Communication-Efficient Massive UAV Online Path Control: Federated Learning Meets Mean-Field Game Theory
This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the interactions among them to make a flock requires a huge inter-UAV communication which is impossible to implement in real-time applications. One method...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 68; číslo 11; s. 6840 - 6857 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the interactions among them to make a flock requires a huge inter-UAV communication which is impossible to implement in real-time applications. One method of control is to apply the mean field game (MFG) framework which substantially reduces communications among the UAVs. However, to realize this framework, powerful processors are required to obtain the control laws at different UAVs. This requirement limits the usage of the MFG framework for real-time applications such as massive UAV control. Thus, a function approximator based on neural networks (NN) is utilized to approximate the solutions of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations. Nevertheless, using an approximate solution can violate the conditions for convergence of the MFG framework. Therefore, the federated learning (FL) approach which can share the model parameters of NNs at drones, is proposed with NN based MFG to satisfy the required conditions. The stability analysis of the NN based MFG approach is presented and the performance of the proposed FL-MFG is elaborated by the simulations. |
|---|---|
| AbstractList | This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the interactions among them to make a flock requires a huge inter-UAV communication which is impossible to implement in real-time applications. One method of control is to apply the mean field game (MFG) framework which substantially reduces communications among the UAVs. However, to realize this framework, powerful processors are required to obtain the control laws at different UAVs. This requirement limits the usage of the MFG framework for real-time applications such as massive UAV control. Thus, a function approximator based on neural networks (NN) is utilized to approximate the solutions of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations. Nevertheless, using an approximate solution can violate the conditions for convergence of the MFG framework. Therefore, the federated learning (FL) approach which can share the model parameters of NNs at drones, is proposed with NN based MFG to satisfy the required conditions. The stability analysis of the NN based MFG approach is presented and the performance of the proposed FL-MFG is elaborated by the simulations. |
| Author | Park, Jihong Shiri, Hamid Bennis, Mehdi |
| Author_xml | – sequence: 1 givenname: Hamid orcidid: 0000-0003-4661-5126 surname: Shiri fullname: Shiri, Hamid email: hamid.shiri@oulu.fi organization: Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 2 givenname: Jihong orcidid: 0000-0001-7623-6552 surname: Park fullname: Park, Jihong email: jihong.park@deakin.edu.au organization: School of Information Technology, Deakin University, Geelong, VIC, Australia – sequence: 3 givenname: Mehdi orcidid: 0000-0003-0261-0171 surname: Bennis fullname: Bennis, Mehdi email: mehdi.bennis@oulu.fi organization: Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland |
| BookMark | eNp9kD1PwzAQhi1UJMrHH4DFEnPK2fly2FBEAalRGQpr5DgXapTYxXaR-u9JKWJgYLn3hve5k55TMjHWICGXDGaMQXGzKpdVNePAYRYDy7lgR2TK0lREINJ8QqYABURZnosTcur9OwAkEMdTsi7tMGyNVjJoa6L7rtNKowm0kt7rT6Qvd690aXptkD7LsKalNcHZ_pbOsUUnA7Z0gdIZbd5ohRj8OKWJ5hr7lj7IAelqjdbtzslxJ3uPFz95Rl7m96vyMVosH57Ku0Wk4oyFKE2zQqbjnkOHGYtVk7dJg7JolFKFVELwXHT7Bs8yxTuBrWogiVtspVIM4jNyfbi7cfZjiz7U73brzPiy5knGOU8EY2NLHFrKWe8ddrXS4VtBcFL3NYN677X-9lrvvdY_XkeU_0E3Tg_S7f6Hrg6QRsRfoGBZUXAWfwHNk4ar |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_JSAC_2021_3088655 crossref_primary_10_1109_COMST_2024_3393369 crossref_primary_10_1016_j_automatica_2022_110655 crossref_primary_10_1109_TNSE_2020_3048137 crossref_primary_10_3390_s23218766 crossref_primary_10_1109_JIOT_2024_3409610 crossref_primary_10_1016_j_knosys_2025_113212 crossref_primary_10_1016_j_comcom_2023_07_041 crossref_primary_10_1016_j_comnet_2023_110085 crossref_primary_10_1016_j_jnca_2022_103495 crossref_primary_10_1109_JIOT_2023_3268316 crossref_primary_10_1016_j_apenergy_2023_122107 crossref_primary_10_1109_TIE_2023_3325582 crossref_primary_10_3390_s22186995 crossref_primary_10_1109_TITS_2024_3375893 crossref_primary_10_3390_drones9070484 crossref_primary_10_1109_JPROC_2021_3055679 crossref_primary_10_1109_ACCESS_2025_3586800 crossref_primary_10_1109_TVT_2021_3065084 crossref_primary_10_1109_TVT_2025_3526809 crossref_primary_10_1016_j_neucom_2024_127545 crossref_primary_10_1038_s41598_024_71844_y crossref_primary_10_3390_s22145437 crossref_primary_10_1109_TCOMM_2022_3220870 crossref_primary_10_3390_s23135787 crossref_primary_10_1109_JSYST_2022_3215279 crossref_primary_10_1038_s41928_022_00728_8 crossref_primary_10_1109_TGCN_2021_3132561 crossref_primary_10_1049_cth2_12761 crossref_primary_10_1049_cmu2_12857 crossref_primary_10_1002_rob_22157 crossref_primary_10_1007_s13369_021_05932_w crossref_primary_10_1007_s11227_023_05810_2 crossref_primary_10_1109_COMST_2021_3075439 crossref_primary_10_1109_COMST_2021_3058573 crossref_primary_10_1109_JSTSP_2022_3156756 crossref_primary_10_1145_3447853_3447857 crossref_primary_10_1109_JIOT_2022_3233087 crossref_primary_10_1109_JIOT_2023_3341307 crossref_primary_10_1109_TWC_2021_3126147 crossref_primary_10_1109_JIOT_2024_3414501 crossref_primary_10_1109_JPROC_2023_3328920 crossref_primary_10_3390_electronics11030309 crossref_primary_10_1109_TVT_2023_3258841 crossref_primary_10_1109_ACCESS_2023_3323399 crossref_primary_10_1109_COMST_2024_3423319 crossref_primary_10_1109_TSP_2023_3268845 crossref_primary_10_1109_ACCESS_2023_3273123 crossref_primary_10_1016_j_ins_2025_122432 crossref_primary_10_1109_ACCESS_2022_3210337 crossref_primary_10_1016_j_comnet_2023_109650 crossref_primary_10_1109_TWC_2025_3555136 crossref_primary_10_1109_TWC_2022_3183996 crossref_primary_10_1007_s10489_022_04065_3 crossref_primary_10_3390_drones9080528 crossref_primary_10_1016_j_ast_2025_110378 crossref_primary_10_1016_j_rineng_2024_103295 crossref_primary_10_1007_s12204_021_2382_5 crossref_primary_10_1177_01423312221124067 crossref_primary_10_1109_MNET_111_2100044 |
| Cites_doi | 10.1016/j.aml.2010.10.004 10.1109/JPROC.2019.2952892 10.1109/TCOMM.2018.2880468 10.1109/TCYB.2014.2357896 10.1109/ACCESS.2020.2977693 10.1016/j.neunet.2015.08.007 10.1145/3301273 10.1109/TWC.2018.2818734 10.1109/TWC.2019.2900035 10.1109/JIOT.2018.2881202 10.3390/app8112169 10.4310/CIS.2006.v6.n3.a5 10.1007/978-3-319-60916-4_19 10.1007/s11537-007-0657-8 10.1109/TCOMM.2019.2931583 10.1109/GLOCOM.2018.8648083 10.4018/978-1-4666-9572-6.ch014 10.1109/TAC.2010.2042355 10.1109/TSMC.2014.2318282 10.1017/CBO9780511812248 10.1109/ACDT.2018.8593118 10.1049/iet-spr.2017.0377 10.1109/TAC.2004.825639 10.1177/1729881419891661 10.1109/ACCESS.2019.2933173 10.1007/978-90-481-9707-1 10.1109/CCDC.2018.8407800 10.1109/GLOBECOM38437.2019.9013181 10.1126/scirobotics.aat3536 10.1109/MRA.2009.932529 10.1109/WCNC.2019.8885665 10.1115/1.2896505 10.1109/ACCESS.2019.2911018 10.1109/PESGM.2016.7741754 10.1109/MSPEC.2018.8241731 10.1109/TWC.2019.2892131 10.1109/JIOT.2018.2887086 10.1109/GLOCOMW.2017.8269068 10.1109/TNN.2007.899249 10.1515/mcma-2013-0024 10.1016/j.dsp.2017.10.022 10.1109/TWC.2017.2688328 10.1016/j.ifacol.2018.11.115 10.1109/LWC.2020.2973624 10.3182/20110828-6-IT-1002.03639 10.1109/GLOBECOM38437.2019.9013177 10.1109/TWC.2019.2902559 10.1109/TAES.2013.6494384 10.1109/GLOCOM.2018.8647927 10.1109/ACCESS.2019.2924720 10.1109/GLOCOMW.2015.7414180 10.1109/TAC.2007.904450 10.1109/MCS.2013.2287568 10.1109/TWC.2019.2926981 10.1109/SPAWC.2018.8445906 10.1109/JAS.2014.7004690 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2020.3017281 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 1558-0857 |
| EndPage | 6857 |
| ExternalDocumentID | 10_1109_TCOMM_2020_3017281 9169921 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c361t-5569a5c3670fe613cb7d4bea9bccc9ac88278fa5c3266c2f8edcb043dedacc103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591819400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:19:34 EDT 2025 Sat Nov 29 04:08:19 EST 2025 Tue Nov 18 21:32:52 EST 2025 Wed Aug 27 02:29:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-5569a5c3670fe613cb7d4bea9bccc9ac88278fa5c3266c2f8edcb043dedacc103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0261-0171 0000-0003-4661-5126 0000-0001-7623-6552 |
| PQID | 2462224811 |
| PQPubID | 85472 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2462224811 crossref_citationtrail_10_1109_TCOMM_2020_3017281 ieee_primary_9169921 crossref_primary_10_1109_TCOMM_2020_3017281 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | khardi (ref50) 2012; 6 ref57 ref13 ref56 ref12 ref59 pham (ref42) 2018 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 beck (ref46) 2018 ref17 ref19 ref18 shokri (ref9) 2015 ref45 ref48 ref47 ref41 (ref25) 2019 ref44 ref43 ref49 ref7 ref4 ref3 ref6 ref5 lee (ref16) 2020 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 brendan mcmahan (ref8) 2016 austin (ref24) 2011; 54 lim (ref15) 2010 ref68 ref67 ref23 ref26 cano (ref37) 2013 ref64 ref20 ref63 ref66 ref22 ref65 ref28 ref27 ref29 greif (ref51) 2017 ref60 ref62 ref61 delamer (ref21) 2017 |
| References_xml | – ident: ref47 doi: 10.1016/j.aml.2010.10.004 – ident: ref23 doi: 10.1109/JPROC.2019.2952892 – ident: ref18 doi: 10.1109/TCOMM.2018.2880468 – ident: ref10 doi: 10.1109/TCYB.2014.2357896 – year: 2013 ident: ref37 article-title: Quadrotor UAV for wind profile characterization – ident: ref38 doi: 10.1109/ACCESS.2020.2977693 – ident: ref53 doi: 10.1016/j.neunet.2015.08.007 – year: 2016 ident: ref8 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: arXiv 1602 05629 – ident: ref43 doi: 10.1145/3301273 – ident: ref13 doi: 10.1109/TWC.2018.2818734 – ident: ref19 doi: 10.1109/TWC.2019.2900035 – ident: ref62 doi: 10.1109/JIOT.2018.2881202 – year: 2017 ident: ref51 article-title: Numerical methods for Hamilton-Jacobi-Bellman equations – ident: ref40 doi: 10.3390/app8112169 – start-page: 1 year: 2017 ident: ref21 article-title: Towards a MOMDP model for UAV safe path planning in urban environment publication-title: Proc 9th Int Micro Air Veh Conf Competition (IMAV) – ident: ref5 doi: 10.4310/CIS.2006.v6.n3.a5 – ident: ref44 doi: 10.1007/978-3-319-60916-4_19 – ident: ref7 doi: 10.1007/s11537-007-0657-8 – ident: ref57 doi: 10.1109/TCOMM.2019.2931583 – start-page: 1310 year: 2015 ident: ref9 article-title: Privacy-preserving deep learning publication-title: Proc 53rd Annu Allerton Conf Commun Control Comput (Allerton) – year: 2018 ident: ref46 article-title: Solving stochastic differential equations and kolmogorov equations by means of deep learning publication-title: arXiv 1806 00421 – ident: ref28 doi: 10.1109/GLOCOM.2018.8648083 – year: 2020 ident: ref16 article-title: Integrating LEO satellite and UAV relaying via reinforcement learning for non-terrestrial networks publication-title: arXiv 2005 12521 – ident: ref34 doi: 10.4018/978-1-4666-9572-6.ch014 – ident: ref64 doi: 10.1109/TAC.2010.2042355 – ident: ref35 doi: 10.1109/TSMC.2014.2318282 – ident: ref49 doi: 10.1017/CBO9780511812248 – ident: ref58 doi: 10.1109/ACDT.2018.8593118 – ident: ref59 doi: 10.1049/iet-spr.2017.0377 – ident: ref65 doi: 10.1109/TAC.2004.825639 – ident: ref41 doi: 10.1177/1729881419891661 – ident: ref31 doi: 10.1109/ACCESS.2019.2933173 – ident: ref12 doi: 10.1007/978-90-481-9707-1 – ident: ref20 doi: 10.1109/CCDC.2018.8407800 – ident: ref4 doi: 10.1109/GLOBECOM38437.2019.9013181 – ident: ref66 doi: 10.1126/scirobotics.aat3536 – ident: ref3 doi: 10.1109/MRA.2009.932529 – ident: ref29 doi: 10.1109/WCNC.2019.8885665 – ident: ref67 doi: 10.1115/1.2896505 – ident: ref22 doi: 10.1109/ACCESS.2019.2911018 – ident: ref61 doi: 10.1109/PESGM.2016.7741754 – ident: ref2 doi: 10.1109/MSPEC.2018.8241731 – ident: ref33 doi: 10.1109/TWC.2019.2892131 – year: 2019 ident: ref25 – volume: 6 start-page: 1221 year: 2012 ident: ref50 article-title: Aircraft flight path optimization. The Hamilton-Jacobi-Bellman considerations publication-title: Appl Math Sci – ident: ref32 doi: 10.1109/JIOT.2018.2887086 – ident: ref26 doi: 10.1109/GLOCOMW.2017.8269068 – ident: ref52 doi: 10.1109/TNN.2007.899249 – year: 2018 ident: ref42 article-title: Autonomous UAV navigation using reinforcement learning publication-title: arXiv 1801 05086 – ident: ref48 doi: 10.1515/mcma-2013-0024 – ident: ref68 doi: 10.1016/j.dsp.2017.10.022 – ident: ref17 doi: 10.1109/TWC.2017.2688328 – ident: ref55 doi: 10.1016/j.ifacol.2018.11.115 – volume: 54 year: 2011 ident: ref24 publication-title: Unmanned Aircraft Systems UAVS Design Development and Deployment – ident: ref11 doi: 10.1109/LWC.2020.2973624 – ident: ref45 doi: 10.3182/20110828-6-IT-1002.03639 – ident: ref30 doi: 10.1109/GLOBECOM38437.2019.9013177 – ident: ref63 doi: 10.1109/TWC.2019.2902559 – ident: ref39 doi: 10.1109/TAES.2013.6494384 – start-page: 1274 year: 2010 ident: ref15 article-title: Path generation algorithm for intelligence, surveillance and reconnaissance of an UAV publication-title: Proc SICE Annu Conf – ident: ref56 doi: 10.1109/GLOCOM.2018.8647927 – ident: ref14 doi: 10.1109/ACCESS.2019.2924720 – ident: ref60 doi: 10.1109/GLOCOMW.2015.7414180 – ident: ref6 doi: 10.1109/TAC.2007.904450 – ident: ref36 doi: 10.1109/MCS.2013.2287568 – ident: ref27 doi: 10.1109/TWC.2019.2926981 – ident: ref1 doi: 10.1109/SPAWC.2018.8445906 – ident: ref54 doi: 10.1109/JAS.2014.7004690 |
| SSID | ssj0004033 |
| Score | 2.6061294 |
| Snippet | This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6840 |
| SubjectTerms | Artificial neural networks Autonomous UAV communication-efficient online path control Computer & video games Control methods Control theory Federated learning Game theory Mathematical model mean-field game Neural networks Real time Real-time systems Sociology Stability analysis Statistics Training Unmanned aerial vehicles |
| Title | Communication-Efficient Massive UAV Online Path Control: Federated Learning Meets Mean-Field Game Theory |
| URI | https://ieeexplore.ieee.org/document/9169921 https://www.proquest.com/docview/2462224811 |
| Volume | 68 |
| WOSCitedRecordID | wos000591819400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0VxAAD34jyJQ9sYEiaD9tsVUVhoIUBEFsUn68wQEFQ-P2cnbRQgZBYogy2FeUlvnfJvXcA-zYh4_WPMnHJQKZljlJbctK0sNSaUqMpCIUvVL-v7-7MVQMOJ1oYIgrFZ3TkT8O_fPeM7_5T2TFTGWO8anxGKVVptb40kFFSO076cnalxwKZyBxfdy57PU4FW5yh-pRHx1NBKHRV-bEVh_jSXfrflS3DYs0jRbsCfgUaNFyFhW_ugqsw74lk5cO8Bg9TShB5GpwjeE3RY_bMO564ad-KyndUXDErFJ2qhv1EdL3dBDNSJ2ov1nvRIxq98bEcyq6vgBNn5ROJSua_Djfd0-vOuay7LEhM8ngksyw3ZYbeyG1AHNzRKpdaKo1FRFMiU3ClB34Ex3JsDTQ5tFGaOHIlYhwlGzA7fB7SJgjMKIvIaqU5yUspt4o4-JFJnLaWw2IT4vFtL7C2IPedMB6LkIpEpghQFR6qooaqCQeTOS-VAcefo9c8OJORNS5N2BmjW9Tv6FvRSnMmR6mO463fZ23DvF-7Uh7uwOzo9Z12YQ4_GLvXvfD4fQJyS9go |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hQAIOQKGILdD6wA1c8uEkNje0YkvVzcJhqbhF8XgWDu2CYOH3d-xkFxCoEpcoBzuJ8hLPm2TeG4B9m5Lx-keZunQkVZ2j1JacNAnWWpMymoJQuF8MBvrqylzMweFMC0NEofiMvvvd8C_f3eKj_1R2xFTGGK8aX8iUSuJGrfWsgozS1nPSF7QXeiqRiczRsHtelpwMJpyj-qRHx6_CUOir8mYxDhGmt_axa1uH1ZZJipMG-k8wR-MNWHnhL7gBy55KNk7Mm3DzSgsiT4N3BB9TlMyfec0Tlye_ReM8Ki6YF4puU8V-LHrecII5qROtG-u1KIkmD7ytx7Lna-DEj_oviUbo_xkue6fD7pls-yxITPN4IrMsN3WG3sptRBze0RZOWaqNRURTI5PwQo_8CI7mmIw0ObSRSh25GjGO0i2YH9-OaRsEZpRFZHWhOc1TlNuCOPyRSZ22lgNjB-Lpba-wNSH3vTD-VCEZiUwVoKo8VFULVQcOZnPuGguO_47e9ODMRra4dGB3im7VvqUPVaJypkdKx_GX92d9g6WzYdmv-j8Hv3Zg2Z-n0SHuwvzk_pH2YBGfGMf7r-FR_AfYg9tv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication-Efficient+Massive+UAV+Online+Path+Control%3A+Federated+Learning+Meets+Mean-Field+Game+Theory&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shiri%2C+Hamid&rft.au=Park%2C+Jihong&rft.au=Bennis%2C+Mehdi&rft.date=2020-11-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=68&rft.issue=11&rft.spage=6840&rft.epage=6857&rft_id=info:doi/10.1109%2FTCOMM.2020.3017281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2020_3017281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |