Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)
The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale o...
Uložené v:
| Vydané v: | Applied sciences Ročník 9; číslo 18; s. 3755 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2019
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world. |
|---|---|
| AbstractList | The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world. |
| Author | Pirasteh, Saied Bin Ahmad, Baharin Shirzadi, Ataollah Alesheikh, Ali Asghar Bui, Dieu Tien Shahabi, Himan Jaafari, Abolfazl Chen, Wei Wang, Yi Panahi, Somayeh Panahi, Mahdi Khosravi, Khabat Li, Shaojun Hong, Haoyuan Rezaie, Fatemeh |
| Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 2 givenname: Haoyuan orcidid: 0000-0001-6224-069X surname: Hong fullname: Hong, Haoyuan – sequence: 3 givenname: Mahdi orcidid: 0000-0001-7601-9208 surname: Panahi fullname: Panahi, Mahdi – sequence: 4 givenname: Himan orcidid: 0000-0001-5091-6947 surname: Shahabi fullname: Shahabi, Himan – sequence: 5 givenname: Yi orcidid: 0000-0002-1347-7030 surname: Wang fullname: Wang, Yi – sequence: 6 givenname: Ataollah orcidid: 0000-0001-9668-8687 surname: Shirzadi fullname: Shirzadi, Ataollah – sequence: 7 givenname: Saied orcidid: 0000-0002-3177-037X surname: Pirasteh fullname: Pirasteh, Saied – sequence: 8 givenname: Ali Asghar orcidid: 0000-0001-9537-9401 surname: Alesheikh fullname: Alesheikh, Ali Asghar – sequence: 9 givenname: Khabat orcidid: 0000-0001-5773-4003 surname: Khosravi fullname: Khosravi, Khabat – sequence: 10 givenname: Somayeh surname: Panahi fullname: Panahi, Somayeh – sequence: 11 givenname: Fatemeh surname: Rezaie fullname: Rezaie, Fatemeh – sequence: 12 givenname: Shaojun surname: Li fullname: Li, Shaojun – sequence: 13 givenname: Abolfazl orcidid: 0000-0002-3441-6560 surname: Jaafari fullname: Jaafari, Abolfazl – sequence: 14 givenname: Dieu Tien surname: Bui fullname: Bui, Dieu Tien – sequence: 15 givenname: Baharin surname: Bin Ahmad fullname: Bin Ahmad, Baharin |
| BookMark | eNptkd9u0zAUxiM0JMbYDU9giZsNKWDHiRNflsFKpUKRuqmX0Yl90rpK48x2hbrn2YPitPwTwhe2dfz59x1952Vy1tsek-Q1o-84l_Q9DINkFS-L4llyntFSpDxn5dlf9xfJpfdbGpdkvGL0PHlaDhAMdOSbQ21UMLYntiVz6LXvjEay3HuFQzCN6Uw4kHtv-jWZzpbpB_CoyUcIQL6Yfqzeodr05mGPfkRMvt7OluS7CRuy2kCHZBEpO_MIR49Jt7Yuvu3I1WoxuSbRj0wdHsjKdu0vKTpyNV0trl8lz1voPF7-PC-S-9tPdzef0_liOruZzFPFBQupQCVaBqJpZJZpzXmWoa6qMldlK3LJGyapKhAyxaXQRQVYFUw2TZFXqomB8ItkduJqC9t6cGYH7lBbMPWxYN26BheM6rBG2pQNRyraXOQoJTRKC0kFAEoe98h6c2INzo6RhHpr966P7ddZwXnsh4nR8e1JpZz13mH725XRehxq_WeoUUz_ESsTjnEGB6b735cfUUKmhA |
| CitedBy_id | crossref_primary_10_1016_j_catena_2020_104777 crossref_primary_10_1016_j_jhydrol_2022_128001 crossref_primary_10_3390_app10155047 crossref_primary_10_1016_j_asr_2024_03_038 crossref_primary_10_1016_j_gsf_2020_07_012 crossref_primary_10_3390_pr12040783 crossref_primary_10_1177_01445987231178938 crossref_primary_10_1007_s11069_021_04743_4 crossref_primary_10_1016_j_jhydrol_2020_124602 crossref_primary_10_3390_app10010016 crossref_primary_10_1155_2022_1111683 crossref_primary_10_1016_j_envpol_2022_120203 crossref_primary_10_1007_s00477_025_03101_1 crossref_primary_10_1080_10106049_2021_2022009 crossref_primary_10_1016_j_gsf_2020_03_005 crossref_primary_10_1515_geo_2022_0550 crossref_primary_10_1080_10106049_2021_1914746 crossref_primary_10_3390_app10072469 crossref_primary_10_1007_s12145_022_00830_7 crossref_primary_10_1016_j_catena_2020_104805 crossref_primary_10_1038_s41598_024_65547_7 crossref_primary_10_1007_s00477_021_02032_x crossref_primary_10_3390_ijgi9120696 crossref_primary_10_1007_s12517_021_07768_y crossref_primary_10_1016_j_gsf_2020_09_007 crossref_primary_10_3390_app10010029 crossref_primary_10_1016_j_asr_2024_06_018 crossref_primary_10_3390_rs15184501 crossref_primary_10_1007_s11069_025_07415_9 crossref_primary_10_3390_rs13071326 crossref_primary_10_3390_rs15204952 crossref_primary_10_1016_j_asoc_2021_108254 crossref_primary_10_1016_j_jhydrol_2020_125423 crossref_primary_10_3390_su15010006 crossref_primary_10_1007_s12145_024_01455_8 crossref_primary_10_1016_j_seppur_2024_126509 crossref_primary_10_1016_j_catena_2020_104833 crossref_primary_10_3233_JIFS_223421 crossref_primary_10_1016_j_ijsrc_2022_04_003 crossref_primary_10_3390_f11030324 crossref_primary_10_3390_su17051973 crossref_primary_10_1080_10106049_2021_1912194 crossref_primary_10_3390_sym12061022 crossref_primary_10_3390_app10062039 crossref_primary_10_1038_s41598_025_90550_x crossref_primary_10_1007_s12145_021_00644_z crossref_primary_10_3390_rs15194703 crossref_primary_10_3390_ijgi9100566 crossref_primary_10_3390_e24111630 crossref_primary_10_1016_j_conbuildmat_2022_128862 crossref_primary_10_1007_s13762_022_04714_7 crossref_primary_10_1007_s11227_025_06919_2 crossref_primary_10_3390_rs12010140 crossref_primary_10_1007_s11053_024_10329_1 crossref_primary_10_1109_ACCESS_2023_3287319 crossref_primary_10_1080_10106049_2020_1737972 crossref_primary_10_1080_10106049_2021_1948109 crossref_primary_10_1088_1361_6501_ace927 crossref_primary_10_2166_ws_2025_007 crossref_primary_10_3390_ijgi9030144 crossref_primary_10_3390_rs12152478 crossref_primary_10_1016_j_jenvman_2021_114367 crossref_primary_10_1155_2022_5490758 crossref_primary_10_3389_fenvs_2023_1218954 crossref_primary_10_1016_j_jhydrol_2023_130096 crossref_primary_10_3390_rs13061196 crossref_primary_10_1016_j_catena_2022_106379 crossref_primary_10_1007_s00366_022_01695_6 crossref_primary_10_1016_j_fuel_2020_118701 crossref_primary_10_1016_j_engappai_2020_103971 crossref_primary_10_1016_j_jrmge_2024_04_029 crossref_primary_10_1007_s12518_023_00488_w crossref_primary_10_1016_j_eswa_2022_117012 crossref_primary_10_1007_s10708_020_10162_y crossref_primary_10_1155_2022_4882521 crossref_primary_10_1016_j_suscom_2023_100924 crossref_primary_10_1016_j_gsf_2020_06_013 crossref_primary_10_3390_su13020457 crossref_primary_10_1007_s12517_020_05697_w crossref_primary_10_1016_j_actatropica_2024_107483 crossref_primary_10_3390_rs12020266 crossref_primary_10_1080_10106049_2021_1986578 crossref_primary_10_1080_10106049_2022_2136253 crossref_primary_10_3390_rs12244134 crossref_primary_10_3390_w12010113 crossref_primary_10_1007_s11269_022_03307_w crossref_primary_10_3390_app10020425 crossref_primary_10_3390_app10093225 crossref_primary_10_1080_00207721_2020_1799110 crossref_primary_10_1080_13658816_2020_1808897 crossref_primary_10_1016_j_scitotenv_2019_134979 crossref_primary_10_3390_rs12142180 crossref_primary_10_1016_j_accre_2023_11_002 crossref_primary_10_1007_s11629_022_7685_y crossref_primary_10_1016_j_catena_2019_104451 crossref_primary_10_3390_ijerph17082749 crossref_primary_10_1007_s10668_023_03356_0 crossref_primary_10_1016_j_gsf_2021_101211 crossref_primary_10_1007_s11600_021_00577_7 crossref_primary_10_3390_rs14020347 crossref_primary_10_1007_s11053_025_10518_6 crossref_primary_10_1007_s11356_023_27799_0 crossref_primary_10_1016_j_scitotenv_2020_137231 crossref_primary_10_3390_su11226323 crossref_primary_10_3390_land12020468 crossref_primary_10_1007_s10064_021_02546_2 crossref_primary_10_1007_s12145_022_00878_5 crossref_primary_10_1016_j_asr_2020_05_016 crossref_primary_10_3390_rs15041007 crossref_primary_10_3390_su15054218 crossref_primary_10_1007_s10661_022_10206_5 crossref_primary_10_3390_rs17101752 crossref_primary_10_1080_10106049_2021_2009920 crossref_primary_10_3390_w12010016 crossref_primary_10_3390_sym12030325 crossref_primary_10_1007_s11069_020_04371_4 crossref_primary_10_3390_su13105369 crossref_primary_10_1038_s41598_024_72663_x crossref_primary_10_1155_2022_2058442 crossref_primary_10_3390_ijerph17144933 crossref_primary_10_1016_j_matpr_2021_11_561 crossref_primary_10_1016_j_gsf_2020_10_009 crossref_primary_10_3390_ijgi9080479 crossref_primary_10_3390_ijgi9070443 crossref_primary_10_1016_j_gsf_2021_101154 crossref_primary_10_3390_s20061576 crossref_primary_10_1007_s11053_021_09913_6 crossref_primary_10_1080_17538947_2025_2513589 |
| Cites_doi | 10.1016/j.ijepes.2016.04.034 10.1016/j.geomorph.2015.06.040 10.1016/j.scitotenv.2017.10.114 10.3390/app8122540 10.1080/19475705.2017.1401560 10.1016/j.enggeo.2016.10.006 10.1016/j.catena.2018.01.005 10.1109/21.256541 10.1016/j.asej.2016.08.023 10.1007/s12665-017-6689-3 10.20944/preprints201608.0032.v1 10.1080/17538947.2016.1169561 10.1016/j.geomorph.2017.04.039 10.1016/j.geomorph.2011.12.040 10.3390/rs10101527 10.1016/j.jenvman.2018.01.044 10.3390/app9173495 10.1007/s11053-019-09465-w 10.1007/s12665-018-7268-y 10.1016/j.scitotenv.2019.06.320 10.1016/j.cageo.2012.08.023 10.1080/10106049.2018.1425738 10.3390/su10103376 10.1007/s12145-018-0354-6 10.1080/10106049.2018.1474276 10.1016/j.matdes.2015.12.005 10.1016/j.geomorph.2017.03.031 10.1016/j.geomorph.2014.02.003 10.3390/s18113777 10.1007/s12665-016-6374-y 10.2307/1379766 10.3390/f10020157 10.1007/s12665-017-6932-y 10.1007/s10346-015-0614-1 10.1016/j.geomorph.2017.12.008 10.1016/j.jhydrol.2019.03.013 10.1016/j.jenvman.2019.06.102 10.1016/j.catena.2018.01.012 10.1016/j.jhydrol.2019.05.089 10.3390/app8071046 10.3390/rs11131589 10.1016/j.scitotenv.2018.01.124 10.3390/su11164386 10.1016/j.geomorph.2017.07.032 10.1080/10106049.2019.1588393 10.1016/j.geomorph.2015.06.001 10.1007/s10064-017-1202-5 10.3390/app7101000 10.1080/10106049.2018.1499820 10.1016/j.catena.2016.12.006 10.1016/j.catena.2017.05.034 10.1007/s12517-012-0532-7 10.1016/j.advengsoft.2016.01.008 10.1016/j.catena.2017.09.025 10.1016/j.scitotenv.2018.01.266 10.1002/ar.20407 10.1061/(ASCE)CP.1943-5487.0000557 10.1007/978-3-642-39649-6_34 10.1016/j.scitotenv.2019.05.312 10.1111/j.1467-9671.2005.00229.x 10.1016/j.scitotenv.2019.01.329 10.1016/j.cageo.2008.08.007 10.3390/rs10101538 10.1016/j.geomorph.2017.06.013 10.3390/w10091210 10.1007/s11269-018-2102-6 10.1007/s00366-018-0644-0 10.1016/j.eswa.2017.04.029 10.1109/TSMC.1985.6313399 10.1016/j.jenvman.2018.03.089 10.1016/j.catena.2018.08.025 10.1007/s10346-015-0557-6 10.1007/s10666-016-9538-y 10.3390/app9142824 10.3390/rs11080931 10.1016/j.asoc.2016.12.022 10.5194/hess-22-4771-2018 10.1016/j.geomorph.2017.09.007 10.1080/19475705.2017.1289250 10.5194/hess-21-4573-2017 10.1016/j.ijepes.2015.03.024 10.1007/s11069-018-3536-0 10.3390/e20110884 10.1007/s10064-018-1401-8 10.1007/s10346-013-0391-7 10.1016/j.atmosres.2017.04.017 10.1007/s11069-017-2997-x 10.1016/j.envsoft.2017.06.012 10.1016/j.catena.2018.04.003 10.1007/s11069-012-0217-2 10.1007/s10064-017-1004-9 10.1007/s00254-001-0454-2 10.1007/s11069-017-2992-2 10.1007/s10064-018-1273-y 10.1007/s12665-017-6558-0 10.1007/s10346-015-0565-6 10.1016/j.cageo.2011.10.031 10.1109/TGRS.2010.2050328 10.1016/j.agrformet.2018.12.015 10.1016/j.isatra.2017.08.009 10.3390/s18082464 10.1080/10106049.2017.1323964 10.1007/s10346-014-0533-6 10.1007/s11069-018-3286-z 10.1016/j.catena.2016.09.007 10.1016/j.scitotenv.2018.06.389 10.1007/s10064-018-1281-y 10.1007/s12665-017-6981-2 10.1007/s10346-015-0587-0 10.1016/j.ijleo.2016.11.173 10.1007/s10346-016-0708-4 10.3390/s19112444 10.1016/j.scitotenv.2018.04.055 10.1007/s10346-016-0711-9 10.1016/j.ijhydene.2017.04.044 10.1007/978-0-387-30164-8 10.1016/j.jhydrol.2019.03.073 10.1016/j.renene.2017.04.036 10.1016/j.geomorph.2008.02.011 10.1016/j.jhydrol.2018.08.027 10.3846/jbem.2010.12 10.1007/s10064-017-1125-1 10.1016/j.catena.2017.05.016 10.1016/j.advengsoft.2013.12.007 10.1080/19475705.2016.1250112 10.1016/j.catena.2018.12.018 10.1007/s11069-013-0728-5 10.1016/j.catena.2013.11.014 10.1038/s41598-018-33755-7 10.1002/ldr.3255 10.1016/j.scitotenv.2018.11.235 10.1016/j.catena.2018.12.033 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app9183755 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_e0b7b3e06f464e99abcd6906aae936aa 10_3390_app9183755 |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-6ec6f1a6bb922dd3322ed8874c7f6493b190c5ea2c396d58ae8519bb548cb9133 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489115200115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:05:46 EDT 2025 Mon Jun 30 11:16:26 EDT 2025 Tue Nov 18 22:34:29 EST 2025 Sat Nov 29 07:09:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-6ec6f1a6bb922dd3322ed8874c7f6493b190c5ea2c396d58ae8519bb548cb9133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5773-4003 0000-0001-9668-8687 0000-0002-3177-037X 0000-0002-3441-6560 0000-0001-9537-9401 0000-0001-6224-069X 0000-0001-5091-6947 0000-0002-1347-7030 0000-0001-7601-9208 |
| OpenAccessLink | https://doaj.org/article/e0b7b3e06f464e99abcd6906aae936aa |
| PQID | 2533649163 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e0b7b3e06f464e99abcd6906aae936aa proquest_journals_2533649163 crossref_primary_10_3390_app9183755 crossref_citationtrail_10_3390_app9183755 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 ref_93 ref_136 Pham (ref_79) 2019; 175 Shirzadi (ref_80) 2017; 76 ref_90 Hong (ref_5) 2017; 76 Rezakazemi (ref_110) 2017; 42 ref_98 Nguyen (ref_44) 2017; 14 Hoang (ref_43) 2018; 92 ref_95 ref_134 Yao (ref_26) 2008; 101 Bui (ref_132) 2018; 8 Rahmati (ref_72) 2018; 565 Chen (ref_135) 2019; 684 Pham (ref_78) 2018; 303 Takagi (ref_112) 1985; 15 Pradhan (ref_116) 2016; 83 Shahabi (ref_25) 2014; 115 Kavzoglu (ref_27) 2014; 11 Pham (ref_28) 2017; 76 He (ref_83) 2019; 663 Mirjalili (ref_103) 2016; 95 Ahmadlou (ref_130) 2019; 34 Azareh (ref_69) 2019; 655 Khosravi (ref_131) 2018; 22 Polykretis (ref_50) 2019; 78 ref_24 ref_23 Chen (ref_99) 2017; 8 Crozier (ref_4) 2017; 295 Jaafari (ref_84) 2019; 175 ref_123 Pham (ref_31) 2018; 77 Zhu (ref_14) 2014; 214 Zavadskas (ref_106) 2010; 11 Hoang (ref_32) 2016; 30 Pradhan (ref_19) 2012; 171–172 Hong (ref_105) 2018; 621 Gorsevski (ref_22) 2016; 13 ref_70 Peruccacci (ref_12) 2017; 290 Chen (ref_57) 2019; 575 Bovenga (ref_1) 2017; 151 Wang (ref_55) 2019; 247 ref_75 ref_74 Valavi (ref_61) 2018; 217 Ali (ref_121) 2017; 111 Kritikos (ref_47) 2014; 12 Pourghasemi (ref_126) 2013; 69 Phootrakornchai (ref_108) 2015; 73 Gao (ref_9) 2017; 21 Gorsevski (ref_45) 2005; 9 Hoang (ref_34) 2017; 14 Miraki (ref_71) 2019; 33 Zhang (ref_120) 2017; 71 Zhang (ref_13) 2017; 76 Aghdam (ref_52) 2017; 76 Chen (ref_113) 2019; 572 Pradhan (ref_118) 2017; 9 Pourghasemi (ref_125) 2012; 63 Sahoo (ref_117) 2017; 52 ref_89 Jaafari (ref_66) 2019; 266 ref_88 Hof (ref_115) 2007; 290 Samia (ref_10) 2017; 292 Lagomarsino (ref_36) 2017; 22 Roodposhti (ref_68) 2017; 193 Youssef (ref_35) 2015; 13 Khosravi (ref_56) 2019; 573 Chen (ref_96) 2018; 164 Watkins (ref_114) 1979; 60 Keyport (ref_16) 2018; 64 ref_58 Pourghasemi (ref_127) 2013; 6 Chen (ref_53) 2017; 157 Chen (ref_87) 2019; 34 Pham (ref_33) 2016; 9 Chen (ref_77) 2018; 626 Chen (ref_124) 2019; 172 Yilmaz (ref_20) 2009; 35 Chen (ref_17) 2017; 8 Chen (ref_133) 2018; 77 Hong (ref_39) 2018; 163 ref_59 Kim (ref_38) 2018; 33 ref_60 Chen (ref_97) 2019; 78 Chen (ref_51) 2017; 297 Chen (ref_92) 2018; 33 Mirjalili (ref_104) 2014; 69 ref_67 ref_65 ref_64 Jang (ref_107) 1993; 23 Shirzadi (ref_100) 2017; 157 Xu (ref_128) 2012; 145 Pradhan (ref_48) 2012; 45 Prakash (ref_81) 2018; 14 Pham (ref_21) 2017; 149 Pradhan (ref_49) 2010; 48 Pradhan (ref_82) 2013; 51 Rahmati (ref_73) 2019; 688 Tuan (ref_54) 2016; 13 Dewan (ref_109) 2016; 92 Minaei (ref_86) 2019; 12 Singh (ref_76) 2018; 211 ref_111 ref_30 Vasu (ref_11) 2016; 215 Kumar (ref_18) 2017; 295 Khosravi (ref_63) 2018; 627 Paci (ref_3) 2017; 63 Safran (ref_7) 2015; 248 Chapi (ref_62) 2017; 95 Hong (ref_29) 2016; 8 Zhu (ref_15) 2018; 166 Tsangaratos (ref_37) 2016; 13 Hong (ref_85) 2019; 96 Ercanoglu (ref_46) 2002; 41 Zhang (ref_119) 2017; 130 Torizin (ref_2) 2017; 89 ref_42 Chen (ref_91) 2018; 644 ref_41 ref_102 ref_40 ref_101 Khairuzzaman (ref_122) 2017; 86 Chen (ref_129) 2018; 634 Zhao (ref_8) 2017; 89 Persichillo (ref_6) 2018; 160 Moayedi (ref_137) 2019; 35 |
| References_xml | – volume: 83 start-page: 325 year: 2016 ident: ref_116 article-title: Grey wolf optimization applied to economic load dispatch problems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.04.034 – volume: 248 start-page: 237 year: 2015 ident: ref_7 article-title: Plugs or Flood-Makers? The Unstable Landslide Dams of Eastern Oregon publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.040 – volume: 64 start-page: 1 year: 2018 ident: ref_16 article-title: A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 621 start-page: 1124 year: 2018 ident: ref_105 article-title: Flood susceptibility assessment in hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.114 – ident: ref_93 doi: 10.3390/app8122540 – volume: 8 start-page: 1955 year: 2017 ident: ref_99 article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve bayes tree classifiers for a landslide susceptibility assessment in Langao County, China publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2017.1401560 – volume: 215 start-page: 36 year: 2016 ident: ref_11 article-title: A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.10.006 – volume: 163 start-page: 399 year: 2018 ident: ref_39 article-title: Landslide susceptibility mapping using j48 decision tree with adaboost, bagging and rotation forest ensembles in the Guangchang Area (China) publication-title: Catena doi: 10.1016/j.catena.2018.01.005 – volume: 23 start-page: 665 year: 1993 ident: ref_107 article-title: Anfis: Adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. ManCybern. doi: 10.1109/21.256541 – volume: 9 start-page: 2015 year: 2017 ident: ref_118 article-title: Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.08.023 – volume: 76 start-page: 371 year: 2017 ident: ref_28 article-title: A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using gis publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6689-3 – ident: ref_101 doi: 10.20944/preprints201608.0032.v1 – volume: 9 start-page: 1077 year: 2016 ident: ref_33 article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least squares support vector machines and differential evolution optimization: A Case Study in Central Vietnam publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2016.1169561 – volume: 63 start-page: 143 year: 2017 ident: ref_3 article-title: A nation-wide system for landslide mapping and risk management in italy: The second not-ordinary plan of environmental remote sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 292 start-page: 16 year: 2017 ident: ref_10 article-title: Characterization and quantification of path dependency in landslide susceptibility publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.04.039 – volume: 145 start-page: 70 year: 2012 ident: ref_128 article-title: Gis-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang river watershed, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – ident: ref_75 doi: 10.3390/rs10101527 – volume: 211 start-page: 125 year: 2018 ident: ref_76 article-title: Developing robust arsenic awareness prediction models using machine learning algorithms publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.01.044 – ident: ref_65 doi: 10.3390/app9173495 – ident: ref_74 doi: 10.1007/s11053-019-09465-w – volume: 77 start-page: 146 year: 2018 ident: ref_31 article-title: Bagging based support vector machines for spatial prediction of landslides publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7268-y – volume: 688 start-page: 855 year: 2019 ident: ref_73 article-title: Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and uneec methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.320 – volume: 51 start-page: 350 year: 2013 ident: ref_82 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using gis publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 33 start-page: 1398 year: 2018 ident: ref_92 article-title: A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1425738 – ident: ref_64 doi: 10.3390/su10103376 – volume: 12 start-page: 1 year: 2019 ident: ref_86 article-title: Big data in geohazard; pattern mining and large scale analysis of landslides in Iran publication-title: Earth Sci. Inform. doi: 10.1007/s12145-018-0354-6 – volume: 34 start-page: 1252 year: 2019 ident: ref_130 article-title: Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (anfis) and biogeography-based optimization (bbo) and bat algorithms (ba) publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1474276 – volume: 92 start-page: 288 year: 2016 ident: ref_109 article-title: Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (anfis) and neural network publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.005 – volume: 290 start-page: 39 year: 2017 ident: ref_12 article-title: Rainfall thresholds for possible landslide occurrence in Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.03.031 – volume: 214 start-page: 128 year: 2014 ident: ref_14 article-title: An expert knowledge-based approach to landslide susceptibility mapping using gis and fuzzy logic publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.02.003 – ident: ref_98 doi: 10.3390/s18113777 – volume: 76 start-page: 60 year: 2017 ident: ref_80 article-title: Shallow landslide susceptibility assessment using a novel hybrid intelligence approach publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-6374-y – volume: 60 start-page: 155 year: 1979 ident: ref_114 article-title: Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus publication-title: J. Mammal. doi: 10.2307/1379766 – ident: ref_88 doi: 10.3390/f10020157 – volume: 76 start-page: 600 year: 2017 ident: ref_13 article-title: Landslide zoning analysis in zhouqu under different rainfall warning levels publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6932-y – volume: 13 start-page: 839 year: 2015 ident: ref_35 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 303 start-page: 256 year: 2018 ident: ref_78 article-title: Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.12.008 – volume: 572 start-page: 435 year: 2019 ident: ref_113 article-title: Spatial prediction of groundwater potentiality using anfis ensembled with teaching-learning-based and biogeography-based optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.013 – volume: 247 start-page: 712 year: 2019 ident: ref_55 article-title: Flood susceptibility mapping in dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.06.102 – volume: 164 start-page: 135 year: 2018 ident: ref_96 article-title: Gis-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method publication-title: Catena doi: 10.1016/j.catena.2018.01.012 – volume: 575 start-page: 864 year: 2019 ident: ref_57 article-title: Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.089 – ident: ref_40 doi: 10.3390/app8071046 – ident: ref_58 doi: 10.3390/rs11131589 – volume: 626 start-page: 1121 year: 2018 ident: ref_77 article-title: Landslide susceptibility modelling using gis-based machine learning techniques for Chongren County, Jiangxi Province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.124 – ident: ref_102 doi: 10.3390/su11164386 – volume: 295 start-page: 480 year: 2017 ident: ref_4 article-title: A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.07.032 – volume: 34 start-page: 1 year: 2019 ident: ref_87 article-title: Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1588393 – ident: ref_42 doi: 10.1016/j.geomorph.2015.06.001 – ident: ref_136 doi: 10.1007/s10064-017-1202-5 – ident: ref_23 doi: 10.3390/app7101000 – ident: ref_95 doi: 10.1080/10106049.2018.1499820 – volume: 151 start-page: 49 year: 2017 ident: ref_1 article-title: Landslide monitoring for risk mitigation by using corner reflector and satellite sar interferometry: The large landslide of Carlantino (Italy) publication-title: Catena doi: 10.1016/j.catena.2016.12.006 – volume: 157 start-page: 310 year: 2017 ident: ref_53 article-title: Performance evaluation of gis-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (anfis) with genetic algorithm (ga), differential evolution (de), and particle swarm optimization (pso) for landslide spatial modelling publication-title: Catena doi: 10.1016/j.catena.2017.05.034 – volume: 171–172 start-page: 12 year: 2012 ident: ref_19 article-title: Landslide susceptibility assessment in the hoa binh province of vietnam: A comparison of the levenberg-marquardt and bayesian regularized neural networks publication-title: Geomorphology – volume: 6 start-page: 2351 year: 2013 ident: ref_127 article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0532-7 – volume: 95 start-page: 51 year: 2016 ident: ref_103 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 160 start-page: 261 year: 2018 ident: ref_6 article-title: The role of human activities on sediment connectivity of shallow landslides publication-title: Catena doi: 10.1016/j.catena.2017.09.025 – volume: 627 start-page: 744 year: 2018 ident: ref_63 article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz Watershed, Northern Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.266 – volume: 290 start-page: 1 year: 2007 ident: ref_115 article-title: Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (cetacea, mysticeti, balaenopteridae) publication-title: Anat. Rec. doi: 10.1002/ar.20407 – volume: 30 start-page: 1 year: 2016 ident: ref_32 article-title: A novel relevance vector machine classifier with cuckoo search optimization for spatial prediction of landslides publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000557 – ident: ref_24 doi: 10.1007/978-3-642-39649-6_34 – volume: 684 start-page: 31 year: 2019 ident: ref_135 article-title: Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.312 – volume: 9 start-page: 455 year: 2005 ident: ref_45 article-title: Spatial prediction of landslide hazard using fuzzy k-means and dempster-shafer theory publication-title: Trans. Gis doi: 10.1111/j.1467-9671.2005.00229.x – volume: 663 start-page: 1 year: 2019 ident: ref_83 article-title: Landslide spatial modelling using novel bivariate statistical based naïve bayes, rbf classifier, and rbf network machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.329 – volume: 35 start-page: 1125 year: 2009 ident: ref_20 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from kat landslides (Tokat-Turkey) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.08.007 – ident: ref_59 doi: 10.3390/rs10101538 – volume: 295 start-page: 115 year: 2017 ident: ref_18 article-title: Landslide susceptibility mapping & prediction using support vector machine for Mandakini river basin, Garhwal Himalaya, India publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.06.013 – ident: ref_60 doi: 10.3390/w10091210 – volume: 33 start-page: 281 year: 2019 ident: ref_71 article-title: Mapping groundwater potential using a novel hybrid intelligence approach publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-2102-6 – volume: 35 start-page: 967 year: 2019 ident: ref_137 article-title: Modification of landslide susceptibility mapping using optimized pso-ann technique publication-title: Eng. Comput. doi: 10.1007/s00366-018-0644-0 – volume: 86 start-page: 64 year: 2017 ident: ref_122 article-title: Multilevel thresholding using grey wolf optimizer for image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.029 – volume: 15 start-page: 116 year: 1985 ident: ref_112 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Trans. Syst. ManCybern. doi: 10.1109/TSMC.1985.6313399 – volume: 217 start-page: 1 year: 2018 ident: ref_61 article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.03.089 – volume: 172 start-page: 212 year: 2019 ident: ref_124 article-title: Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2018.08.025 – volume: 13 start-page: 361 year: 2016 ident: ref_54 article-title: Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 22 start-page: 201 year: 2017 ident: ref_36 article-title: A tool for classification and regression using random forest methodology: Applications to landslide susceptibility mapping and soil thickness modeling publication-title: Environ. Model. Assess. doi: 10.1007/s10666-016-9538-y – ident: ref_89 doi: 10.3390/app9142824 – ident: ref_90 doi: 10.3390/rs11080931 – volume: 52 start-page: 64 year: 2017 ident: ref_117 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.022 – volume: 22 start-page: 4771 year: 2018 ident: ref_131 article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-4771-2018 – volume: 297 start-page: 69 year: 2017 ident: ref_51 article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.007 – volume: 8 start-page: 950 year: 2017 ident: ref_17 article-title: GIS-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2017.1289250 – volume: 21 start-page: 4573 year: 2017 ident: ref_9 article-title: Characterizing the spatial variations and correlations of large rainstorms for landslide study publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-4573-2017 – volume: 73 start-page: 170 year: 2015 ident: ref_108 article-title: Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (anfis) publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.03.024 – volume: 96 start-page: 173 year: 2019 ident: ref_85 article-title: Landslide susceptibility assessment at the Wuning area, China: A comparison between multi-criteria decision making, bivariate statistical and machine learning methods publication-title: Nat. Hazards doi: 10.1007/s11069-018-3536-0 – ident: ref_94 doi: 10.3390/e20110884 – volume: 78 start-page: 4397 year: 2019 ident: ref_97 article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1401-8 – volume: 11 start-page: 425 year: 2014 ident: ref_27 article-title: Landslide susceptibility mapping using gis-based multi-criteria decision analysis, support vector machines, and logistic regression publication-title: Landslides doi: 10.1007/s10346-013-0391-7 – volume: 193 start-page: 73 year: 2017 ident: ref_68 article-title: Drought sensitivity mapping using two one-class support vector machine algorithms publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.04.017 – volume: 89 start-page: 859 year: 2017 ident: ref_8 article-title: A study of landslide deformation fields with a digital correlation method publication-title: Nat. Hazards doi: 10.1007/s11069-017-2997-x – volume: 95 start-page: 229 year: 2017 ident: ref_62 article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.06.012 – volume: 166 start-page: 317 year: 2018 ident: ref_15 article-title: A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2018.04.003 – volume: 63 start-page: 965 year: 2012 ident: ref_125 article-title: Application of fuzzy logic and analytical hierarchy process (ahp) to landslide susceptibility mapping at Haraz watershed, Iran publication-title: Nat. Hazards doi: 10.1007/s11069-012-0217-2 – volume: 77 start-page: 611 year: 2018 ident: ref_133 article-title: Prioritization of landslide conditioning factors and its spatial modeling in shangnan county, china using gis-based data mining algorithms publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1004-9 – volume: 41 start-page: 720 year: 2002 ident: ref_46 article-title: Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach publication-title: Environ. Geol. doi: 10.1007/s00254-001-0454-2 – volume: 89 start-page: 757 year: 2017 ident: ref_2 article-title: Statistical landslide susceptibility assessment of the mansehra and torghar districts, khyber pakhtunkhwa province, pakistan publication-title: Nat. Hazards doi: 10.1007/s11069-017-2992-2 – ident: ref_41 doi: 10.1007/s10064-018-1273-y – volume: 76 start-page: 237 year: 2017 ident: ref_52 article-title: Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (fr and woe) and adaptive neuro-fuzzy inference system (anfis) at Southern Zagros Mountains in Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6558-0 – volume: 13 start-page: 305 year: 2016 ident: ref_37 article-title: Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece publication-title: Landslides doi: 10.1007/s10346-015-0565-6 – volume: 45 start-page: 199 year: 2012 ident: ref_48 article-title: Landslide susceptibility mapping at Hoa Binh Province (Vietnam) using an adaptive neuro-fuzzy inference system and gis publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.10.031 – volume: 48 start-page: 4164 year: 2010 ident: ref_49 article-title: Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia) publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2050328 – volume: 266 start-page: 198 year: 2019 ident: ref_66 article-title: Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.12.015 – volume: 71 start-page: 206 year: 2017 ident: ref_120 article-title: An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.08.009 – ident: ref_134 doi: 10.3390/s18082464 – volume: 33 start-page: 1000 year: 2018 ident: ref_38 article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea publication-title: Geocarto Int. doi: 10.1080/10106049.2017.1323964 – volume: 12 start-page: 1051 year: 2014 ident: ref_47 article-title: Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a gis-based approach: Application to Western Southern Alps of New Zealand publication-title: Landslides doi: 10.1007/s10346-014-0533-6 – volume: 92 start-page: 1871 year: 2018 ident: ref_43 article-title: Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with gis: A case study in Vietnam publication-title: Nat. Hazards doi: 10.1007/s11069-018-3286-z – ident: ref_111 – volume: 149 start-page: 52 year: 2017 ident: ref_21 article-title: Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using gis publication-title: Catena doi: 10.1016/j.catena.2016.09.007 – volume: 644 start-page: 1006 year: 2018 ident: ref_91 article-title: Performance evaluation of the gis-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.389 – ident: ref_30 doi: 10.1007/s10064-018-1281-y – volume: 76 start-page: 652 year: 2017 ident: ref_5 article-title: A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6981-2 – volume: 13 start-page: 467 year: 2016 ident: ref_22 article-title: Landslide Detection and Susceptibility Mapping Using Lidar and an Artificial Neural Network Approach: A Case Study in the Cuyahoga Valley National Park, Ohio publication-title: Landslides doi: 10.1007/s10346-015-0587-0 – volume: 130 start-page: 1229 year: 2017 ident: ref_119 article-title: Template matching using grey wolf optimizer with lateral inhibition publication-title: Opt. Int. J. Light Electron. Opt. doi: 10.1016/j.ijleo.2016.11.173 – volume: 14 start-page: 1 year: 2017 ident: ref_44 article-title: A novel fuzzy k-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using gis publication-title: Landslides doi: 10.1007/s10346-016-0708-4 – ident: ref_70 doi: 10.3390/s19112444 – volume: 634 start-page: 853 year: 2018 ident: ref_129 article-title: Gis-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.055 – volume: 14 start-page: 447 year: 2017 ident: ref_34 article-title: Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a novel hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization publication-title: Landslides doi: 10.1007/s10346-016-0711-9 – volume: 42 start-page: 15211 year: 2017 ident: ref_110 article-title: H 2-selective mixed matrix membranes modeling using anfis, pso-anfis, ga-anfis publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.04.044 – ident: ref_123 doi: 10.1007/978-0-387-30164-8 – volume: 573 start-page: 311 year: 2019 ident: ref_56 article-title: A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.073 – volume: 111 start-page: 455 year: 2017 ident: ref_121 article-title: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer publication-title: Renew. Energy doi: 10.1016/j.renene.2017.04.036 – volume: 101 start-page: 572 year: 2008 ident: ref_26 article-title: Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 565 start-page: 248 year: 2018 ident: ref_72 article-title: Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.08.027 – volume: 11 start-page: 243 year: 2010 ident: ref_106 article-title: Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (swara) publication-title: J. Bus. Econ. Manag. doi: 10.3846/jbem.2010.12 – volume: 78 start-page: 1173 year: 2019 ident: ref_50 article-title: Adaptive neuro-fuzzy inference system (anfis) modeling for landslide susceptibility assessment in a Mediterranean hilly area publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1125-1 – volume: 157 start-page: 213 year: 2017 ident: ref_100 article-title: A comparative study between popular statistical and machine learning methods for simulating volume of landslides publication-title: Catena doi: 10.1016/j.catena.2017.05.016 – volume: 14 start-page: 1 year: 2018 ident: ref_81 article-title: A novel hybrid approach of landslide susceptibility modeling using rotation forest ensemble and different base classifiers publication-title: Geocarto Int. – volume: 69 start-page: 46 year: 2014 ident: ref_104 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 8 start-page: 544 year: 2016 ident: ref_29 article-title: Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China) publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2016.1250112 – volume: 175 start-page: 203 year: 2019 ident: ref_79 article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches publication-title: Catena doi: 10.1016/j.catena.2018.12.018 – volume: 69 start-page: 749 year: 2013 ident: ref_126 article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances publication-title: Nat. Hazards doi: 10.1007/s11069-013-0728-5 – volume: 115 start-page: 55 year: 2014 ident: ref_25 article-title: Landslide susceptibility mapping at central Zab Basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models publication-title: Catena doi: 10.1016/j.catena.2013.11.014 – volume: 8 start-page: 15364 year: 2018 ident: ref_132 article-title: Novel hybrid evolutionary algorithms for spatial prediction of floods publication-title: Sci. Rep. doi: 10.1038/s41598-018-33755-7 – ident: ref_67 doi: 10.1002/ldr.3255 – volume: 655 start-page: 684 year: 2019 ident: ref_69 article-title: Modelling Gully-Erosion Susceptibility in a Semi-Arid Region, Iran: Investigation of Applicability of Certainty Factor and Maximum Entropy Models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.235 – volume: 175 start-page: 430 year: 2019 ident: ref_84 article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2018.12.033 |
| SSID | ssj0000913810 |
| Score | 2.5167975 |
| Snippet | The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3755 |
| SubjectTerms | Accuracy Altitude China evolutionary optimization algorithm Fuzzy logic GDP Gene expression goodness-of-fit Gross Domestic Product Land use landslide Landslides & mudslides Lithology machine learning Neural networks Optimization algorithms prediction accuracy Remote sensing Rivers Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1BywEOQAsVgYJGgkNzsLC97tp7QknblEoliUhRerP2y22lNC62i8T_4Ycy46zTSiAuXHyw15_z_GZ2d_YNYx8K7ULDEx6QNlmA7JcgD9oisC5JRchdFq50Zk_T8Tg7P5dTP-BW-7TKjhNboraloTHyjzHGJSLBYIZ_uvkeUNUoml31JTQesk1SKkOcbw6PxtOv61EWUr3MonClS8qxf0_zwhJhnNLavnueqBXs_4OPWyczeva_j_ecPfXhJQxWeNhiD9xymz25Jzq4zbb871zDntec7r9gv6g0MUIRphXN3JC1oCzglBYCL66sg9lt3SbAtLm0P6HNNIDjk1kwRDdo4VA1Cr60xSbgrJOFrekSg_HoZAY03AvzS_RGMMGrXPvVnzBYXOBbNJfXsDefDPqA94NjRBfMy0XRNXUVPup80n_Jvo2Ozg4-B76AQ2C4iJpAOCOKSAmtZRxby5E8nEVWS0xa4MfiGqMRs-9UbLgUdj9TDuM_qTX2ooxGy_EdtrEsl-4VAysyIUWk08gi50il8FQKvuIwcRH6-R7rd8bMjVc3pyIbixx7OWT4_M7wPfZ-3fZmpenx11ZDwsS6BelwtzvK6iL3v3XuQp1q7kJRJCJxUiptLEk_K-Ukx22P7XZwyT051PkdVl7_-_Ab9hjjM5_Stss2murWvWWPzI_mqq7eeaz_BgNQCVE priority: 102 providerName: ProQuest |
| Title | Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) |
| URI | https://www.proquest.com/docview/2533649163 https://doaj.org/article/e0b7b3e06f464e99abcd6906aae936aa |
| Volume | 9 |
| WOSCitedRecordID | wos000489115200115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hlgMcqraACJRqJDg0Bwvb666zxwSaNlKbWKQo5WTty6VSmlR2isT_4Ycys960kUDiwsWS7bF3vTM7D-_sN4x9qLSLDc94RNhkEWq_DPWgrSLrslzE3PXiFmf2PB-Pe1dXstgo9UU5YS08cDtwH12sc81dLKpMZE5KpY0lcF2lnOR4JO0b53IjmPI6WCYEXdXikXKM62k9WKL45rSnb8MCeaD-P_SwNy7DXbYTvELot73ZY0_cYp8938AK3Gd7YRY2cBSgorsv2C-qKIwSBEVNCy40yLCs4Jz2785vrIPpfePzVnwK7E_wCQJwOppGA7ReFj6rlYILXyMCLtdorg29oj8ejqZAf2lh9h2NCEzwLbdh0yb059fLGu_dwtFs0u8CtgenKBQwW86rNamrsauzSfcl-zo8ufx0FoW6C5HhIllFwhlRJUpoLdPUWo5z3llURpnJK5FJrtGJMMdOpYZLYY97yqHbJrXG4MdoHHj-im0tlgv3moEVPSFFovPEoqqQSuGj5DOlceYSNM8d1l3zojQBlJxqY8xLDE6Ib-Uj3zrs_QPtXQvF8VeqAbH0gYLgs_0FFKoyCFX5L6HqsIO1QJRhTjdlip4xfj46sG_-Rxtv2TN0vkK-2gHbWtX37h17an6sbpr6kG0PTsbFl0Mv1nhWjC6Kb78BpNb-aQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJwAFpABAqMBEjNwcL2uuvsAaGUkjZqXlKC0p6M9-G2UhoXOwX1_3DmNzLjR1oJxK0HLj7Y64fW33wzuzv7DWNvE2VdzQPukDaZg-wXIA-axDE2CIXLbdstdWb74XDYPjqS4zX2q94LQ2mVNScWRG1STXPk732MS0SAwQz_ePHNoapRtLpal9AoYXFor37gkC3_0NvD__vO97ufp58OnKqqgKO58JaOsFokXiyUkr5vDEdEW4OmFugwwRdwhS5S79jY11wKs9OOLQYlUikM7bWSHk2AIuWvBwT2Blsf9wbj49WsDqlstj231EHlXLq0Di3RbELaS3jD8xUFAv7g_8KpdR_-b93xiD2owmfolHjfYGt2scnu3xBV3GQbFV3lsF1parces59UehlNDcYZrUwRGiFNoE8bnednxsLkMi8SfIpc4SsoMilgvzdxdtHNG9iLlzEMimIaMK1lb3N6RGfY7U2AprNhdoreFkb4lPNqdyt05ifYa8vTc9iejTotwPfBPloPzNJ5Uje1GX7qbNR6wr7cSt89ZY1FurDPGBjRFlJ4KvQMcqqMY7yVgkvfDayHcUyTtWrwRLpSb6ciIvMIR3EEtOgaaE32ZtX2otQs-WurXcLgqgXpjBcn0uwkqmgrsq4KFbeuSAIRWCljpQ1JW8exlRyPTbZVwzOqyC-PrrH5_N-XX7O7B9NBP-r3hocv2D2MRav0vS3WWGaX9iW7o78vz_LsVWVnwL7eNpZ_A5aQZko |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VKUJwKLSASCkwEiA1B6u21117DwilhJSoaRIpRWlPxvvhtlKalDgF9f_wK_h1zDjrtBKIWw9cckg2drR58-Z5d_YNY29zZX3NI-6RN5mH7BchD5rcMzaKhc9t4i98Zrtxr5ccH8vBCvtVnYWhssqKE0uiNlNNa-Q7IeoSEaGY4Tu5K4sYtNofLr951EGKdlqrdhoLiBzY6x_4-Fa877Twv34Xhu1PRx8_e67DgKe5COaesFrkQSaUkmFoDEd0W4NhF-k4x5txhelS79os1FwKs5tkFgWKVAplvlYyoMVQpP9VlORRWGOrg87h4GS5wkOOm0ngLzxROZc-7UlLDKGYzhXeyoJls4A_ckGZ4NqP_uepeczWnKyG5iIO1tmKnWywh7fMFjfYuqOxArad13bjCftJLZkxBGEwox0rQilMc-jSAejxubEwvCrKwp-yhvgaygoL2O8MvT1M_wZa2TyDw7LJBhxVdrgFXaLZa3eGQMvcMDrDLAx9vMqFO_UKzfEpztr87AK2R_1mA_B-sI9RBaPpOK-G2hn-1FG_8ZR9uZO5e8Zqk-nEPmdgRCKkCFQcGORamWX4VRKdoR_ZAPVNnTUqIKXaubpTc5Fxik93BLr0BnR19mY59nLhZfLXUXuEx-UI8h8v35jOTlNHZ6n1Vay49UUeichKmSltyPI6y6zk-FpnWxVUU0eKRXqD081_f_ya3UcAp91O7-AFe4AS1VX1bbHafHZlX7J7-vv8vJi9ciEH7OtdQ_k3letvCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Prediction+of+Landslide+Susceptibility+Using+GIS-Based+Data+Mining+Techniques+of+ANFIS+with+Whale+Optimization+Algorithm+%28WOA%29+and+Grey+Wolf+Optimizer+%28GWO%29&rft.jtitle=Applied+sciences&rft.au=Wei+Chen&rft.au=Haoyuan+Hong&rft.au=Mahdi+Panahi&rft.au=Himan+Shahabi&rft.date=2019-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=18&rft.spage=3755&rft_id=info:doi/10.3390%2Fapp9183755&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0b7b3e06f464e99abcd6906aae936aa |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |