_111
– volume: 149
  start-page: 52
  year: 2017
  ident: ref_21
  article-title: Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using gis
  publication-title: Catena
  doi: 10.1016/j.catena.2016.09.007
– volume: 644
  start-page: 1006
  year: 2018
  ident: ref_91
  article-title: Performance evaluation of the gis-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.389
– ident: ref_30
  doi: 10.1007/s10064-018-1281-y
– volume: 76
  start-page: 652
  year: 2017
  ident: ref_5
  article-title: A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6981-2
– volume: 13
  start-page: 467
  year: 2016
  ident: ref_22
  article-title: Landslide Detection and Susceptibility Mapping Using Lidar and an Artificial Neural Network Approach: A Case Study in the Cuyahoga Valley National Park, Ohio
  publication-title: Landslides
  doi: 10.1007/s10346-015-0587-0
– volume: 130
  start-page: 1229
  year: 2017
  ident: ref_119
  article-title: Template matching using grey wolf optimizer with lateral inhibition
  publication-title: Opt. Int. J. Light Electron. Opt.
  doi: 10.1016/j.ijleo.2016.11.173
– volume: 14
  start-page: 1
  year: 2017
  ident: ref_44
  article-title: A novel fuzzy k-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using gis
  publication-title: Landslides
  doi: 10.1007/s10346-016-0708-4
– ident: ref_70
  doi: 10.3390/s19112444
– volume: 634
  start-page: 853
  year: 2018
  ident: ref_129
  article-title: Gis-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.055
– volume: 14
  start-page: 447
  year: 2017
  ident: ref_34
  article-title: Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a novel hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization
  publication-title: Landslides
  doi: 10.1007/s10346-016-0711-9
– volume: 42
  start-page: 15211
  year: 2017
  ident: ref_110
  article-title: H 2-selective mixed matrix membranes modeling using anfis, pso-anfis, ga-anfis
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.04.044
– ident: ref_123
  doi: 10.1007/978-0-387-30164-8
– volume: 573
  start-page: 311
  year: 2019
  ident: ref_56
  article-title: A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.073
– volume: 111
  start-page: 455
  year: 2017
  ident: ref_121
  article-title: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.04.036
– volume: 101
  start-page: 572
  year: 2008
  ident: ref_26
  article-title: Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 565
  start-page: 248
  year: 2018
  ident: ref_72
  article-title: Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.027
– volume: 11
  start-page: 243
  year: 2010
  ident: ref_106
  article-title: Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (swara)
  publication-title: J. Bus. Econ. Manag.
  doi: 10.3846/jbem.2010.12
– volume: 78
  start-page: 1173
  year: 2019
  ident: ref_50
  article-title: Adaptive neuro-fuzzy inference system (anfis) modeling for landslide susceptibility assessment in a Mediterranean hilly area
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1125-1
– volume: 157
  start-page: 213
  year: 2017
  ident: ref_100
  article-title: A comparative study between popular statistical and machine learning methods for simulating volume of landslides
  publication-title: Catena
  doi: 10.1016/j.catena.2017.05.016
– volume: 14
  start-page: 1
  year: 2018
  ident: ref_81
  article-title: A novel hybrid approach of landslide susceptibility modeling using rotation forest ensemble and different base classifiers
  publication-title: Geocarto Int.
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_104
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 8
  start-page: 544
  year: 2016
  ident: ref_29
  article-title: Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China)
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2016.1250112
– volume: 175
  start-page: 203
  year: 2019
  ident: ref_79
  article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.018
– volume: 69
  start-page: 749
  year: 2013
  ident: ref_126
  article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0728-5
– volume: 115
  start-page: 55
  year: 2014
  ident: ref_25
  article-title: Landslide susceptibility mapping at central Zab Basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models
  publication-title: Catena
  doi: 10.1016/j.catena.2013.11.014
– volume: 8
  start-page: 15364
  year: 2018
  ident: ref_132
  article-title: Novel hybrid evolutionary algorithms for spatial prediction of floods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33755-7
– ident: ref_67
  doi: 10.1002/ldr.3255
– volume: 655
  start-page: 684
  year: 2019
  ident: ref_69
  article-title: Modelling Gully-Erosion Susceptibility in a Semi-Arid Region, Iran: Investigation of Applicability of Certainty Factor and Maximum Entropy Models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.235
– volume: 175
  start-page: 430
  year: 2019
  ident: ref_84
  article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.033
SSID ssj0000913810
Score 2.5167975
Snippet The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3755
SubjectTerms Accuracy
Altitude
China
evolutionary optimization algorithm
Fuzzy logic
GDP
Gene expression
goodness-of-fit
Gross Domestic Product
Land use
landslide
Landslides & mudslides
Lithology
machine learning
Neural networks
Optimization algorithms
prediction accuracy
Remote sensing
Rivers
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1BywEOQAsVgYJGgkNzsLC97tp7QknblEoliUhRerP2y22lNC62i8T_4Ycy46zTSiAuXHyw15_z_GZ2d_YNYx8K7ULDEx6QNlmA7JcgD9oisC5JRchdFq50Zk_T8Tg7P5dTP-BW-7TKjhNboraloTHyjzHGJSLBYIZ_uvkeUNUoml31JTQesk1SKkOcbw6PxtOv61EWUr3MonClS8qxf0_zwhJhnNLavnueqBXs_4OPWyczeva_j_ecPfXhJQxWeNhiD9xymz25Jzq4zbb871zDntec7r9gv6g0MUIRphXN3JC1oCzglBYCL66sg9lt3SbAtLm0P6HNNIDjk1kwRDdo4VA1Cr60xSbgrJOFrekSg_HoZAY03AvzS_RGMMGrXPvVnzBYXOBbNJfXsDefDPqA94NjRBfMy0XRNXUVPup80n_Jvo2Ozg4-B76AQ2C4iJpAOCOKSAmtZRxby5E8nEVWS0xa4MfiGqMRs-9UbLgUdj9TDuM_qTX2ooxGy_EdtrEsl-4VAysyIUWk08gi50il8FQKvuIwcRH6-R7rd8bMjVc3pyIbixx7OWT4_M7wPfZ-3fZmpenx11ZDwsS6BelwtzvK6iL3v3XuQp1q7kJRJCJxUiptLEk_K-Ukx22P7XZwyT051PkdVl7_-_Ab9hjjM5_Stss2murWvWWPzI_mqq7eeaz_BgNQCVE
  priority: 102
  providerName: ProQuest
Title Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)
URI https://www.proquest.com/docview/2533649163
https://doaj.org/article/e0b7b3e06f464e99abcd6906aae936aa
Volume 9
WOSCitedRecordID wos000489115200115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hlgMcqraACJRqJDg0Bwvb666zxwSaNlKbWKQo5WTty6VSmlR2isT_4Ycys960kUDiwsWS7bF3vTM7D-_sN4x9qLSLDc94RNhkEWq_DPWgrSLrslzE3PXiFmf2PB-Pe1dXstgo9UU5YS08cDtwH12sc81dLKpMZE5KpY0lcF2lnOR4JO0b53IjmPI6WCYEXdXikXKM62k9WKL45rSnb8MCeaD-P_SwNy7DXbYTvELot73ZY0_cYp8938AK3Gd7YRY2cBSgorsv2C-qKIwSBEVNCy40yLCs4Jz2785vrIPpfePzVnwK7E_wCQJwOppGA7ReFj6rlYILXyMCLtdorg29oj8ejqZAf2lh9h2NCEzwLbdh0yb059fLGu_dwtFs0u8CtgenKBQwW86rNamrsauzSfcl-zo8ufx0FoW6C5HhIllFwhlRJUpoLdPUWo5z3llURpnJK5FJrtGJMMdOpYZLYY97yqHbJrXG4MdoHHj-im0tlgv3moEVPSFFovPEoqqQSuGj5DOlceYSNM8d1l3zojQBlJxqY8xLDE6Ib-Uj3zrs_QPtXQvF8VeqAbH0gYLgs_0FFKoyCFX5L6HqsIO1QJRhTjdlip4xfj46sG_-Rxtv2TN0vkK-2gHbWtX37h17an6sbpr6kG0PTsbFl0Mv1nhWjC6Kb78BpNb-aQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJwAFpABAqMBEjNwcL2uuvsAaGUkjZqXlKC0p6M9-G2UhoXOwX1_3DmNzLjR1oJxK0HLj7Y64fW33wzuzv7DWNvE2VdzQPukDaZg-wXIA-axDE2CIXLbdstdWb74XDYPjqS4zX2q94LQ2mVNScWRG1STXPk732MS0SAwQz_ePHNoapRtLpal9AoYXFor37gkC3_0NvD__vO97ufp58OnKqqgKO58JaOsFokXiyUkr5vDEdEW4OmFugwwRdwhS5S79jY11wKs9OOLQYlUikM7bWSHk2AIuWvBwT2Blsf9wbj49WsDqlstj231EHlXLq0Di3RbELaS3jD8xUFAv7g_8KpdR_-b93xiD2owmfolHjfYGt2scnu3xBV3GQbFV3lsF1parces59UehlNDcYZrUwRGiFNoE8bnednxsLkMi8SfIpc4SsoMilgvzdxdtHNG9iLlzEMimIaMK1lb3N6RGfY7U2AprNhdoreFkb4lPNqdyt05ifYa8vTc9iejTotwPfBPloPzNJ5Uje1GX7qbNR6wr7cSt89ZY1FurDPGBjRFlJ4KvQMcqqMY7yVgkvfDayHcUyTtWrwRLpSb6ciIvMIR3EEtOgaaE32ZtX2otQs-WurXcLgqgXpjBcn0uwkqmgrsq4KFbeuSAIRWCljpQ1JW8exlRyPTbZVwzOqyC-PrrH5_N-XX7O7B9NBP-r3hocv2D2MRav0vS3WWGaX9iW7o78vz_LsVWVnwL7eNpZ_A5aQZko
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VKUJwKLSASCkwEiA1B6u21117DwilhJSoaRIpRWlPxvvhtlKalDgF9f_wK_h1zDjrtBKIWw9cckg2drR58-Z5d_YNY29zZX3NI-6RN5mH7BchD5rcMzaKhc9t4i98Zrtxr5ccH8vBCvtVnYWhssqKE0uiNlNNa-Q7IeoSEaGY4Tu5K4sYtNofLr951EGKdlqrdhoLiBzY6x_4-Fa877Twv34Xhu1PRx8_e67DgKe5COaesFrkQSaUkmFoDEd0W4NhF-k4x5txhelS79os1FwKs5tkFgWKVAplvlYyoMVQpP9VlORRWGOrg87h4GS5wkOOm0ngLzxROZc-7UlLDKGYzhXeyoJls4A_ckGZ4NqP_uepeczWnKyG5iIO1tmKnWywh7fMFjfYuqOxArad13bjCftJLZkxBGEwox0rQilMc-jSAejxubEwvCrKwp-yhvgaygoL2O8MvT1M_wZa2TyDw7LJBhxVdrgFXaLZa3eGQMvcMDrDLAx9vMqFO_UKzfEpztr87AK2R_1mA_B-sI9RBaPpOK-G2hn-1FG_8ZR9uZO5e8Zqk-nEPmdgRCKkCFQcGORamWX4VRKdoR_ZAPVNnTUqIKXaubpTc5Fxik93BLr0BnR19mY59nLhZfLXUXuEx-UI8h8v35jOTlNHZ6n1Vay49UUeichKmSltyPI6y6zk-FpnWxVUU0eKRXqD081_f_ya3UcAp91O7-AFe4AS1VX1bbHafHZlX7J7-vv8vJi9ciEH7OtdQ_k3letvCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Prediction+of+Landslide+Susceptibility+Using+GIS-Based+Data+Mining+Techniques+of+ANFIS+with+Whale+Optimization+Algorithm+%28WOA%29+and+Grey+Wolf+Optimizer+%28GWO%29&rft.jtitle=Applied+sciences&rft.au=Wei+Chen&rft.au=Haoyuan+Hong&rft.au=Mahdi+Panahi&rft.au=Himan+Shahabi&rft.date=2019-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=18&rft.spage=3755&rft_id=info:doi/10.3390%2Fapp9183755&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0b7b3e06f464e99abcd6906aae936aa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon