Hyperspectral Data Compression Using Fully Convolutional Autoencoder

In space science and satellite imagery, better resolution of the data information obtained makes images clearer and interpretation more accurate. However, the huge data volume gained by the complex on-board satellite instruments becomes a problem that needs to be managed carefully. To reduce the dat...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 14; no. 10; p. 2472
Main Authors: La Grassa, Riccardo, Re, Cristina, Cremonese, Gabriele, Gallo, Ignazio
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.05.2022
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In space science and satellite imagery, better resolution of the data information obtained makes images clearer and interpretation more accurate. However, the huge data volume gained by the complex on-board satellite instruments becomes a problem that needs to be managed carefully. To reduce the data volume to be stored and transmitted on-ground, the signals received should be compressed, allowing a good original source representation in the reconstruction step. Image compression covers a key role in space science and satellite imagery and, recently, deep learning models have achieved remarkable results in computer vision. In this paper, we propose a spectral signals compressor network based on deep convolutional autoencoder (SSCNet) and we conduct experiments over multi/hyperspectral and RGB datasets reporting improvements over all baselines used as benchmarks and than the JPEG family algorithm. Experimental results demonstrate the effectiveness in the compression ratio and spectral signal reconstruction and the robustness with a data type greater than 8 bits, clearly exhibiting better results using the PSNR, SSIM, and MS-SSIM evaluation criteria.
AbstractList In space science and satellite imagery, better resolution of the data information obtained makes images clearer and interpretation more accurate. However, the huge data volume gained by the complex on-board satellite instruments becomes a problem that needs to be managed carefully. To reduce the data volume to be stored and transmitted on-ground, the signals received should be compressed, allowing a good original source representation in the reconstruction step. Image compression covers a key role in space science and satellite imagery and, recently, deep learning models have achieved remarkable results in computer vision. In this paper, we propose a spectral signals compressor network based on deep convolutional autoencoder (SSCNet) and we conduct experiments over multi/hyperspectral and RGB datasets reporting improvements over all baselines used as benchmarks and than the JPEG family algorithm. Experimental results demonstrate the effectiveness in the compression ratio and spectral signal reconstruction and the robustness with a data type greater than 8 bits, clearly exhibiting better results using the PSNR, SSIM, and MS-SSIM evaluation criteria.
Author Gallo, Ignazio
Re, Cristina
Cremonese, Gabriele
La Grassa, Riccardo
Author_xml – sequence: 1
  givenname: Riccardo
  orcidid: 0000-0002-4355-0366
  surname: La Grassa
  fullname: La Grassa, Riccardo
– sequence: 2
  givenname: Cristina
  surname: Re
  fullname: Re, Cristina
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0001-9021-1140
  surname: Cremonese
  fullname: Cremonese, Gabriele
– sequence: 4
  givenname: Ignazio
  orcidid: 0000-0002-7076-8328
  surname: Gallo
  fullname: Gallo, Ignazio
BookMark eNptkF1LwzAYhYNMcM7d-AsK3gnVfDVpLsfm3GDgjbsOaZKOjq6pSSrs35s5RRFzk3B4znnfnGsw6lxnAbhF8IEQAR99QBRBTDm-AGMMOc4pFnj0630FpiHsYTqEIAHpGCxWx9760FsdvWqzhYoqm7tD720IjeuybWi6XbYc2vaY9O7dtUNMekJnQ3S2085YfwMua9UGO_26J2C7fHqdr_LNy_N6PtvkmjAU86KgpRG8rqoC0YrWjFOstCg55ErVzJSkrBAyuMC65IbWpLKCJlBowxgXhkzA-pxrnNrL3jcH5Y_SqUZ-Cs7vpPKx0a2V1BCmBEUE65ShdIkY5BYyYWGZJtmUdXfO6r17G2yIcu8Gnz4WJGYcEsHLokgUPFPauxC8raVuojo1kOpqWomgPFUvf6pPlvs_lu9F_4E_AOO2hH4
CitedBy_id crossref_primary_10_1109_TGRS_2023_3328222
crossref_primary_10_1016_j_sigpro_2025_110270
crossref_primary_10_1109_OJCOMS_2025_3537105
crossref_primary_10_1109_TGRS_2024_3509718
crossref_primary_10_1007_s41870_024_02244_8
crossref_primary_10_1051_epjconf_202429509023
crossref_primary_10_1109_TGRS_2024_3465043
crossref_primary_10_1109_ACCESS_2024_3456914
crossref_primary_10_1016_j_foodcont_2025_111606
crossref_primary_10_3390_rs16173258
crossref_primary_10_3390_electronics13091700
crossref_primary_10_1007_s11831_025_10260_5
crossref_primary_10_1109_TGRS_2024_3483312
crossref_primary_10_1109_TGRS_2024_3483871
crossref_primary_10_1117_1_JRS_17_046509
crossref_primary_10_1038_s41598_025_96282_2
crossref_primary_10_1109_TGRS_2025_3596240
crossref_primary_10_1109_JSTARS_2025_3584931
crossref_primary_10_1016_j_knosys_2025_112996
crossref_primary_10_3390_rs15184422
crossref_primary_10_1016_j_jfranklin_2024_107056
crossref_primary_10_1109_TGRS_2023_3282186
crossref_primary_10_1109_LGRS_2025_3554269
crossref_primary_10_3390_rs15184460
crossref_primary_10_1007_s11242_025_02190_4
Cites_doi 10.1007/978-3-030-58539-6_11
10.3390/rs13050839
10.3390/ijgi10070483
10.1109/ICCVW54120.2021.00217
10.1109/TCSVT.2020.3010627
10.1109/TIP.2020.2970248
10.3390/rs12213657
10.1145/3158369
10.2514/6.2016-5539
10.3390/rs11121417
10.1016/j.oregeorev.2018.10.006
10.1007/s11214-006-9127-5
10.1109/PCS.2018.8456308
10.1109/LGRS.2015.2499239
10.1016/j.neucom.2021.11.022
10.1109/TIP.2003.819861
10.1146/annurev-bioeng-071516-044442
10.1109/30.125072
10.1109/CVPR.2017.577
10.1109/ACCESS.2018.2818280
10.1145/3194085.3194087
10.1007/978-3-642-35289-8_3
10.1038/d41586-018-02174-z
10.1109/30.920468
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14102472
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4d36a94132c944ac81607e069e086d8e
10_3390_rs14102472
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-5548d97fbb514b4f6742ac98707aaf6d838b11d252c87d4f3be944b49cd6679d3
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801407300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:35:09 EST 2025
Fri Jul 25 09:34:45 EDT 2025
Sat Nov 29 07:12:24 EST 2025
Tue Nov 18 22:38:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-5548d97fbb514b4f6742ac98707aaf6d838b11d252c87d4f3be944b49cd6679d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4355-0366
0000-0001-9021-1140
0000-0002-7076-8328
OpenAccessLink https://doaj.org/article/4d36a94132c944ac81607e069e086d8e
PQID 2670397855
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4d36a94132c944ac81607e069e086d8e
proquest_journals_2670397855
crossref_citationtrail_10_3390_rs14102472
crossref_primary_10_3390_rs14102472
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
Zhang (ref_11) 2019; 52
ref_33
ref_10
ref_32
ref_30
Marmanis (ref_16) 2015; 13
Sun (ref_4) 2020; 29
ref_19
ref_15
Christopoulos (ref_18) 2000; 46
ref_37
Mishra (ref_21) 2020; 31
Palsson (ref_23) 2018; 6
Shen (ref_6) 2017; 19
Webb (ref_5) 2018; 554
Wallace (ref_17) 1992; 38
ref_25
ref_24
ref_22
ref_20
Gallo (ref_1) 2022; 470
ref_3
ref_2
ref_29
ref_28
ref_26
Wang (ref_38) 2004; 13
ref_9
Vahdat (ref_27) 2020; 33
ref_8
Xiong (ref_7) 2018; 102
Coradini (ref_31) 2007; 128
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_2
  doi: 10.1007/978-3-030-58539-6_11
– ident: ref_15
  doi: 10.3390/rs13050839
– ident: ref_32
– ident: ref_8
  doi: 10.3390/ijgi10070483
– ident: ref_3
  doi: 10.1109/ICCVW54120.2021.00217
– ident: ref_26
– ident: ref_34
– volume: 31
  start-page: 1452
  year: 2020
  ident: ref_21
  article-title: Wavelet-based deep auto encoder-decoder (wdaed)-based image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3010627
– volume: 29
  start-page: 4027
  year: 2020
  ident: ref_4
  article-title: Learned image downscaling for upscaling using content adaptive resampler
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2970248
– ident: ref_24
  doi: 10.3390/rs12213657
– volume: 33
  start-page: 19667
  year: 2020
  ident: ref_27
  article-title: Nvae: A deep hierarchical variational autoencoder
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_37
– ident: ref_14
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_11
  article-title: Deep learning based recommender system: A survey and new perspectives
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3158369
– ident: ref_9
  doi: 10.2514/6.2016-5539
– ident: ref_36
  doi: 10.3390/rs11121417
– volume: 102
  start-page: 811
  year: 2018
  ident: ref_7
  article-title: Mapping mineral prospectivity through big data analytics and a deep learning algorithm
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 128
  start-page: 529
  year: 2007
  ident: ref_31
  article-title: VIRTIS: An imaging spectrometer for the Rosetta mission
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-006-9127-5
– ident: ref_13
  doi: 10.1109/PCS.2018.8456308
– volume: 13
  start-page: 105
  year: 2015
  ident: ref_16
  article-title: Deep learning earth observation classification using ImageNet pretrained networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2499239
– volume: 470
  start-page: 217
  year: 2022
  ident: ref_1
  article-title: σ2R loss: A weighted loss by multiplicative factors using sigmoidal functions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.11.022
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_38
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_29
– ident: ref_33
– ident: ref_12
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_6
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 38
  start-page: xviii
  year: 1992
  ident: ref_17
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.125072
– ident: ref_25
  doi: 10.1109/CVPR.2017.577
– volume: 6
  start-page: 25646
  year: 2018
  ident: ref_23
  article-title: Hyperspectral unmixing using a neural network autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818280
– ident: ref_10
  doi: 10.1145/3194085.3194087
– ident: ref_35
  doi: 10.1007/978-3-642-35289-8_3
– volume: 554
  start-page: 555
  year: 2018
  ident: ref_5
  article-title: Deep learning for biology
  publication-title: Nature
  doi: 10.1038/d41586-018-02174-z
– volume: 46
  start-page: 1103
  year: 2000
  ident: ref_18
  article-title: The JPEG2000 still image coding system: An overview
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.920468
– ident: ref_19
– ident: ref_22
– ident: ref_20
SSID ssj0000331904
Score 2.5055184
Snippet In space science and satellite imagery, better resolution of the data information obtained makes images clearer and interpretation more accurate. However, the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2472
SubjectTerms Algorithms
Approximation
autoencoder
Benchmarks
Compression
Compression ratio
Computer vision
Data compression
Datasets
Deep learning
Image compression
Image processing
Image reconstruction
Machine learning
Neural networks
Noise
Remote sensing
Satellite imagery
satellite images
Satellite instruments
Satellites
Signal reconstruction
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STaG5NOmLbpMWQ3PpwcSWZD1OpXmRQ1lCSUJuRtajLRRv6nUC-feZsbUbSkouufggD8Z4RqPvk0ffAOxGFUofbcyjVzIXFi-a2ZBLXtiC-UaXQ9O-i-9qNtOXl-Y0bbgtUlnlMicOidrPHe2R7zGJsYmUp6q-Xv3NqWsU_V1NLTSewToplYkJrO8fzU5_rHZZCo4hVohRl5Qjv9_rFlTZyIRi_6xEg2D_g3w8LDLHm099vS14meBl9m2Mh1ewFtrX8CJ1Ov91-wYOT5B4jucrOzQ8tL3NKCeM5bBtNpQQZERMb3G8vUmRSc-87uekeulD9xbOj4_ODk7y1Ekhd1yWfY6YQXujYtMgPmpElEiIrTM4V5W1UXrNdVOWnlXMaeVF5E0wAg2N81Iq4_k7mLTzNryHjGlCGVUIVUSoJRQSXAJ1zCBU0q7kU_iy_Kq1SzLj1O3iT410gzxQ33tgCp9XtlejuMZ_rfbJOSsLEsQeBubdzzrNr1p4Lq3BFZk5fHPrNAnnhUKagJzN6zCFnaXf6jRLF_W90z48fnsbNhgdexgKHXdg0nfX4SM8dzf970X3KQXdHSXC4Ak
  priority: 102
  providerName: ProQuest
Title Hyperspectral Data Compression Using Fully Convolutional Autoencoder
URI https://www.proquest.com/docview/2670397855
https://doaj.org/article/4d36a94132c944ac81607e069e086d8e
Volume 14
WOSCitedRecordID wos000801407300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS9xAFB9EhfYiVVu6dbsE9NJD2M3MZD6O1V1ZQZdgVWwvYTIfKEi2ZLMLe-nf3veSaC0WvPQyh8kjH29m3vx-5M3vEXIUpE9cMCEOToqYG2gUNT4WbGRG1BUqaYr23ZzL2Uzd3ursWakvzAlr5YFbxw25Y8JoCLXUas6NVaiI5kdCewDjTnmMvoB6npGpJgYzmFoj3uqRMuD1w2qBGY2US_rXDtQI9b-Iw83mcvqO7HSoMPravs0u2fDlHnnTFSi_W--T8RT4YnsssgLDsalNhEu5zWIto-bPf4R8cg395aqbUHjPZT1HsUrnq_fk-nRydTKNuwIIsWUiqWPY6pXTMhQFwJqCBwE81lgNS0waE-DrmSqSxNGUWiUdD6zw4KOCa-uEkNqxD2SznJf-I4moQnCQep8GQEhcAi9FLEY1IBxlE9YjXx6dkttOHRyLVDzkwBLQgfkfB_bI4ZPtz1YT459Wx-jbJwvUsW46YHTzbnTz10a3R_qPI5N3i2uRUwFhCthvmn76H884IG8pnmloshj7ZLOulv4z2bar-n5RDcjW8WSWXQ6a-TXA1NBv2P6aQJulP-B6dnaRff8NY1TWAg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKm9lLeaUsAScOBg1d5d7-OAEBCqRE2jHAoqJ7PeB62EnOK4RflT_EZm_UiFQNx64OKDPVrZns-z37eenQF44YVLrdc-9lbwmGk8SKJdzGmiE2ILmTZN-z5NxWwmT0_VfAN-9nthQlplHxObQG0XJqyRHxCO2ETJk2VvLr7HoWtU-Lvat9BoYXHkVj9Qsi1fT0bo35eEHH44eT-Ou64CsaE8rWOcP6VVwhcFcoWCeY7iUBuU3onQ2nMrqSzS1JKMGCks87RwiqGhMpZzoSzFcW_BJkOwywFszifH88_rVZ2EIqQT1tZBpVQlB9UyZFISJshvM1_TIOCP-N9Maod3_rfXcRd2OvocvW3xfg82XHkftrpO7merBzAao7Bu949WaDjStY5CzGvTfcuoSZGIgvBe4fnyqvvywpiX9SJU9bSueggfb-QhHsGgXJRuFyIiA4vKnMs8UkkmUMAH0koUUkFpUjqEV70Xc9OVUQ_dPL7lKKeCx_Nrjw_h-dr2oi0e8lerdwEMa4tQ8Ls5sai-5l38yJmlXCtkHMTgnWsjQ2FAl3DlUJNa6Yaw3-Mk76LQMr8Gyd6_Lz-DrfHJ8TSfTmZHj2GbhC0eTVLnPgzq6tI9gdvmqj5fVk87wEfw5aZB9QvfIDy3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VbQW9QMtDbCkQqXDgEG1iJ34cEGq7rFq1Wq0QoN6C4wcgoWybTVvtX-PXMU6crRCIWw9ccnBGVpL5PDOfM54BeOW4TY1TLnaGszhTeBFE2ZjRRCXElCJtm_Z9PuXTqTg7k7M1-NmfhfFplb1NbA21mWu_Rz4iDLGJlCfPRy6kRczGk3fnF7HvIOX_tPbtNDqInNjlNdK3xdvjMer6NSGT9x8Pj-LQYSDWlKVNjL5UGMldWWLcUGaOIVFUGml4wpVyzAgqyjQ1JCdacJM5WlqZoaDUhjEuDcV578C6wGcjA1ifHR7sf1jt8CQU4Z1kXU1USmUyqhc-q5JknPzmBdtmAX_4gtbBTR78z59mC-6HsDra79bBNqzZ6iHcCx3evy0fwfgICXd3rrRGwbFqVORtYZcGXEVt6kTkCfkSx6ursCL9nJfN3Ff7NLZ-DJ9u5SWewKCaV_YpRET46Cq3NncYYmYcib0PZonEEFHolA7hTa_RQofy6r7Lx48CaZbXfnGj_SHsrWTPu6Iif5U68MBYSfhC4O3AvP5aBLtSZIYyJTESIRqfXGnhCwbahEmLXNUIO4TdHjNFsE6L4gYwO_--_RLuIpKK0-PpyTPYJP7kR5vruQuDpr60z2FDXzXfF_WLgP0Ivtw2pn4BQ_JFJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Data+Compression+Using+Fully+Convolutional+Autoencoder&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Riccardo+La+Grassa&rft.au=Cristina+Re&rft.au=Gabriele+Cremonese&rft.au=Ignazio+Gallo&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=10&rft.spage=2472&rft_id=info:doi/10.3390%2Frs14102472&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4d36a94132c944ac81607e069e086d8e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon