On Ensemble Learning Models for Autoencoder-Based Identification of Nonlinear Dynamical Systems
Identifying the dynamic model of a system has been a subject of extensive research for decades. However, dealing with highly complex, possibly nonlinear, and noisy systems remains an open problem. In recent years, the use of data-driven techniques based on machine learning for system identification...
Uložené v:
| Vydané v: | IEEE access Ročník 13; s. 169071 - 169082 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!