Communication-Efficient Massive UAV Online Path Control: Federated Learning Meets Mean-Field Game Theory

This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the interactions among them to make a flock requires a huge inter-UAV communication which is impossible to implement in real-time applications. One method...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 68; číslo 11; s. 6840 - 6857
Hlavní autoři: Shiri, Hamid, Park, Jihong, Bennis, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the interactions among them to make a flock requires a huge inter-UAV communication which is impossible to implement in real-time applications. One method of control is to apply the mean field game (MFG) framework which substantially reduces communications among the UAVs. However, to realize this framework, powerful processors are required to obtain the control laws at different UAVs. This requirement limits the usage of the MFG framework for real-time applications such as massive UAV control. Thus, a function approximator based on neural networks (NN) is utilized to approximate the solutions of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations. Nevertheless, using an approximate solution can violate the conditions for convergence of the MFG framework. Therefore, the federated learning (FL) approach which can share the model parameters of NNs at drones, is proposed with NN based MFG to satisfy the required conditions. The stability analysis of the NN based MFG approach is presented and the performance of the proposed FL-MFG is elaborated by the simulations.
AbstractList This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the interactions among them to make a flock requires a huge inter-UAV communication which is impossible to implement in real-time applications. One method of control is to apply the mean field game (MFG) framework which substantially reduces communications among the UAVs. However, to realize this framework, powerful processors are required to obtain the control laws at different UAVs. This requirement limits the usage of the MFG framework for real-time applications such as massive UAV control. Thus, a function approximator based on neural networks (NN) is utilized to approximate the solutions of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations. Nevertheless, using an approximate solution can violate the conditions for convergence of the MFG framework. Therefore, the federated learning (FL) approach which can share the model parameters of NNs at drones, is proposed with NN based MFG to satisfy the required conditions. The stability analysis of the NN based MFG approach is presented and the performance of the proposed FL-MFG is elaborated by the simulations.
Author Park, Jihong
Shiri, Hamid
Bennis, Mehdi
Author_xml – sequence: 1
  givenname: Hamid
  orcidid: 0000-0003-4661-5126
  surname: Shiri
  fullname: Shiri, Hamid
  email: hamid.shiri@oulu.fi
  organization: Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 2
  givenname: Jihong
  orcidid: 0000-0001-7623-6552
  surname: Park
  fullname: Park, Jihong
  email: jihong.park@deakin.edu.au
  organization: School of Information Technology, Deakin University, Geelong, VIC, Australia
– sequence: 3
  givenname: Mehdi
  orcidid: 0000-0003-0261-0171
  surname: Bennis
  fullname: Bennis, Mehdi
  email: mehdi.bennis@oulu.fi
  organization: Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
BookMark eNp9kD1PwzAQhi1UJMrHH4DFEnPK2fly2FBEAalRGQpr5DgXapTYxXaR-u9JKWJgYLn3hve5k55TMjHWICGXDGaMQXGzKpdVNePAYRYDy7lgR2TK0lREINJ8QqYABURZnosTcur9OwAkEMdTsi7tMGyNVjJoa6L7rtNKowm0kt7rT6Qvd690aXptkD7LsKalNcHZ_pbOsUUnA7Z0gdIZbd5ohRj8OKWJ5hr7lj7IAelqjdbtzslxJ3uPFz95Rl7m96vyMVosH57Ku0Wk4oyFKE2zQqbjnkOHGYtVk7dJg7JolFKFVELwXHT7Bs8yxTuBrWogiVtspVIM4jNyfbi7cfZjiz7U73brzPiy5knGOU8EY2NLHFrKWe8ddrXS4VtBcFL3NYN677X-9lrvvdY_XkeU_0E3Tg_S7f6Hrg6QRsRfoGBZUXAWfwHNk4ar
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_JSAC_2021_3088655
crossref_primary_10_1109_COMST_2024_3393369
crossref_primary_10_1016_j_automatica_2022_110655
crossref_primary_10_1109_TNSE_2020_3048137
crossref_primary_10_3390_s23218766
crossref_primary_10_1109_JIOT_2024_3409610
crossref_primary_10_1016_j_knosys_2025_113212
crossref_primary_10_1016_j_comcom_2023_07_041
crossref_primary_10_1016_j_comnet_2023_110085
crossref_primary_10_1016_j_jnca_2022_103495
crossref_primary_10_1109_JIOT_2023_3268316
crossref_primary_10_1016_j_apenergy_2023_122107
crossref_primary_10_1109_TIE_2023_3325582
crossref_primary_10_3390_s22186995
crossref_primary_10_1109_TITS_2024_3375893
crossref_primary_10_3390_drones9070484
crossref_primary_10_1109_JPROC_2021_3055679
crossref_primary_10_1109_ACCESS_2025_3586800
crossref_primary_10_1109_TVT_2021_3065084
crossref_primary_10_1109_TVT_2025_3526809
crossref_primary_10_1016_j_neucom_2024_127545
crossref_primary_10_1038_s41598_024_71844_y
crossref_primary_10_3390_s22145437
crossref_primary_10_1109_TCOMM_2022_3220870
crossref_primary_10_3390_s23135787
crossref_primary_10_1109_JSYST_2022_3215279
crossref_primary_10_1038_s41928_022_00728_8
crossref_primary_10_1109_TGCN_2021_3132561
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1049_cmu2_12857
crossref_primary_10_1002_rob_22157
crossref_primary_10_1007_s13369_021_05932_w
crossref_primary_10_1007_s11227_023_05810_2
crossref_primary_10_1109_COMST_2021_3075439
crossref_primary_10_1109_COMST_2021_3058573
crossref_primary_10_1109_JSTSP_2022_3156756
crossref_primary_10_1145_3447853_3447857
crossref_primary_10_1109_JIOT_2022_3233087
crossref_primary_10_1109_JIOT_2023_3341307
crossref_primary_10_1109_TWC_2021_3126147
crossref_primary_10_1109_JIOT_2024_3414501
crossref_primary_10_1109_JPROC_2023_3328920
crossref_primary_10_3390_electronics11030309
crossref_primary_10_1109_TVT_2023_3258841
crossref_primary_10_1109_ACCESS_2023_3323399
crossref_primary_10_1109_COMST_2024_3423319
crossref_primary_10_1109_TSP_2023_3268845
crossref_primary_10_1109_ACCESS_2023_3273123
crossref_primary_10_1016_j_ins_2025_122432
crossref_primary_10_1109_ACCESS_2022_3210337
crossref_primary_10_1016_j_comnet_2023_109650
crossref_primary_10_1109_TWC_2025_3555136
crossref_primary_10_1109_TWC_2022_3183996
crossref_primary_10_1007_s10489_022_04065_3
crossref_primary_10_3390_drones9080528
crossref_primary_10_1016_j_ast_2025_110378
crossref_primary_10_1016_j_rineng_2024_103295
crossref_primary_10_1007_s12204_021_2382_5
crossref_primary_10_1177_01423312221124067
crossref_primary_10_1109_MNET_111_2100044
Cites_doi 10.1016/j.aml.2010.10.004
10.1109/JPROC.2019.2952892
10.1109/TCOMM.2018.2880468
10.1109/TCYB.2014.2357896
10.1109/ACCESS.2020.2977693
10.1016/j.neunet.2015.08.007
10.1145/3301273
10.1109/TWC.2018.2818734
10.1109/TWC.2019.2900035
10.1109/JIOT.2018.2881202
10.3390/app8112169
10.4310/CIS.2006.v6.n3.a5
10.1007/978-3-319-60916-4_19
10.1007/s11537-007-0657-8
10.1109/TCOMM.2019.2931583
10.1109/GLOCOM.2018.8648083
10.4018/978-1-4666-9572-6.ch014
10.1109/TAC.2010.2042355
10.1109/TSMC.2014.2318282
10.1017/CBO9780511812248
10.1109/ACDT.2018.8593118
10.1049/iet-spr.2017.0377
10.1109/TAC.2004.825639
10.1177/1729881419891661
10.1109/ACCESS.2019.2933173
10.1007/978-90-481-9707-1
10.1109/CCDC.2018.8407800
10.1109/GLOBECOM38437.2019.9013181
10.1126/scirobotics.aat3536
10.1109/MRA.2009.932529
10.1109/WCNC.2019.8885665
10.1115/1.2896505
10.1109/ACCESS.2019.2911018
10.1109/PESGM.2016.7741754
10.1109/MSPEC.2018.8241731
10.1109/TWC.2019.2892131
10.1109/JIOT.2018.2887086
10.1109/GLOCOMW.2017.8269068
10.1109/TNN.2007.899249
10.1515/mcma-2013-0024
10.1016/j.dsp.2017.10.022
10.1109/TWC.2017.2688328
10.1016/j.ifacol.2018.11.115
10.1109/LWC.2020.2973624
10.3182/20110828-6-IT-1002.03639
10.1109/GLOBECOM38437.2019.9013177
10.1109/TWC.2019.2902559
10.1109/TAES.2013.6494384
10.1109/GLOCOM.2018.8647927
10.1109/ACCESS.2019.2924720
10.1109/GLOCOMW.2015.7414180
10.1109/TAC.2007.904450
10.1109/MCS.2013.2287568
10.1109/TWC.2019.2926981
10.1109/SPAWC.2018.8445906
10.1109/JAS.2014.7004690
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2020.3017281
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1558-0857
EndPage 6857
ExternalDocumentID 10_1109_TCOMM_2020_3017281
9169921
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c361t-5569a5c3670fe613cb7d4bea9bccc9ac88278fa5c3266c2f8edcb043dedacc103
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591819400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:19:34 EDT 2025
Sat Nov 29 04:08:19 EST 2025
Tue Nov 18 21:32:52 EST 2025
Wed Aug 27 02:29:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-5569a5c3670fe613cb7d4bea9bccc9ac88278fa5c3266c2f8edcb043dedacc103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0261-0171
0000-0003-4661-5126
0000-0001-7623-6552
PQID 2462224811
PQPubID 85472
PageCount 18
ParticipantIDs proquest_journals_2462224811
crossref_citationtrail_10_1109_TCOMM_2020_3017281
ieee_primary_9169921
crossref_primary_10_1109_TCOMM_2020_3017281
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References khardi (ref50) 2012; 6
ref57
ref13
ref56
ref12
ref59
pham (ref42) 2018
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
beck (ref46) 2018
ref17
ref19
ref18
shokri (ref9) 2015
ref45
ref48
ref47
ref41
(ref25) 2019
ref44
ref43
ref49
ref7
ref4
ref3
ref6
ref5
lee (ref16) 2020
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
brendan mcmahan (ref8) 2016
austin (ref24) 2011; 54
lim (ref15) 2010
ref68
ref67
ref23
ref26
cano (ref37) 2013
ref64
ref20
ref63
ref66
ref22
ref65
ref28
ref27
ref29
greif (ref51) 2017
ref60
ref62
ref61
delamer (ref21) 2017
References_xml – ident: ref47
  doi: 10.1016/j.aml.2010.10.004
– ident: ref23
  doi: 10.1109/JPROC.2019.2952892
– ident: ref18
  doi: 10.1109/TCOMM.2018.2880468
– ident: ref10
  doi: 10.1109/TCYB.2014.2357896
– year: 2013
  ident: ref37
  article-title: Quadrotor UAV for wind profile characterization
– ident: ref38
  doi: 10.1109/ACCESS.2020.2977693
– ident: ref53
  doi: 10.1016/j.neunet.2015.08.007
– year: 2016
  ident: ref8
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: arXiv 1602 05629
– ident: ref43
  doi: 10.1145/3301273
– ident: ref13
  doi: 10.1109/TWC.2018.2818734
– ident: ref19
  doi: 10.1109/TWC.2019.2900035
– ident: ref62
  doi: 10.1109/JIOT.2018.2881202
– year: 2017
  ident: ref51
  article-title: Numerical methods for Hamilton-Jacobi-Bellman equations
– ident: ref40
  doi: 10.3390/app8112169
– start-page: 1
  year: 2017
  ident: ref21
  article-title: Towards a MOMDP model for UAV safe path planning in urban environment
  publication-title: Proc 9th Int Micro Air Veh Conf Competition (IMAV)
– ident: ref5
  doi: 10.4310/CIS.2006.v6.n3.a5
– ident: ref44
  doi: 10.1007/978-3-319-60916-4_19
– ident: ref7
  doi: 10.1007/s11537-007-0657-8
– ident: ref57
  doi: 10.1109/TCOMM.2019.2931583
– start-page: 1310
  year: 2015
  ident: ref9
  article-title: Privacy-preserving deep learning
  publication-title: Proc 53rd Annu Allerton Conf Commun Control Comput (Allerton)
– year: 2018
  ident: ref46
  article-title: Solving stochastic differential equations and kolmogorov equations by means of deep learning
  publication-title: arXiv 1806 00421
– ident: ref28
  doi: 10.1109/GLOCOM.2018.8648083
– year: 2020
  ident: ref16
  article-title: Integrating LEO satellite and UAV relaying via reinforcement learning for non-terrestrial networks
  publication-title: arXiv 2005 12521
– ident: ref34
  doi: 10.4018/978-1-4666-9572-6.ch014
– ident: ref64
  doi: 10.1109/TAC.2010.2042355
– ident: ref35
  doi: 10.1109/TSMC.2014.2318282
– ident: ref49
  doi: 10.1017/CBO9780511812248
– ident: ref58
  doi: 10.1109/ACDT.2018.8593118
– ident: ref59
  doi: 10.1049/iet-spr.2017.0377
– ident: ref65
  doi: 10.1109/TAC.2004.825639
– ident: ref41
  doi: 10.1177/1729881419891661
– ident: ref31
  doi: 10.1109/ACCESS.2019.2933173
– ident: ref12
  doi: 10.1007/978-90-481-9707-1
– ident: ref20
  doi: 10.1109/CCDC.2018.8407800
– ident: ref4
  doi: 10.1109/GLOBECOM38437.2019.9013181
– ident: ref66
  doi: 10.1126/scirobotics.aat3536
– ident: ref3
  doi: 10.1109/MRA.2009.932529
– ident: ref29
  doi: 10.1109/WCNC.2019.8885665
– ident: ref67
  doi: 10.1115/1.2896505
– ident: ref22
  doi: 10.1109/ACCESS.2019.2911018
– ident: ref61
  doi: 10.1109/PESGM.2016.7741754
– ident: ref2
  doi: 10.1109/MSPEC.2018.8241731
– ident: ref33
  doi: 10.1109/TWC.2019.2892131
– year: 2019
  ident: ref25
– volume: 6
  start-page: 1221
  year: 2012
  ident: ref50
  article-title: Aircraft flight path optimization. The Hamilton-Jacobi-Bellman considerations
  publication-title: Appl Math Sci
– ident: ref32
  doi: 10.1109/JIOT.2018.2887086
– ident: ref26
  doi: 10.1109/GLOCOMW.2017.8269068
– ident: ref52
  doi: 10.1109/TNN.2007.899249
– year: 2018
  ident: ref42
  article-title: Autonomous UAV navigation using reinforcement learning
  publication-title: arXiv 1801 05086
– ident: ref48
  doi: 10.1515/mcma-2013-0024
– ident: ref68
  doi: 10.1016/j.dsp.2017.10.022
– ident: ref17
  doi: 10.1109/TWC.2017.2688328
– ident: ref55
  doi: 10.1016/j.ifacol.2018.11.115
– volume: 54
  year: 2011
  ident: ref24
  publication-title: Unmanned Aircraft Systems UAVS Design Development and Deployment
– ident: ref11
  doi: 10.1109/LWC.2020.2973624
– ident: ref45
  doi: 10.3182/20110828-6-IT-1002.03639
– ident: ref30
  doi: 10.1109/GLOBECOM38437.2019.9013177
– ident: ref63
  doi: 10.1109/TWC.2019.2902559
– ident: ref39
  doi: 10.1109/TAES.2013.6494384
– start-page: 1274
  year: 2010
  ident: ref15
  article-title: Path generation algorithm for intelligence, surveillance and reconnaissance of an UAV
  publication-title: Proc SICE Annu Conf
– ident: ref56
  doi: 10.1109/GLOCOM.2018.8647927
– ident: ref14
  doi: 10.1109/ACCESS.2019.2924720
– ident: ref60
  doi: 10.1109/GLOCOMW.2015.7414180
– ident: ref6
  doi: 10.1109/TAC.2007.904450
– ident: ref36
  doi: 10.1109/MCS.2013.2287568
– ident: ref27
  doi: 10.1109/TWC.2019.2926981
– ident: ref1
  doi: 10.1109/SPAWC.2018.8445906
– ident: ref54
  doi: 10.1109/JAS.2014.7004690
SSID ssj0004033
Score 2.6061294
Snippet This paper investigates the control of a massive population of UAVs such as drones. The straightforward method of control of UAVs by considering the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6840
SubjectTerms Artificial neural networks
Autonomous UAV
communication-efficient online path control
Computer & video games
Control methods
Control theory
Federated learning
Game theory
Mathematical model
mean-field game
Neural networks
Real time
Real-time systems
Sociology
Stability analysis
Statistics
Training
Unmanned aerial vehicles
Title Communication-Efficient Massive UAV Online Path Control: Federated Learning Meets Mean-Field Game Theory
URI https://ieeexplore.ieee.org/document/9169921
https://www.proquest.com/docview/2462224811
Volume 68
WOSCitedRecordID wos000591819400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0VxAAD34jyJQ9sYEiaD9tsVUVhoIUBEFsUn68wQEFQ-P2cnbRQgZBYogy2FeUlvnfJvXcA-zYh4_WPMnHJQKZljlJbctK0sNSaUqMpCIUvVL-v7-7MVQMOJ1oYIgrFZ3TkT8O_fPeM7_5T2TFTGWO8anxGKVVptb40kFFSO076cnalxwKZyBxfdy57PU4FW5yh-pRHx1NBKHRV-bEVh_jSXfrflS3DYs0jRbsCfgUaNFyFhW_ugqsw74lk5cO8Bg9TShB5GpwjeE3RY_bMO564ad-KyndUXDErFJ2qhv1EdL3dBDNSJ2ov1nvRIxq98bEcyq6vgBNn5ROJSua_Djfd0-vOuay7LEhM8ngksyw3ZYbeyG1AHNzRKpdaKo1FRFMiU3ClB34Ex3JsDTQ5tFGaOHIlYhwlGzA7fB7SJgjMKIvIaqU5yUspt4o4-JFJnLaWw2IT4vFtL7C2IPedMB6LkIpEpghQFR6qooaqCQeTOS-VAcefo9c8OJORNS5N2BmjW9Tv6FvRSnMmR6mO463fZ23DvF-7Uh7uwOzo9Z12YQ4_GLvXvfD4fQJyS9go
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hQAIOQKGILdD6wA1c8uEkNje0YkvVzcJhqbhF8XgWDu2CYOH3d-xkFxCoEpcoBzuJ8hLPm2TeG4B9m5Lx-keZunQkVZ2j1JacNAnWWpMymoJQuF8MBvrqylzMweFMC0NEofiMvvvd8C_f3eKj_1R2xFTGGK8aX8iUSuJGrfWsgozS1nPSF7QXeiqRiczRsHtelpwMJpyj-qRHx6_CUOir8mYxDhGmt_axa1uH1ZZJipMG-k8wR-MNWHnhL7gBy55KNk7Mm3DzSgsiT4N3BB9TlMyfec0Tlye_ReM8Ki6YF4puU8V-LHrecII5qROtG-u1KIkmD7ytx7Lna-DEj_oviUbo_xkue6fD7pls-yxITPN4IrMsN3WG3sptRBze0RZOWaqNRURTI5PwQo_8CI7mmIw0ObSRSh25GjGO0i2YH9-OaRsEZpRFZHWhOc1TlNuCOPyRSZ22lgNjB-Lpba-wNSH3vTD-VCEZiUwVoKo8VFULVQcOZnPuGguO_47e9ODMRra4dGB3im7VvqUPVaJypkdKx_GX92d9g6WzYdmv-j8Hv3Zg2Z-n0SHuwvzk_pH2YBGfGMf7r-FR_AfYg9tv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication-Efficient+Massive+UAV+Online+Path+Control%3A+Federated+Learning+Meets+Mean-Field+Game+Theory&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shiri%2C+Hamid&rft.au=Park%2C+Jihong&rft.au=Bennis%2C+Mehdi&rft.date=2020-11-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=68&rft.issue=11&rft.spage=6840&rft.epage=6857&rft_id=info:doi/10.1109%2FTCOMM.2020.3017281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2020_3017281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon