Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm
Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotempo...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 17; číslo 14; s. 2383 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2025
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency. |
|---|---|
| AbstractList | Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency. Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R[sup.2] = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency. |
| Audience | Academic |
| Author | Zhu, Xusen He, Xiujuan Guan, Dongjie Zhao, Demei Shi, Yitong Zhou, Lilei Peng, Guochuan |
| Author_xml | – sequence: 1 givenname: Dongjie surname: Guan fullname: Guan, Dongjie – sequence: 2 givenname: Yitong surname: Shi fullname: Shi, Yitong – sequence: 3 givenname: Lilei orcidid: 0000-0002-4259-2580 surname: Zhou fullname: Zhou, Lilei – sequence: 4 givenname: Xusen surname: Zhu fullname: Zhu, Xusen – sequence: 5 givenname: Demei surname: Zhao fullname: Zhao, Demei – sequence: 6 givenname: Guochuan surname: Peng fullname: Peng, Guochuan – sequence: 7 givenname: Xiujuan surname: He fullname: He, Xiujuan |
| BookMark | eNpNUU1vEzEQtVCRKKUXfoElbkgptsep18d0FUqlIi5wtrz-SB1t7MV2Dvx7pl0E2AfPvHnvzVjzllzkkgMh7zm7AdDsU21ccSlggFfkUjAlNlJocfFf_IZct3ZkeAC4ZvKSLGPJrdez66lkarOnu2WZk7MveYl0tHXCaH9KrSHU6L71dFrLX4sPM42l0vEpZUvvbAueYuG-Wp9C7vSuFKTnA93Nh1JTfzq9I6-jnVu4_vNekR-f99_HL5vHb_cP4-5x4-CW982tnWCwwg3gt1Jaq4RW-EnuQSnlHWiHadCaB-cDKC24EMqDQEUchq2HK_Kw-vpij2apOHP9ZYpN5gUo9WBs7cnNwUjr3FYNYWIcpJJ88kxMAluqCEr4iF4fVq-llp_n0Lo5lnPNOL4BASCk1lIj62ZlHSyaphxLr9bh9eGUHK4qJsR3A7IZE3KLgo-rwNXSWg3x75icmeeNmn8bhd-GxpOa |
| Cites_doi | 10.1016/j.spc.2021.10.001 10.1007/s11356-021-17277-w 10.3390/su10093110 10.1016/j.ifacol.2022.07.355 10.1007/s10462-018-9614-6 10.3390/atmos13040599 10.1016/j.egyr.2024.08.078 10.1007/s11356-021-14591-1 10.3390/app12020803 10.1016/j.energy.2011.01.032 10.1016/j.jclepro.2021.128798 10.5194/essd-13-3907-2021 10.1016/j.eswa.2024.124963 10.1016/j.physd.2019.132306 10.1016/j.jenvman.2022.114510 10.3390/en15228642 10.3390/su17041471 10.1016/j.scitotenv.2024.172319 10.1007/s11356-024-35764-8 10.1016/j.jclepro.2022.132331 10.1038/s41467-022-35108-5 10.1016/j.agrformet.2018.08.019 10.1016/j.buildenv.2024.112035 10.1007/s11356-020-09572-9 10.15244/pjoes/94619 10.1016/j.eswa.2017.04.003 10.3390/math8050765 10.1016/j.resconrec.2021.105959 10.1016/j.jclepro.2019.03.352 10.1155/2021/1441942 10.1016/j.jhydrol.2018.09.055 10.1016/j.conbuildmat.2022.128296 10.20944/preprints202407.1769.v1 10.3390/su15086876 10.1038/s41597-022-01240-6 10.1038/s41597-022-01322-5 10.1016/j.envpol.2015.03.039 10.1080/02664763.2018.1542667 10.3389/fpls.2019.00621 10.1016/j.envpol.2021.116846 10.3390/rs11212563 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
| DOI | 10.3390/rs17142383 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection (Hollins) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_4acc578eb0134741bd02b2a727f372df A849900245 10_3390_rs17142383 |
| GeographicLocations | United States Tennessee China Nigeria |
| GeographicLocations_xml | – name: China – name: Tennessee – name: United States – name: Nigeria |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-6ab38a2c83d544aa72973391d3777dc39c733e991ecde37921227d322c8f885d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001535791400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:44:45 EDT 2025 Fri Jul 25 18:37:55 EDT 2025 Tue Nov 04 18:10:25 EST 2025 Sat Nov 29 07:15:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-6ab38a2c83d544aa72973391d3777dc39c733e991ecde37921227d322c8f885d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4259-2580 |
| OpenAccessLink | https://www.proquest.com/docview/3233249949?pq-origsite=%requestingapplication% |
| PQID | 3233249949 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4acc578eb0134741bd02b2a727f372df proquest_journals_3233249949 gale_infotracacademiconefile_A849900245 crossref_primary_10_3390_rs17142383 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Duan (ref_13) 2020; 27 ref_57 ref_54 Fan (ref_5) 2022; 362 Singh (ref_11) 2015; 203 ref_52 ref_51 Hsu (ref_10) 2022; 13 Agbulut (ref_16) 2022; 29 ref_19 Sherstinsky (ref_21) 2020; 404 ref_18 Zhang (ref_22) 2017; 82 Wong (ref_27) 2021; 277 Lukman (ref_35) 2019; 23 Jin (ref_14) 2024; 927 Ajala (ref_56) 2025; 32 Chauhan (ref_15) 2019; 52 Pao (ref_7) 2011; 36 Habibi (ref_36) 2022; 55 ref_20 Lu (ref_24) 2018; 566 Jiang (ref_9) 2021; 320 Luo (ref_29) 2024; 12 ref_26 Janizadeh (ref_28) 2024; 258 Fan (ref_23) 2018; 263 Zhao (ref_4) 2022; 176 Sun (ref_17) 2019; 28 ref_33 ref_31 ref_30 ref_39 ref_38 Sun (ref_58) 2021; 28 ref_37 Liu (ref_34) 2022; 29 Chen (ref_2) 2022; 306 Acheampong (ref_6) 2019; 225 ref_47 ref_46 ref_45 ref_44 Zhou (ref_32) 2024; 266 ref_43 Yang (ref_53) 2021; 13 ref_42 ref_41 Kafle (ref_12) 2019; 46 ref_40 ref_1 ref_3 ref_49 Ning (ref_55) 2021; 2021 ref_48 Zhao (ref_8) 2022; 44 Iqbal (ref_25) 2022; 345 |
| References_xml | – volume: 29 start-page: 141 year: 2022 ident: ref_16 article-title: Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms publication-title: Sustain. Prod. Consum. doi: 10.1016/j.spc.2021.10.001 – volume: 29 start-page: 21789 year: 2022 ident: ref_34 article-title: Driving factors of carbon emissions in China’s municipalities: A LMDI approach publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-17277-w – ident: ref_49 – ident: ref_19 doi: 10.3390/su10093110 – ident: ref_51 – volume: 55 start-page: 462 year: 2022 ident: ref_36 article-title: Effect of Features Extraction and Selection on the Evaluation of Machine Learning publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.07.355 – volume: 52 start-page: 803 year: 2019 ident: ref_15 article-title: Problem formulations and solvers in linear SVM: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9614-6 – ident: ref_31 doi: 10.3390/atmos13040599 – volume: 12 start-page: 2676 year: 2024 ident: ref_29 article-title: Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.08.078 – volume: 44 start-page: 6111 year: 2022 ident: ref_8 article-title: Grey uncertain prediction of carbon emissions peak from thirty-one provinces and municipalities in China publication-title: Energy Sources Part A Recovery Util. Environ. Eff. – volume: 28 start-page: 56580 year: 2021 ident: ref_58 article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-14591-1 – ident: ref_39 – ident: ref_42 – ident: ref_1 – ident: ref_20 doi: 10.3390/app12020803 – volume: 36 start-page: 2450 year: 2011 ident: ref_7 article-title: Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil publication-title: Energy doi: 10.1016/j.energy.2011.01.032 – volume: 320 start-page: 128798 year: 2021 ident: ref_9 article-title: Decoupling analysis and scenario prediction of agricultural CO2 emissions: An empirical analysis of 30 provinces in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128798 – volume: 13 start-page: 3907 year: 2021 ident: ref_53 article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-3907-2021 – volume: 258 start-page: 124963 year: 2024 ident: ref_28 article-title: Advancing the LightGBM approach with three novel nature-inspired optimizers for predicting wildfire susceptibility in Kauaʻi and Molokaʻi Islands, Hawaii publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124963 – volume: 404 start-page: 132306 year: 2020 ident: ref_21 article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – ident: ref_48 – volume: 306 start-page: 114510 year: 2022 ident: ref_2 article-title: Spatiotemporal carbon emissions across the spectrum of Chinese cities: Insights from socioeconomic characteristics and ecological capacity publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.114510 – ident: ref_57 doi: 10.3390/en15228642 – volume: 23 start-page: 715 year: 2019 ident: ref_35 article-title: The Impacts of Population Change and Economic Growth on Carbon Emissions in Nigeria publication-title: Iran. Econ. Rev. – ident: ref_41 – ident: ref_54 doi: 10.3390/su17041471 – volume: 927 start-page: 172319 year: 2024 ident: ref_14 article-title: Carbon emission prediction models: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.172319 – volume: 32 start-page: 2510 year: 2025 ident: ref_56 article-title: An examination of daily CO2 emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-024-35764-8 – ident: ref_45 – volume: 362 start-page: 132331 year: 2022 ident: ref_5 article-title: Achieving China’s carbon neutrality: Predicting driving factors of CO2 emission by artificial neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.132331 – volume: 13 start-page: 7487 year: 2022 ident: ref_10 article-title: Predicting European cities’ climate mitigation performance using machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-022-35108-5 – volume: 263 start-page: 225 year: 2018 ident: ref_23 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.08.019 – volume: 266 start-page: 112035 year: 2024 ident: ref_32 article-title: Deciphering the nonlinear and synergistic role of building energy variables in shaping carbon emissions: A LightGBM-SHAP framework in office buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2024.112035 – ident: ref_3 – volume: 27 start-page: 43884 year: 2020 ident: ref_13 article-title: Grey optimization Verhulst model and its application in forecasting coal-related CO2 emissions publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-09572-9 – ident: ref_47 – volume: 28 start-page: 4391 year: 2019 ident: ref_17 article-title: Predicting and Analyzing CO2 Emissions Based on an Improved Least Squares Support Vector Machine publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/94619 – volume: 82 start-page: 128 year: 2017 ident: ref_22 article-title: An up-to-date comparison of state-of-the-art classification algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.003 – ident: ref_40 – ident: ref_26 doi: 10.3390/math8050765 – ident: ref_37 – volume: 176 start-page: 105959 year: 2022 ident: ref_4 article-title: Challenges toward carbon neutrality in China: Strategies and countermeasures publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.105959 – ident: ref_44 – volume: 225 start-page: 833 year: 2019 ident: ref_6 article-title: Modelling carbon emission intensity: Application of artificial neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.352 – volume: 2021 start-page: 1441942 year: 2021 ident: ref_55 article-title: Forecast of China’s Carbon Emissions Based on ARIMA Method publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2021/1441942 – volume: 566 start-page: 668 year: 2018 ident: ref_24 article-title: Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.055 – volume: 345 start-page: 128296 year: 2022 ident: ref_25 article-title: Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128296 – ident: ref_30 doi: 10.20944/preprints202407.1769.v1 – ident: ref_18 doi: 10.3390/su15086876 – ident: ref_50 doi: 10.1038/s41597-022-01240-6 – ident: ref_38 doi: 10.1038/s41597-022-01322-5 – ident: ref_46 – volume: 203 start-page: 271 year: 2015 ident: ref_11 article-title: Estimating future energy use and CO2 emissions of the world’s cities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.03.039 – volume: 46 start-page: 1246 year: 2019 ident: ref_12 article-title: Differential equation model of carbon dioxide emission using functional linear regression publication-title: J. Appl. Stat. doi: 10.1080/02664763.2018.1542667 – ident: ref_33 doi: 10.3389/fpls.2019.00621 – volume: 277 start-page: 116846 year: 2021 ident: ref_27 article-title: Using a land use regression model with machine learning to estimate ground level PM2.5 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116846 – ident: ref_43 – ident: ref_52 doi: 10.3390/rs11212563 |
| SSID | ssj0000331904 |
| Score | 2.4082851 |
| Snippet | Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 2383 |
| SubjectTerms | Algorithms Carbon carbon emission forecasting China Climate change Cluster analysis Clustering Correlation analysis county level Decision trees Emissions Energy consumption gradient boosting algorithms Heterogeneity Natural resources Prediction models SHAP interpretation Spatial analysis Spatial discrimination Spatial resolution spatiotemporal patterns Statistical methods Support vector machines Tennessee United States Vector quantization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yCHoRn7i-CCh4Ktsm3SY97i6rHkQ8qOwtpEmqwtoubRH8986kXV0P4sVbn5DOl3kl0_kIucgsz0LBsgCiBw0JigU7mMhhIF0ecQ3xrfXV7k-34u5Ozmbp_QrVF9aEte2BW8ENYm0MzCqH63UxuL_MhixjGtxuzgWzOVpfiHpWkilvgzlMrTBu-5FyyOsHVY1U3-Cg-A8P5Bv1_2aOvY-52iZbXXBIR-2gdsiaK3bJRsdT_vKxRxbIr7ns-Ep1YenoewOaljmd6CqDoymgh8tgNZ2CCrd_J1KkPZtTCFKpJ82mY3BglsKN68rXfTV0XJY1lkHT0fy5rF6bl7d98ng1fZjcBB1nQmB4EjVBojMuNTOS22Eca5BTKuD7I8uFENbw1MCpg6DQGeu4SMFzMWFBq43MpRxafkB6RVm4Q0LxZRa6yESRjl0iU-EQvkzoPMkNy_vkfClHtWhbYyhIKVDa6lvafTJGEX89ge2s_QUAWXUgq79A7pNLBEih0jWVNrr7dwAGiu2r1EhC4uZ3kfvkZImh6rSxVpxxiBvTNE6P_mM0x2STIQuwL9o9IT2A3Z2SdfPevNbVmZ-In_aE4mE priority: 102 providerName: Directory of Open Access Journals |
| Title | Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm |
| URI | https://www.proquest.com/docview/3233249949 https://doaj.org/article/4acc578eb0134741bd02b2a727f372df |
| Volume | 17 |
| WOSCitedRecordID | wos001535791400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90T9AXv8XVcwko-FSuTbpN-iS7R08FXYpfnL6ENEnvhHO7tkXwxb_dmWz2Fh_0xZfSNi0J_CYzk8lkfgDPGieaVPImQe_B4ALFoR4s1DxRvs2EQf_WhWz3T2_kaqVOT8s6BtyGmFa504lBUbvOUoz8SHCBtr8s8_LF5ntCrFG0uxopNK7CAVUqyydwsKxW9bvLKEsqUMTSfFuXVOD6_qgfiPIbDZX4wxKFgv1_U8vB1pzc-t9R3oab0ctki61Y3IErfn0XrkfC8_Of92BDRJ270rHMrB1b7HeyWdeyY9M3eFehGFA8bWAV6oLtMUdG_GkXDL1dFti32RItoWPY8LIPCWQjW3bdQPnUbHFxhsMbz7_dh48n1YfjV0kkX0isKLIxKUwjlOFWCTfPc2MkkVyJMnNCSumsKC0-evQuvXVeyBJNIJcO1YNVrVJzJx7AZN2t_UNg9DNPfWazzOS-UKX0JAeNNG3RWt5O4ekOCL3Z1tjQuDYhuPQeriksCaPLL6gudnjR9Wc6TjOdG2tRB3mK7uboLDUu5Q3H_mUrJHfY1XNCWNPsHXtjTTyEgAOlOlh6oRC8sB09hcMdwjpO60Hv4X307-bHcIMTUXDI6z2ECQLqn8A1-2P8OvSzKKWzEACYUbrpe7r-qvBaz79ge_36bf35N10J97E |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVK58I1YKGAJEKeoiZ2NnQNCu2VLV92u9lBQORnHdlqkslmSCNQ_xW9kJh9dcYBbD9ySOImT-OXN2B7PA3iVOZGFkmcBeg8GOygOeTBRo0D5PBIG_VvXRLt_msvFQp2epsst-NWvhaGwyp4TG6J2haUx8j3BBdr-NI3Td-vvAalG0exqL6HRwuLIX_7ELlv1dvYe2_c15wfTk_3DoFMVCKxIojpITCaU4VYJN4pjYySpN4k0ckJK6axILe56dJu8dV7IFLmdS4e4typXauQE3vcGbMcIdjWA7eXsePn5alQnFAjpMG7zoOJdw72yIolxNIziD8vXCAT8zQw0tu3gzv_2Ve7C7c6LZuMW9vdgy6_uw04n6H5--QDWJETap8ZlZuXYeDNTz4qc7Zsyw60pwpzGCys2Ra5rl3Ey0oe7YOjNs0ZdnE3Q0juGBR_KJkCuZpOiqChenI0vzvBz1OffHsLHa3nhRzBYFSv_GBhdzEMf2SgysU9UKj3hPJMmT3LL8yG87Bter9scIhr7XgQPvYHHECaEiaszKO93c6Aoz3RHIzo21iLHehq9jtEZzFzIM471y1xI7rCqN4QoTexUl8aabpEFPijl-dJjhWBpptuHsNsjSne0VekNnJ78u_gF7ByeHM_1fLY4egq3OIkiNzHMuzDAxvXP4Kb9UX-tyufdH8Lgy3XD7zfxMEzH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvBELBSwB4hRtYmdj54BQdrsLVavVCgHqzXVsp0UqmyWJQP1r_DpmsklXHODWA7e8H_bnb8b2eD6AV7kTeSh5HqD3YLCD4pAHEzUOlC8iYdC_dW20-5cjuVio4-N0uQO_-rUwFFbZc2JL1K60NEY-Elyg7U_TOB0VXVjEcn_-bv09IAUpmmnt5TQ2EDn0Fz-x-1a_PdjHun7N-Xz2afoh6BQGAiuSqAkSkwtluFXCjePYGElKTiKNnJBSOitSi7seXShvnRcyRZ7n0mEbsKpQauwEPvca7KpEhnwAu8vpJPt4OcITCoR3GG9youJTw1FVk9w4GknxhxVsxQL-ZhJaOze_8z-X0F243XnXLNs0h3uw41f34WYn9H528QDWJFDap8xlZuVYtp3BZ2XBpqbKcWuG8KdxxJrNkAM3yzsZ6cadM_TyWas6ziboATiGJ95XbeBcwyZlWVMcOcvOT7E4mrNvD-HzlfzwIxisypV_DIxu5qGPbBSZ2CcqlZ7wn0tTJIXlxRBe9iDQ601uEY19MoKK3kJlCBPCx-UVlA-8PVBWp7qjFx0ba5F7PY1qx-gk5i7kOcf3y0JI7vBVbwhdmlirqYw13eIL_FDK_6UzhcBpp-GHsNejS3d0VusttJ78-_QLuIGY00cHi8OncIuTVnIb2rwHA6xb_wyu2x_N17p63jUWBidXjb7f195VNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+Application+of+Carbon+Emissions+Estimation+Model+for+China+Based+on+Gradient+Boosting+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Guan+Dongjie&rft.au=Shi+Yitong&rft.au=Zhou+Lilei&rft.au=Zhu+Xusen&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=14&rft.spage=2383&rft_id=info:doi/10.3390%2Frs17142383&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |