Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm

Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotempo...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 17; no. 14; p. 2383
Main Authors: Guan, Dongjie, Shi, Yitong, Zhou, Lilei, Zhu, Xusen, Zhao, Demei, Peng, Guochuan, He, Xiujuan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.07.2025
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency.
AbstractList Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency.
Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R[sup.2] = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency.
Audience Academic
Author Zhu, Xusen
He, Xiujuan
Guan, Dongjie
Zhao, Demei
Shi, Yitong
Zhou, Lilei
Peng, Guochuan
Author_xml – sequence: 1
  givenname: Dongjie
  surname: Guan
  fullname: Guan, Dongjie
– sequence: 2
  givenname: Yitong
  surname: Shi
  fullname: Shi, Yitong
– sequence: 3
  givenname: Lilei
  orcidid: 0000-0002-4259-2580
  surname: Zhou
  fullname: Zhou, Lilei
– sequence: 4
  givenname: Xusen
  surname: Zhu
  fullname: Zhu, Xusen
– sequence: 5
  givenname: Demei
  surname: Zhao
  fullname: Zhao, Demei
– sequence: 6
  givenname: Guochuan
  surname: Peng
  fullname: Peng, Guochuan
– sequence: 7
  givenname: Xiujuan
  surname: He
  fullname: He, Xiujuan
BookMark eNpNUU1vEzEQtVCRKKUXfoElbkgptsep18d0FUqlIi5wtrz-SB1t7MV2Dvx7pl0E2AfPvHnvzVjzllzkkgMh7zm7AdDsU21ccSlggFfkUjAlNlJocfFf_IZct3ZkeAC4ZvKSLGPJrdez66lkarOnu2WZk7MveYl0tHXCaH9KrSHU6L71dFrLX4sPM42l0vEpZUvvbAueYuG-Wp9C7vSuFKTnA93Nh1JTfzq9I6-jnVu4_vNekR-f99_HL5vHb_cP4-5x4-CW982tnWCwwg3gt1Jaq4RW-EnuQSnlHWiHadCaB-cDKC24EMqDQEUchq2HK_Kw-vpij2apOHP9ZYpN5gUo9WBs7cnNwUjr3FYNYWIcpJJ88kxMAluqCEr4iF4fVq-llp_n0Lo5lnPNOL4BASCk1lIj62ZlHSyaphxLr9bh9eGUHK4qJsR3A7IZE3KLgo-rwNXSWg3x75icmeeNmn8bhd-GxpOa
Cites_doi 10.1016/j.spc.2021.10.001
10.1007/s11356-021-17277-w
10.3390/su10093110
10.1016/j.ifacol.2022.07.355
10.1007/s10462-018-9614-6
10.3390/atmos13040599
10.1016/j.egyr.2024.08.078
10.1007/s11356-021-14591-1
10.3390/app12020803
10.1016/j.energy.2011.01.032
10.1016/j.jclepro.2021.128798
10.5194/essd-13-3907-2021
10.1016/j.eswa.2024.124963
10.1016/j.physd.2019.132306
10.1016/j.jenvman.2022.114510
10.3390/en15228642
10.3390/su17041471
10.1016/j.scitotenv.2024.172319
10.1007/s11356-024-35764-8
10.1016/j.jclepro.2022.132331
10.1038/s41467-022-35108-5
10.1016/j.agrformet.2018.08.019
10.1016/j.buildenv.2024.112035
10.1007/s11356-020-09572-9
10.15244/pjoes/94619
10.1016/j.eswa.2017.04.003
10.3390/math8050765
10.1016/j.resconrec.2021.105959
10.1016/j.jclepro.2019.03.352
10.1155/2021/1441942
10.1016/j.jhydrol.2018.09.055
10.1016/j.conbuildmat.2022.128296
10.20944/preprints202407.1769.v1
10.3390/su15086876
10.1038/s41597-022-01240-6
10.1038/s41597-022-01322-5
10.1016/j.envpol.2015.03.039
10.1080/02664763.2018.1542667
10.3389/fpls.2019.00621
10.1016/j.envpol.2021.116846
10.3390/rs11212563
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs17142383
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4acc578eb0134741bd02b2a727f372df
A849900245
10_3390_rs17142383
GeographicLocations United States
Tennessee
China
Nigeria
GeographicLocations_xml – name: China
– name: Tennessee
– name: United States
– name: Nigeria
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-6ab38a2c83d544aa72973391d3777dc39c733e991ecde37921227d322c8f885d3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001535791400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:44:45 EDT 2025
Fri Jul 25 18:37:55 EDT 2025
Tue Nov 04 18:10:25 EST 2025
Sat Nov 29 07:15:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-6ab38a2c83d544aa72973391d3777dc39c733e991ecde37921227d322c8f885d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4259-2580
OpenAccessLink https://doaj.org/article/4acc578eb0134741bd02b2a727f372df
PQID 3233249949
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4acc578eb0134741bd02b2a727f372df
proquest_journals_3233249949
gale_infotracacademiconefile_A849900245
crossref_primary_10_3390_rs17142383
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Duan (ref_13) 2020; 27
ref_57
ref_54
Fan (ref_5) 2022; 362
Singh (ref_11) 2015; 203
ref_52
ref_51
Hsu (ref_10) 2022; 13
Agbulut (ref_16) 2022; 29
ref_19
Sherstinsky (ref_21) 2020; 404
ref_18
Zhang (ref_22) 2017; 82
Wong (ref_27) 2021; 277
Lukman (ref_35) 2019; 23
Jin (ref_14) 2024; 927
Ajala (ref_56) 2025; 32
Chauhan (ref_15) 2019; 52
Pao (ref_7) 2011; 36
Habibi (ref_36) 2022; 55
ref_20
Lu (ref_24) 2018; 566
Jiang (ref_9) 2021; 320
Luo (ref_29) 2024; 12
ref_26
Janizadeh (ref_28) 2024; 258
Fan (ref_23) 2018; 263
Zhao (ref_4) 2022; 176
Sun (ref_17) 2019; 28
ref_33
ref_31
ref_30
ref_39
ref_38
Sun (ref_58) 2021; 28
ref_37
Liu (ref_34) 2022; 29
Chen (ref_2) 2022; 306
Acheampong (ref_6) 2019; 225
ref_47
ref_46
ref_45
ref_44
Zhou (ref_32) 2024; 266
ref_43
Yang (ref_53) 2021; 13
ref_42
ref_41
Kafle (ref_12) 2019; 46
ref_40
ref_1
ref_3
ref_49
Ning (ref_55) 2021; 2021
ref_48
Zhao (ref_8) 2022; 44
Iqbal (ref_25) 2022; 345
References_xml – volume: 29
  start-page: 141
  year: 2022
  ident: ref_16
  article-title: Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms
  publication-title: Sustain. Prod. Consum.
  doi: 10.1016/j.spc.2021.10.001
– volume: 29
  start-page: 21789
  year: 2022
  ident: ref_34
  article-title: Driving factors of carbon emissions in China’s municipalities: A LMDI approach
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-17277-w
– ident: ref_49
– ident: ref_19
  doi: 10.3390/su10093110
– ident: ref_51
– volume: 55
  start-page: 462
  year: 2022
  ident: ref_36
  article-title: Effect of Features Extraction and Selection on the Evaluation of Machine Learning
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.07.355
– volume: 52
  start-page: 803
  year: 2019
  ident: ref_15
  article-title: Problem formulations and solvers in linear SVM: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9614-6
– ident: ref_31
  doi: 10.3390/atmos13040599
– volume: 12
  start-page: 2676
  year: 2024
  ident: ref_29
  article-title: Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.08.078
– volume: 44
  start-page: 6111
  year: 2022
  ident: ref_8
  article-title: Grey uncertain prediction of carbon emissions peak from thirty-one provinces and municipalities in China
  publication-title: Energy Sources Part A Recovery Util. Environ. Eff.
– volume: 28
  start-page: 56580
  year: 2021
  ident: ref_58
  article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-14591-1
– ident: ref_39
– ident: ref_42
– ident: ref_1
– ident: ref_20
  doi: 10.3390/app12020803
– volume: 36
  start-page: 2450
  year: 2011
  ident: ref_7
  article-title: Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil
  publication-title: Energy
  doi: 10.1016/j.energy.2011.01.032
– volume: 320
  start-page: 128798
  year: 2021
  ident: ref_9
  article-title: Decoupling analysis and scenario prediction of agricultural CO2 emissions: An empirical analysis of 30 provinces in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128798
– volume: 13
  start-page: 3907
  year: 2021
  ident: ref_53
  article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-3907-2021
– volume: 258
  start-page: 124963
  year: 2024
  ident: ref_28
  article-title: Advancing the LightGBM approach with three novel nature-inspired optimizers for predicting wildfire susceptibility in Kauaʻi and Molokaʻi Islands, Hawaii
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124963
– volume: 404
  start-page: 132306
  year: 2020
  ident: ref_21
  article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: ref_48
– volume: 306
  start-page: 114510
  year: 2022
  ident: ref_2
  article-title: Spatiotemporal carbon emissions across the spectrum of Chinese cities: Insights from socioeconomic characteristics and ecological capacity
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.114510
– ident: ref_57
  doi: 10.3390/en15228642
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_35
  article-title: The Impacts of Population Change and Economic Growth on Carbon Emissions in Nigeria
  publication-title: Iran. Econ. Rev.
– ident: ref_41
– ident: ref_54
  doi: 10.3390/su17041471
– volume: 927
  start-page: 172319
  year: 2024
  ident: ref_14
  article-title: Carbon emission prediction models: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.172319
– volume: 32
  start-page: 2510
  year: 2025
  ident: ref_56
  article-title: An examination of daily CO2 emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-024-35764-8
– ident: ref_45
– volume: 362
  start-page: 132331
  year: 2022
  ident: ref_5
  article-title: Achieving China’s carbon neutrality: Predicting driving factors of CO2 emission by artificial neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.132331
– volume: 13
  start-page: 7487
  year: 2022
  ident: ref_10
  article-title: Predicting European cities’ climate mitigation performance using machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35108-5
– volume: 263
  start-page: 225
  year: 2018
  ident: ref_23
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.08.019
– volume: 266
  start-page: 112035
  year: 2024
  ident: ref_32
  article-title: Deciphering the nonlinear and synergistic role of building energy variables in shaping carbon emissions: A LightGBM-SHAP framework in office buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2024.112035
– ident: ref_3
– volume: 27
  start-page: 43884
  year: 2020
  ident: ref_13
  article-title: Grey optimization Verhulst model and its application in forecasting coal-related CO2 emissions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-09572-9
– ident: ref_47
– volume: 28
  start-page: 4391
  year: 2019
  ident: ref_17
  article-title: Predicting and Analyzing CO2 Emissions Based on an Improved Least Squares Support Vector Machine
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/94619
– volume: 82
  start-page: 128
  year: 2017
  ident: ref_22
  article-title: An up-to-date comparison of state-of-the-art classification algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.003
– ident: ref_40
– ident: ref_26
  doi: 10.3390/math8050765
– ident: ref_37
– volume: 176
  start-page: 105959
  year: 2022
  ident: ref_4
  article-title: Challenges toward carbon neutrality in China: Strategies and countermeasures
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.105959
– ident: ref_44
– volume: 225
  start-page: 833
  year: 2019
  ident: ref_6
  article-title: Modelling carbon emission intensity: Application of artificial neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.352
– volume: 2021
  start-page: 1441942
  year: 2021
  ident: ref_55
  article-title: Forecast of China’s Carbon Emissions Based on ARIMA Method
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2021/1441942
– volume: 566
  start-page: 668
  year: 2018
  ident: ref_24
  article-title: Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.055
– volume: 345
  start-page: 128296
  year: 2022
  ident: ref_25
  article-title: Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128296
– ident: ref_30
  doi: 10.20944/preprints202407.1769.v1
– ident: ref_18
  doi: 10.3390/su15086876
– ident: ref_50
  doi: 10.1038/s41597-022-01240-6
– ident: ref_38
  doi: 10.1038/s41597-022-01322-5
– ident: ref_46
– volume: 203
  start-page: 271
  year: 2015
  ident: ref_11
  article-title: Estimating future energy use and CO2 emissions of the world’s cities
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.03.039
– volume: 46
  start-page: 1246
  year: 2019
  ident: ref_12
  article-title: Differential equation model of carbon dioxide emission using functional linear regression
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2018.1542667
– ident: ref_33
  doi: 10.3389/fpls.2019.00621
– volume: 277
  start-page: 116846
  year: 2021
  ident: ref_27
  article-title: Using a land use regression model with machine learning to estimate ground level PM2.5
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.116846
– ident: ref_43
– ident: ref_52
  doi: 10.3390/rs11212563
SSID ssj0000331904
Score 2.4082851
Snippet Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2383
SubjectTerms Algorithms
Carbon
carbon emission forecasting
China
Climate change
Cluster analysis
Clustering
Correlation analysis
county level
Decision trees
Emissions
Energy consumption
gradient boosting algorithms
Heterogeneity
Natural resources
Prediction models
SHAP interpretation
Spatial analysis
Spatial discrimination
Spatial resolution
spatiotemporal patterns
Statistical methods
Support vector machines
Tennessee
United States
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5ap9Be-i51mwZBAzktsSXtSjoVOzjNIZgQEshNaCVtUki97u5S6L_vjCzH9NBeetsXy8A3mpdG8wEcOmEi50YXqDxVIXUtCqfLuiirRnreRMwoEtLnarnUNzfmIhfc-txWubWJyVCH1lON_Fhwgb7fGGm-rH8UxBpFu6uZQuMx7NGkMjmCvflieXH5UGWZCFSxidzMJRWY3x93PVF-o6MSf3iiNLD_b2Y5-ZrTF_8r5Ut4nqNMNtuoxSt4FFev4WkmPL_79QbWRNS5HR3L3Cqw2W4nm7UNO3FdjVcLVAOqp_VsgbZgc8yREX_aPcNolyX2bTZHTxgYvvjapQaygc3btqd-aja7v0Xxhrvvb-H6dHF1clZk8oXCi2o6FJWrhXbcaxFKKZ1TRHIlzDQIpVTwwni8jRhdRh-iUAZdIFcBzYPXjdZlEO9gtGpX8T0wjNEwqVHOo2GV3knnlZtyDI1iU8lyIsfweQuEXW9mbFjMTQguu4NrDHPC6OELmoudHrTdrc3LzOK_PdqgSNVdicFSHSa85ii8aoTioRnDESFsafUOnfMuH0JAQWkOlp1pBC9tR49hf4uwzcu6tzt4P_z79Ud4xokoOPX17sMIAY2f4In_OXzru4Ospb8BRrfwzQ
  priority: 102
  providerName: ProQuest
Title Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm
URI https://www.proquest.com/docview/3233249949
https://doaj.org/article/4acc578eb0134741bd02b2a727f372df
Volume 17
WOSCitedRecordID wos001535791400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hggQXxFMsLStLIHGKums7sX3crVJAglXEQypcLMd22kplUyURUi_8dmacLC0HxIVLlMQ5OPPN0x7PALxywkTOjc6QeYpM6lpkTud1lheN9LyJGFEkpN-rzUafnJjqRqsvygkbywOPhDuUznvkqkjrdRLNXx0WvOYOzW4jFA8NaV_0em4EU0kHC2SthRzrkQqM6w-7nlp9o4ESf1igVKj_b-o42ZjjB3B_cg7ZapzUQ7gVt4_g7tSn_OzqMVxSf81dxVfmtoGtrjegWduwI9fVeFcierQM1rMSRXg8ncio7dkFQyeVpabZbI0GLDAceNOlvK-Brdu2pzRotro4bbvz4ez7E_hyXH4-eptNPRMyL4rlkBWuFtpxr0XIpXRIJ6Pw_5dBKKWCF8bjY0SnMPoQhTJoubgKKNVeN1rnQTyFvW27jc-AoWuFsYhyHvWh9A6BUG7J0aOJTSHzhZzByx0d7eVYGsNiSEHUttfUnsGaSPz7CypnnV4gyHYC2f4L5Bm8JoAsCd3QOe-mswM4USpfZVcaA7e0izyDgx2GdpLG3gou0G80Rprn_2M2-3CPUxfglLR7AHsIe3wBd_yP4bzv5nB7XW6qj_PEkHPKJf1E158lXqv8G45X7z5UX38Bsl3nwg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHdK48D1RGGAJEKdoqe3E9gGhdnSsWlf1MKRxMo7tbEijKUkE2j_F38hzPlZxgNsO3JI4shz7l_fl5_cDeG2Y8pQqGSF40ojLjEVGJlmUpDm3NPfoUTQrPReLhTw7U8st-NWfhQlplb1MbAS1K2yIke8zylD3K8XV-_X3KLBGhd3VnkKjhcWxv_qJLlv1bvYB1_cNpYfT04OjqGMViCxLR3WUmoxJQ61kLuHcGBHYm5gaOSaEcJYpi7cezSZvnWdCoWynwiHurcylTBzDfm_BNkewywFsL2cny8_XUZ2YIaRj3tZBxV7j_bIKFOOoGNkfmq8hCPibGmh02-G9_21W7sPdzoom4xb2D2DLrx7CTkfofnH1CNaBiLQvjUvMypHxZqeeFDk5MGWGV1OEeYgXVmSKsq49xkkCP9wlQWueNOziZIKa3hFs-Fg2CXI1mRRFFfLFyfjyHKejvvj2GD7dyAfvwmBVrPwTIGiDotMmjEXFwa3hxgozomj6-TzlScyH8KpfeL1ua4ho9L0CPPQGHkOYBExcvxHqfjcPivJcd2JEY98WZawP0WuOxmDmYppRHLzImaAuH8LbgCgdpFNdGmu6QxY40FDnS48lgqXZbh_CXo8o3YmtSm_g9PTfzS9h5-j0ZK7ns8XxM7hDAylyk8O8BwNcXP8cbtsf9deqfNH9IQS-3DT8fgPK9Uuz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHWJcxrdWNsASIE5RU9uJnQNCadfCtKmqEEi7Gcd2tklbU5IItH-Nv47nfKziALcduCVxZCX2z-_Lz-8H8EazxFGayADBEwdcZizQMsqCKM65oblDj6KZ6ROxWMjT02S5Bb_6szA-rbKXiY2gtoXxMfIRowx1f5LwZJR3aRHLw_mH9ffAM0j5ndaeTqOFyLG7_onuW_X-6BDn-i2l89mX6aegYxgIDIvHdRDrjElNjWQ24lxr4ZmcWDK2TAhhDUsM3jo0oZyxjokE5TwVFteAkbmUkWXY7x3YlrEI6QC2l9NJ-vkmwhMyhHfI25qo2Gs4KitPN45Kkv2hBRuygL-phEbPzR_8zyP0EHY765qk7XJ4BFtu9Rh2OqL38-snsPYEpX3JXKJXlqSbHXxS5GSqywyvZgh_H0esyAxlYHu8k3jeuEuCVj5pWMfJBC0AS7DhY9kkztVkUhSVzyMn6eUZDkd9fvUUvt7KDz-DwapYuT0gaJuiMye0QYXCjebaCD2maBK6POZRyIfwugeBWre1RRT6ZB4qagOVIUw8Pm7e8PXAmwdFeaY68aKwb4Oy1_moNkcjMbMhzSh-vMiZoDYfwjuPLuWlVl1qo7vDF_ihvv6XSiUCp9mGH8JBjy7VibNKbaD1_N_Nr-AeYk6dHC2O9-E-9VzJTWrzAQxwbt0LuGt-1BdV-bJbLAS-3Tb6fgOuH1Qj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+Application+of+Carbon+Emissions+Estimation+Model+for+China+Based+on+Gradient+Boosting+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Dongjie+Guan&rft.au=Yitong+Shi&rft.au=Lilei+Zhou&rft.au=Xusen+Zhu&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=14&rft.spage=2383&rft_id=info:doi/10.3390%2Frs17142383&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4acc578eb0134741bd02b2a727f372df
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon