On Ensemble Learning Models for Autoencoder-Based Identification of Nonlinear Dynamical Systems

Identifying the dynamic model of a system has been a subject of extensive research for decades. However, dealing with highly complex, possibly nonlinear, and noisy systems remains an open problem. In recent years, the use of data-driven techniques based on machine learning for system identification...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 169071 - 169082
Hlavní autori: Arridu, Nicola, Lippi, Martina, Franceschelli, Mauro, Gasparri, Andrea
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Identifying the dynamic model of a system has been a subject of extensive research for decades. However, dealing with highly complex, possibly nonlinear, and noisy systems remains an open problem. In recent years, the use of data-driven techniques based on machine learning for system identification has represented a promising solution for addressing the challenges of complex system identification. Among these methods, auto-encoders have been successfully applied to compactly represent the system state in a latent space used for estimating the system dynamics. In this work, we propose leveraging the ensemble paradigm for system identification, and in particular to exploit an ensemble of autoencoders, to reduce the uncertainty compared to individual autoencoders. To this end, we propose an algorithm for selecting autoencoders based on a combination of an accuracy metric and a diversity index. We validate this approach using traditional benchmarks in the field of nonlinear system identification.
AbstractList Identifying the dynamic model of a system has been a subject of extensive research for decades. However, dealing with highly complex, possibly nonlinear, and noisy systems remains an open problem. In recent years, the use of data-driven techniques based on machine learning for system identification has represented a promising solution for addressing the challenges of complex system identification. Among these methods, auto-encoders have been successfully applied to compactly represent the system state in a latent space used for estimating the system dynamics. In this work, we propose leveraging the ensemble paradigm for system identification, and in particular to exploit an ensemble of autoencoders, to reduce the uncertainty compared to individual autoencoders. To this end, we propose an algorithm for selecting autoencoders based on a combination of an accuracy metric and a diversity index. We validate this approach using traditional benchmarks in the field of nonlinear system identification.
Author Lippi, Martina
Arridu, Nicola
Gasparri, Andrea
Franceschelli, Mauro
Author_xml – sequence: 1
  givenname: Nicola
  orcidid: 0000-0002-8594-0629
  surname: Arridu
  fullname: Arridu, Nicola
  organization: Università degli Studi Roma Tre, Rome, Italy
– sequence: 2
  givenname: Martina
  orcidid: 0000-0003-0470-9191
  surname: Lippi
  fullname: Lippi, Martina
  email: martina.lippi@uniroma3.it
  organization: Università degli Studi Roma Tre, Rome, Italy
– sequence: 3
  givenname: Mauro
  orcidid: 0000-0001-6522-4046
  surname: Franceschelli
  fullname: Franceschelli, Mauro
  organization: Università degli Studi di Cagliari, Cagliari, Italy
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0001-5765-9736
  surname: Gasparri
  fullname: Gasparri, Andrea
  organization: Università degli Studi Roma Tre, Rome, Italy
BookMark eNpNUU1v2zAMFYYOWNf1F3QHATs7FfXl-Jhl2RogWw9pz4Is0YUCR-ok55B_P7UutvFC4pHvkeD7SC5iikjIDbAFAOtuV-v1Zr9fcMbVQmiADuQ7cslBd41QQl_8V38g16UcWI1lhVR7Scx9pJtY8NiPSHdocwzxif5MHsdCh5Tp6jQljK4CuflqC3q69RinMARnp5AiTQP9leIYYiXTb-doj7Uz0v25THgsn8j7wY4Fr9_yFXn8vnlY3zW7-x_b9WrXuHry1KiW875nFmyPTghkS68lR9cxRNdKq7yzCEqjalnbgrBCKs0kCs4cF4MTV2Q76_pkD-Y5h6PNZ5NsMK9Ayk_G5im4EQ1nig3eia4HL13vlp2U2sv6S965nkHV-jJrPef0-4RlMod0yrGebwRXGlTXgqxTYp5yOZWScfi7FZh5McbMxpgXY8ybMZX1eWYFRPzHAGiF1kL8AQuriu0
CODEN IAECCG
Cites_doi 10.1007/978-0-387-84858-7
10.1201/9781003456285
10.1002/aic.690370209
10.1038/nature14541
10.17648/sbai-2019-111167
10.1137/18M1177846
10.1017/9781108380690
10.1109/LCSYS.2023.3335036
10.1016/j.ins.2015.09.048
10.1007/s11704-019-8208-z
10.1016/j.iswa.2024.200344
10.1002/047134608X.W1046
10.1109/CDC49753.2023.10384143
10.1023/A:1022859003006
10.1016/j.jcp.2018.10.045
10.1016/j.automatica.2021.109666
10.1201/b12207
10.1146/annurev-control-053018-023744
10.1016/j.ifacol.2021.08.406
10.1061/(ASCE)EM.1943-7889.0001556
10.1007/978-3-662-12616-5
10.1109/TNNLS.2020.2980383
10.1109/CVPR46437.2021.01620
10.1109/ICNN.1996.548872
10.1016/j.automatica.2012.09.018
10.1007/978-1-4419-9326-7
10.1109/CDC40024.2019.9030219
10.1016/j.automatica.2023.111210
10.1109/ICNN.1994.374611
10.1002/9781118535561
10.1016/j.ifacol.2020.12.1329
10.1109/72.80202
10.1098/rspl.1895.0041
10.1016/j.ifacol.2017.08.071
10.1016/j.neucom.2017.02.029
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3611914
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 169082
ExternalDocumentID oai_doaj_org_article_2050fdc39b1d4cbc89446d411029cb01
10_1109_ACCESS_2025_3611914
11173663
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-5722bb0a1abec33e08d642ec90eec74a5dcae156e5707713a345604e320c23fc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586193100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Tue Oct 07 09:25:21 EDT 2025
Mon Dec 08 03:37:56 EST 2025
Sat Nov 29 07:18:34 EST 2025
Wed Oct 08 06:22:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-5722bb0a1abec33e08d642ec90eec74a5dcae156e5707713a345604e320c23fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8594-0629
0000-0001-5765-9736
0000-0003-0470-9191
0000-0001-6522-4046
OpenAccessLink https://ieeexplore.ieee.org/document/11173663
PQID 3256159714
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_3256159714
crossref_primary_10_1109_ACCESS_2025_3611914
doaj_primary_oai_doaj_org_article_2050fdc39b1d4cbc89446d411029cb01
ieee_primary_11173663
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref31
ref11
ref33
ref10
ref32
ref1
Hinton (ref30); 6
ref17
ref39
Billings (ref4) 2013
ref16
ref38
ref19
ref18
Wood (ref22) 2023
Pearson (ref36) 1895; 58
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
Negrini (ref14) 2021
Schetzen (ref2) 2006
References_xml – ident: ref34
  doi: 10.1007/978-0-387-84858-7
– ident: ref39
  doi: 10.1201/9781003456285
– ident: ref31
  doi: 10.1002/aic.690370209
– ident: ref10
  doi: 10.1038/nature14541
– ident: ref29
  doi: 10.17648/sbai-2019-111167
– ident: ref9
  doi: 10.1137/18M1177846
– ident: ref7
  doi: 10.1017/9781108380690
– ident: ref15
  doi: 10.1109/LCSYS.2023.3335036
– ident: ref25
  doi: 10.1016/j.ins.2015.09.048
– ident: ref18
  doi: 10.1007/s11704-019-8208-z
– volume: 6
  start-page: 3
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Autoencoders, minimum description length and Helmholtz free energy
– ident: ref5
  doi: 10.1016/j.iswa.2024.200344
– ident: ref1
  doi: 10.1002/047134608X.W1046
– start-page: 1
  year: 2023
  ident: ref22
  article-title: A unified theory of diversity in ensemble learning
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.1109/CDC49753.2023.10384143
– ident: ref21
  doi: 10.1023/A:1022859003006
– ident: ref11
  doi: 10.1016/j.jcp.2018.10.045
– ident: ref8
  doi: 10.1016/j.automatica.2021.109666
– ident: ref20
  doi: 10.1201/b12207
– ident: ref24
  doi: 10.1146/annurev-control-053018-023744
– ident: ref17
  doi: 10.1016/j.ifacol.2021.08.406
– ident: ref27
  doi: 10.1061/(ASCE)EM.1943-7889.0001556
– ident: ref6
  doi: 10.1007/978-3-662-12616-5
– ident: ref33
  doi: 10.1109/TNNLS.2020.2980383
– ident: ref23
  doi: 10.1109/CVPR46437.2021.01620
– ident: ref37
  doi: 10.1109/ICNN.1996.548872
– ident: ref3
  doi: 10.1016/j.automatica.2012.09.018
– ident: ref19
  doi: 10.1007/978-1-4419-9326-7
– ident: ref26
  doi: 10.1109/CDC40024.2019.9030219
– ident: ref28
  doi: 10.1016/j.automatica.2023.111210
– ident: ref35
  doi: 10.1109/ICNN.1994.374611
– volume-title: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains
  year: 2013
  ident: ref4
  doi: 10.1002/9781118535561
– ident: ref16
  doi: 10.1016/j.ifacol.2020.12.1329
– ident: ref13
  doi: 10.1109/72.80202
– volume: 58
  start-page: 240
  year: 1895
  ident: ref36
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proc. Roy. Soc. London
  doi: 10.1098/rspl.1895.0041
– ident: ref38
  doi: 10.1016/j.ifacol.2017.08.071
– ident: ref32
  doi: 10.1016/j.neucom.2017.02.029
– year: 2021
  ident: ref14
  article-title: A neural network ensemble approach to system identification
  publication-title: arXiv:2110.08382
– volume-title: The Volterra and Wiener Theories of Nonlinear Systems
  year: 2006
  ident: ref2
SSID ssj0000816957
Score 2.3343499
Snippet Identifying the dynamic model of a system has been a subject of extensive research for decades. However, dealing with highly complex, possibly nonlinear, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 169071
SubjectTerms Accuracy
Autoencoders
Biological system modeling
Complex systems
Data models
data-driven analysis
Decoding
Dynamic models
Dynamical systems
Ensemble learning
Machine learning
Neural networks
Nonlinear dynamical systems
Nonlinear system identification
Nonlinear systems
Numerical models
System dynamics
System identification
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8VFEoSAPjATs2K7jsRQQAyoMIHWzbOeCkCBF_eD3c4kNFDGwMEVKIl38Lrm7Z-XeEXICWgvnATLFQ5FJIU1WAHMZD0rKSoAxum0UvtWjUTEem_ulUV_NP2FRHjgCh-RcsaoMwnheyuBDYZDAlBKzVm6Cj51bTJslMtXG4IL3jdJJZogzcz4YDnFFSAhzdSb6razZj1TUKvanESu_4nKbbK63yGaqEukgPt02WYF6h2wsaQfuEntX06t6Bq_-BWhSSX2izWizlxnFSpQOFvNJo1JZwjS7wFxV0tiUW6VdOjqp6CgKZbgpvYyT6dFo0jDvkMfrq4fhTZamJWQB1zPPlM5z75njCH0QAlhRIreAYBhA0NKpMjhAtgZKM43U1AmsnZgEkbOQiyqIPbJaT2rYJxSjp2N4wYU8SOlLPKpcVUwpAcqLqktOP4Gzb1EUw7ZkghkbcbYNzjbh3CUXDbhftzaK1u0J9LNNfrZ_-blLOo1rvu1xrgWWS13S-_SVTZ_fzAos5LBO01we_IftQ7LerCfuvPTI6ny6gCOyFt7nz7PpcfvmfQC8DNop
  priority: 102
  providerName: Directory of Open Access Journals
Title On Ensemble Learning Models for Autoencoder-Based Identification of Nonlinear Dynamical Systems
URI https://ieeexplore.ieee.org/document/11173663
https://www.proquest.com/docview/3256159714
https://doaj.org/article/2050fdc39b1d4cbc89446d411029cb01
Volume 13
WOSCitedRecordID wos001586193100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZoxQEOXaCo000-cCStE9t1fJwOU3GgAweQerPs5xeEVDJolh772_vsuAtCHLgkURLHyxf7Lcn7HmPv0RjpA2Kla2grJZWtWhS-qkEr1Um01uRA4c9mNmuvr-3XEqyeY2EQMf98hqfpMH_Lj3NYJ1fZGc1LI0lEbrANY86HYK1Hh0rKIGG1KcxCtbBn48mEOkE2YKNP5XlmMvtD-mSS_pJV5a-lOMuXy-3_bNkO2yqKJB8PyO-yF9i_Ya-f0Qu-Ze5Lz6f9En-FG-SFSPUHT9nPbpaclFU-Xq_micgy4qK6IHEW-RC32xVHHp93fDZwafgF_zgkr6dKC835Hvt-Of02-VSVhAoVUP9XlTZNE4LwNaEDUqJoI5kfCFYgglFeR_BIBh1qIwxZr16SeiUUykZAIzuQ79hmP-9xn3FaYL2gCx4aUCpE2utGd0JriTrIbsQ-PAy0-z3wZrhsbwjrBlxcwsUVXEbsIoHxeGsivc4naJRdmUNUQIsugrShjgoCtJZs2ajomY2FIOoR20vIPNVXQBmxowdsXZmhSydJ1yNVztTq4B_FDtmr1MTB33LENleLNR6zl3C7-rlcnGTjnbZXd9OT_CLeA7wB2lw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RgtRyoECLWGiLDxxJ68Q2jo_bpVUrloVDkXqz_JggpJKt9sHvZ-y4BYR64JQojuPHF3seyXwD8Ba1Fs4jVqoObSWFNFWL3FV1UFJ2Ao3ROVB4qmez9urKfCnB6jkWBhHzz2d4lE7zt_w4D-vkKjumdakFicgNeJhSZ5VwrTuXSsohYZQu3EI1N8fjyYSGQVZgo47E-8xl9pf8yTT9Ja_KP5txljBnO__Zt6fwpKiSbDxg_wweYP8cHv9BMLgL9nPPTvsl_vDXyAqV6jeW8p9dLxmpq2y8Xs0TlWXERXVCAi2yIXK3K648Nu_YbGDTcAv2YUhfT40WovM9-Hp2ejk5r0pKhSrQ-FeV0k3jPXc14ROEQN5GMkAwGI4YtHQqBodk0qHSXJP96gQpWFyiaHhoRBfEC9js5z2-BEZbrONU4EITpPSRjqpRHVdKoPKiG8G724m2NwNzhs0WBzd2wMUmXGzBZQQnCYy7WxPtdb5As2zLKqIKincxCOPrKIMPrSFrNkp6ZmOC5_UI9hIyv9sroIxg_xZbW9bo0grS9kiZ07V8dU-1N7B1fvlpaqcXs4-vYTt1d_C-7MPmarHGA3gUfq6-LxeH-UX8BfeF238
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Ensemble+Learning+Models+for+Autoencoder-Based+Identification+of+Nonlinear+Dynamical+Systems&rft.jtitle=IEEE+access&rft.au=Arridu%2C+Nicola&rft.au=Lippi%2C+Martina&rft.au=Franceschelli%2C+Mauro&rft.au=Gasparri%2C+Andrea&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=169071&rft.epage=169082&rft_id=info:doi/10.1109%2FACCESS.2025.3611914&rft.externalDocID=11173663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon