E-RXAI-IoT: A Systematic Evaluation Framework of Rule-Based XAI Methods for Anomaly Detection in IoT Systems

The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques for anomaly detection. While prior work has explored deep learning-based explainable AI (XAI) methods, systematic studies evaluating rule-bas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 188730 - 188754
Hlavní autoři: Namrita Gummadi, Anna, Abdelrahim, Elsaid Md, Gad, Ibrahim, Abdallah, Mustafa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques for anomaly detection. While prior work has explored deep learning-based explainable AI (XAI) methods, systematic studies evaluating rule-based XAI approaches for IoT anomaly detection remain limited. In this paper, we fill this gap by investigating two state-of-the-art rule-based XAI methods-Anchor and RuleFit-across multiple machine learning models: Random Forest (RF), Decision Tree (DT), Deep Neural Network (DNN), and Support Vector Machine (SVM). We introduce a comprehensive evaluation framework that assesses these XAI methods using seven critical metrics mapped to AI and IoT security domains. These metrics are descriptive accuracy, sparsity, efficiency, stability, fidelity, coverage, and precision. We apply our framework to two distinct IoT datasets. The first one is the N-BaIoT dataset, which captures IoT botnet attacks (Mirai and Gafgyt) on commercial devices. The second is the MEMS dataset, which focuses on detecting anomalies in sensor readings from smart manufacturing processes. We perform a comprehensive evaluation of the seven XAI evaluation metrics for the two rule-based XAI methods for these two datasets. Through this study, we systematically highlight the strengths and limitations of rule-based XAI techniques in the context of IoT anomaly detection, providing practical insights into their interpretability and robustness. We have made the source code for our XAI evaluation framework publicly available for the community to foster reproducibility and encourage further research in this domain with more methods, metrics, and datasets.
AbstractList The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques for anomaly detection. While prior work has explored deep learning-based explainable AI (XAI) methods, systematic studies evaluating rule-based XAI approaches for IoT anomaly detection remain limited. In this paper, we fill this gap by investigating two state-of-the-art rule-based XAI methods-Anchor and RuleFit-across multiple machine learning models: Random Forest (RF), Decision Tree (DT), Deep Neural Network (DNN), and Support Vector Machine (SVM). We introduce a comprehensive evaluation framework that assesses these XAI methods using seven critical metrics mapped to AI and IoT security domains. These metrics are descriptive accuracy, sparsity, efficiency, stability, fidelity, coverage, and precision. We apply our framework to two distinct IoT datasets. The first one is the N-BaIoT dataset, which captures IoT botnet attacks (Mirai and Gafgyt) on commercial devices. The second is the MEMS dataset, which focuses on detecting anomalies in sensor readings from smart manufacturing processes. We perform a comprehensive evaluation of the seven XAI evaluation metrics for the two rule-based XAI methods for these two datasets. Through this study, we systematically highlight the strengths and limitations of rule-based XAI techniques in the context of IoT anomaly detection, providing practical insights into their interpretability and robustness. We have made the source code for our XAI evaluation framework publicly available for the community to foster reproducibility and encourage further research in this domain with more methods, metrics, and datasets.
Author Abdelrahim, Elsaid Md
Namrita Gummadi, Anna
Gad, Ibrahim
Abdallah, Mustafa
Author_xml – sequence: 1
  givenname: Anna
  surname: Namrita Gummadi
  fullname: Namrita Gummadi, Anna
  organization: Computer and Information Technology Department, Purdue University in Indianapolis, Indianapolis, IN, USA
– sequence: 2
  givenname: Elsaid Md
  orcidid: 0000-0002-5054-3703
  surname: Abdelrahim
  fullname: Abdelrahim, Elsaid Md
  email: elsaid.abdelrahim@nbu.edu.sa
  organization: Computer Science Department, Science College, Northern Border University (NBU), Arar, Saudi Arabia
– sequence: 3
  givenname: Ibrahim
  orcidid: 0000-0003-3388-9144
  surname: Gad
  fullname: Gad, Ibrahim
  organization: Computer Science Department, Faculty of Science, Tanta University, Tanta, Egypt
– sequence: 4
  givenname: Mustafa
  orcidid: 0000-0002-9554-9260
  surname: Abdallah
  fullname: Abdallah, Mustafa
  organization: Computer and Information Technology Department, Purdue University in Indianapolis, Indianapolis, IN, USA
BookMark eNpNkUFvEzEQhS1UJErpL4CDJc4b7PHaXnNbQgqRipCaInGzHO8YNmzWxd6A8u9xuhHgOXj0NO-zR-85uRjjiIS85GzBOTNv2uVytdksgIFcCAVagnlCLoErUwkp1MV__TNynfOOldMUSepLMqyqu6_tulrH-7e0pZtjnnDvpt7T1S83HEoXR3qT3B5_x_SDxkDvDgNW71zGjhYj_YTT99hlGmKi7Rj3bjjS9zihf3T2Iy3kMza_IE-DGzJen-8r8uVmdb_8WN1-_rBetreVF4pPlZTccyUEnko1BrxulHQ-gKsdbrdb7X2nETjzTJsmBI2uLipo5aDjTFyR9cztotvZh9TvXTra6Hr7KMT0zbpUdhzQBmhUQK5q1sm6FltjvOi4llIb2RhdF9brmfWQ4s8D5snu4iGN5ftWgDIauARRpsQ85VPMOWH4-ypn9pSSnVOyp5TsOaXiejW7ekT85-AAIFUj_gBnwY2I
CODEN IAECCG
Cites_doi 10.1109/EuroSP48549.2020.00018
10.1109/ACCESS.2021.3059858
10.1177/154405910408300516
10.3390/s22030756
10.1007/978-3-319-63645-0_23
10.1145/3600160.3605162
10.1109/ICDCOT61034.2024.10515463
10.1007/978-3-030-28954-6
10.1109/WF-IoT62078.2024.10811456
10.1007/s00170-019-04563-8
10.1109/MilCIS.2015.7348942
10.3389/frai.2023.1099521
10.1016/j.datak.2021.101946
10.3390/fi12030044
10.26735/LPAO2070
10.1109/JIOT.2021.3102056
10.1016/j.jmsy.2018.01.003
10.1109/COMST.2023.3280465
10.1109/MPRV.2018.03367731
10.3389/frai.2024.1508821
10.1109/JIOT.2023.3287678
10.1109/ACCESS.2020.3047838
10.3390/s20071813
10.3390/s8020784
10.1145/3609333
10.1145/2542049
10.1145/3427228.3427256
10.1109/JIOT.2023.3260722
10.1145/3665926
10.18653/v1/2020.acl-main.491
10.1109/ACCESS.2024.3365140
10.1016/j.apenergy.2021.116601
10.1007/s10618-023-00933-9
10.1007/978-981-16-2102-4_36
10.1214/07-AOAS148
10.1016/j.icte.2021.04.012
10.1109/ACCESS.2024.3402446
10.1038/s42256-019-0138-9
10.3390/s23198153
10.1609/aaai.v32i1.11491
10.1016/j.future.2013.01.010
10.1109/JSEN.2016.2557345
10.1109/JSEN.2019.2947026
10.5555/3241189.3241275
10.1109/ICAIIC60209.2024.10463357
10.1109/JSEN.2021.3124886
10.1109/IS.2018.8710531
10.1007/3-540-44503-X_27
10.1109/TSC.2023.3327822
10.1007/s10845-019-01504-w
10.1016/j.iot.2025.101505
10.3390/s23010486
10.1109/LRA.2017.2714135
10.1109/SOCA.2019.00021
10.1145/2939672.2939778
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3627529
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 188754
ExternalDocumentID oai_doaj_org_article_f286fe1640d5443b99c3d17557958974
10_1109_ACCESS_2025_3627529
11222568
Genre orig-research
GrantInformation_xml – fundername: Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia
  grantid: NBU-FFR-2025-159-01
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-551c1633e3e3e6892c7865acf2a4aebbb7ccd7e210c0798ff7ea4bb7276a2d103
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611682800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Mon Nov 17 19:32:14 EST 2025
Sat Nov 08 02:33:43 EST 2025
Sat Nov 29 06:53:23 EST 2025
Wed Nov 19 08:27:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-551c1633e3e3e6892c7865acf2a4aebbb7ccd7e210c0798ff7ea4bb7276a2d103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5054-3703
0000-0002-9554-9260
0000-0003-3388-9144
OpenAccessLink https://doaj.org/article/f286fe1640d5443b99c3d17557958974
PQID 3269721523
PQPubID 4845423
PageCount 25
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3627529
ieee_primary_11222568
doaj_primary_oai_doaj_org_article_f286fe1640d5443b99c3d17557958974
proquest_journals_3269721523
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
Guidotti (ref42) 2018
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
Abdallah (ref24) 2021
Braiek (ref49) 2024
ref17
ref16
ref19
ref18
Sundararajan (ref62)
ref51
ref50
ref46
Jeff (ref22) 2019
ref45
ref48
Gunning (ref68) 2019; 40
ref47
ref41
Singh (ref52) 2021
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Koizumi (ref27) 2020
Computing (ref60) 2024
Bowler (ref10) 2020; 20
ref34
ref37
ref36
ref30
ref33
ref32
Li (ref1) 2014; 17
ref2
ref39
ref38
Nazir (ref35) 2023; 23
Das (ref12) 2020
Lundberg (ref69)
Yepmo (ref31) 2022; 137
Shrikumar (ref63)
ref23
ref67
ref26
ref25
ref20
ref64
ref66
ref21
ref65
ref28
ref29
Gummadi (ref54) 2025; 30
Shrikumar (ref70) 2017
ref61
Thombre (ref40) 2024
References_xml – ident: ref53
  doi: 10.1109/EuroSP48549.2020.00018
– ident: ref33
  doi: 10.1109/ACCESS.2021.3059858
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref69
  article-title: A unified approach to interpreting model predictions
– ident: ref55
  doi: 10.1177/154405910408300516
– ident: ref6
  doi: 10.3390/s22030756
– ident: ref57
  doi: 10.1007/978-3-319-63645-0_23
– ident: ref46
  doi: 10.1145/3600160.3605162
– ident: ref59
  doi: 10.1109/ICDCOT61034.2024.10515463
– year: 2017
  ident: ref70
  article-title: Learning important features through propagating activation differences
  publication-title: arXiv:1704.02685
– ident: ref41
  doi: 10.1007/978-3-030-28954-6
– ident: ref47
  doi: 10.1109/WF-IoT62078.2024.10811456
– ident: ref26
  doi: 10.1007/s00170-019-04563-8
– ident: ref37
  doi: 10.1109/MilCIS.2015.7348942
– ident: ref30
  doi: 10.3389/frai.2023.1099521
– volume: 137
  year: 2022
  ident: ref31
  article-title: Anomaly explanation: A review
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2021.101946
– ident: ref58
  doi: 10.3390/fi12030044
– ident: ref39
  doi: 10.26735/LPAO2070
– ident: ref65
  doi: 10.1109/JIOT.2021.3102056
– ident: ref5
  doi: 10.1016/j.jmsy.2018.01.003
– ident: ref44
  doi: 10.1109/COMST.2023.3280465
– volume-title: Boiler-Rad: Purdue’s Research Accelerated Discovery Cluster
  year: 2024
  ident: ref60
– ident: ref19
  doi: 10.1109/MPRV.2018.03367731
– ident: ref48
  doi: 10.3389/frai.2024.1508821
– ident: ref38
  doi: 10.1109/JIOT.2023.3287678
– ident: ref29
  doi: 10.1109/ACCESS.2020.3047838
– volume: 20
  start-page: 1813
  issue: 7
  year: 2020
  ident: ref10
  article-title: Monitoring mixing processes using ultrasonic sensors and machine learning
  publication-title: Sensors
  doi: 10.3390/s20071813
– ident: ref23
  doi: 10.3390/s8020784
– ident: ref45
  doi: 10.1145/3609333
– ident: ref8
  doi: 10.1145/2542049
– volume: 40
  start-page: 44
  issue: 2
  year: 2019
  ident: ref68
  article-title: Darpa’s explainable artificial intelligence (XAI) program
  publication-title: AI Mag.
– ident: ref21
  doi: 10.1145/3427228.3427256
– ident: ref15
  doi: 10.1109/JIOT.2023.3260722
– ident: ref51
  doi: 10.1145/3665926
– volume: 17
  start-page: 243
  issue: 2
  year: 2014
  ident: ref1
  article-title: The Internet of Things: A survey
  publication-title: Comput. Netw.
– ident: ref50
  doi: 10.18653/v1/2020.acl-main.491
– ident: ref32
  doi: 10.1109/ACCESS.2024.3365140
– year: 2024
  ident: ref40
  article-title: Explainable AI (XAI): Using decision trees to explain neural network model
– start-page: 3319
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref62
  article-title: Axiomatic attribution for deep networks
– ident: ref18
  doi: 10.1016/j.apenergy.2021.116601
– volume-title: Considerations for Accelerometer Selection When Monitoring Complex Machinery Vibration
  year: 2019
  ident: ref22
– ident: ref43
  doi: 10.1007/s10618-023-00933-9
– year: 2018
  ident: ref42
  article-title: Local rule-based explanations of black box decision systems
– ident: ref7
  doi: 10.1007/978-981-16-2102-4_36
– ident: ref17
  doi: 10.1214/07-AOAS148
– ident: ref34
  doi: 10.1016/j.icte.2021.04.012
– ident: ref13
  doi: 10.1109/ACCESS.2024.3402446
– ident: ref67
  doi: 10.1038/s42256-019-0138-9
– volume: 23
  start-page: 8153
  issue: 19
  year: 2023
  ident: ref35
  article-title: A novel feature-selection algorithm in IoT networks for intrusion detection
  publication-title: Sensors
  doi: 10.3390/s23198153
– year: 2020
  ident: ref12
  article-title: Opportunities and challenges in explainable artificial intelligence (XAI): A survey
  publication-title: arXiv:2006.11371
– ident: ref16
  doi: 10.1609/aaai.v32i1.11491
– ident: ref2
  doi: 10.1016/j.future.2013.01.010
– ident: ref9
  doi: 10.1109/JSEN.2016.2557345
– year: 2020
  ident: ref27
  article-title: Description and discussion on DCASE2020 challenge task2: Unsupervised anomalous sound detection for machine condition monitoring
  publication-title: arXiv:2006.05822
– year: 2021
  ident: ref24
  article-title: Anomaly detection through transfer learning in agriculture and manufacturing IoT systems
  publication-title: arXiv:2102.05814
– ident: ref36
  doi: 10.1109/JSEN.2019.2947026
– ident: ref20
  doi: 10.5555/3241189.3241275
– ident: ref61
  doi: 10.1109/ICAIIC60209.2024.10463357
– ident: ref64
  doi: 10.1109/JSEN.2021.3124886
– ident: ref4
  doi: 10.1109/IS.2018.8710531
– year: 2021
  ident: ref52
  article-title: An empirical study of accuracy, fairness, explainability, distributional robustness, and adversarial robustness
– start-page: 3145
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref63
  article-title: Learning important features through propagating activation differences
– year: 2024
  ident: ref49
  article-title: Machine learning robustness: A primer
  publication-title: arXiv:2404.00897
– ident: ref56
  doi: 10.1007/3-540-44503-X_27
– ident: ref14
  doi: 10.1109/TSC.2023.3327822
– ident: ref25
  doi: 10.1007/s10845-019-01504-w
– volume: 30
  year: 2025
  ident: ref54
  article-title: A systematic evaluation of white-box explainable AI methods for anomaly detection in IoT systems
  publication-title: Internet Things
  doi: 10.1016/j.iot.2025.101505
– ident: ref3
  doi: 10.3390/s23010486
– ident: ref11
  doi: 10.1109/LRA.2017.2714135
– ident: ref28
  doi: 10.1109/SOCA.2019.00021
– ident: ref66
  doi: 10.1145/2939672.2939778
SSID ssj0000816957
Score 2.334833
Snippet The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 188730
SubjectTerms Accuracy
anchor
Anomalies
Anomaly detection
Artificial intelligence
Artificial neural networks
coverage
Datasets
Decision trees
Deep learning
Explainable AI
Explainable artificial intelligence
fidelity
Internet of Things
IoT security
Machine learning
Measurement
MEMS
Microelectromechanical systems
N-BaIoT
precision
Predictive models
RuleFit
Security
Source code
sparsity
stability
Support vector machines
Systematics
XAI evaluation metrics
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGP3EJg5wGAM2URiTDxyXLXXi2OaWlVbswDSNIfVm-ac0qSTT2k7af89nx-2Q0A4olyiKE8fPjt_zj_cBfOFjG6en6sKWhqFACazQNYoVV2rULLKmxrsUbIJfXor5XF7lzeppL4z3Pi0-86fxNM3lu96u41DZGXIDrH6N2IEdzvmwWWs7oBIjSEjGs7PQuJRn7WSCH4EakLLTKrrxJh751Pskk_4cVeWfX3HqX2Zv_jNn-7CXiSRpB-TfwgvfvYPXf9kLvofFtLietxfFRX_zlbTk59a0mUy3Ht9ktlmdRfpArtcLX5xjx-YIJiQ_UnjpJUFiS9qu_60Xj-SbX6XVWx257Qg-OT92eQC_ZtObyfciR1cobNWMVwVSJYtkrPLxaISklouGaRuorrU3xnBrHfcoCW3JpQiBe13jVcobTd24rA5ht-s7_wEIEzw0leXMIbqOBkMrb4KpOSpgbYUdwcmm1NXdYKKhkvgopRpAUhEklUEawXlEZntrdMBOF7DIVW5QKlDRBI9ir3TRws9IaSuHXIhxyQSKpBEcRJie3pcRGsHRBmiVm-tSIYeNLkYoyj8-k-wTvIpZHAZfjmB3db_2n-GlfVjdLu-PU038A6dH2oQ
  priority: 102
  providerName: IEEE
Title E-RXAI-IoT: A Systematic Evaluation Framework of Rule-Based XAI Methods for Anomaly Detection in IoT Systems
URI https://ieeexplore.ieee.org/document/11222568
https://www.proquest.com/docview/3269721523
https://doaj.org/article/f286fe1640d5443b99c3d17557958974
Volume 13
WOSCitedRecordID wos001611682800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq23aNIm3uu6iB0V8wN5CniCsXdldBS_-didpd13w4EUKPYQ2aWbazPe1028QOmGZCZ-nisSkmgJB8TRRBZAVmyrgLKIg2tlYbILd3fHBQNwvlPoKOWGNPHBjuHNPeOkdgPrUBqk2LYTJLcQ8ygTlAIbD6guoZ4FMxTWYZ6WgrJUZylJxXnW7MCMghISe5UGaN4LKn1AUFfvbEiu_1uUYbPobaL1Fibhqrm4TLbl6C60taAduo2EveRhUN8nN6OkCV_hxrsiMe3MBb9yfpV7hkccP70OXXELUshhOxLexdvQEA2rFVT16VcNPfOWmMTWrxi81hp7bbic76Lnfe-peJ23phMTkZTZNAAcZQFq5C1vJBTGMl1QZT1ShnNaaGWOZA75nUia498ypAloJKxWxWZrvouV6VLs9hClnvswNoxZcZ4nXJHfa64IBvVWGmw46nVlRvjUKGTIyi1TIxugyGF22Ru-gy2Dp-aFB3jo2gNNl63T5l9M7aCf46We8LNDWknfQ4cxxsn0WJxIAapAoAsa9_x9jH6DVMJ_mNcwhWp6O390RWjEf05fJ-DjehrC__eodx58JvwFXXd2L
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP0EAwl44DpEYYAfeCRb4sSxzVtWWq1iq9AoUt8sxxdpUpegtUXi3_PZcTskxAPKSxTFieNjx-f4cj6AD7wwYXqqykzeMhQonmW6QrFic42aRVa0dTYGm-DzuVgu5de0WT3uhXHOxcVn7jicxrl825ttGCo7QW6A1a8Wd-EeqypaDNu19kMqIYaEZDx5CxW5PGnGY_wMVIGUHZfBjzcyydv-J9r0p7gqf_2MYw8zffKfeXsKjxOVJM2A_TO447rn8OgPg8EXsJpkl8tmls36xSfSkG9722Yy2bt8k-lufRbpPbncrlx2il2bJZiQXMQA02uC1JY0XX-tV7_IZ7eJ67c6ctURfHJ67PoQvk8ni_FZluIrZKasi02GZMkgHStdOGohqeGiZtp4qivt2rblxljuUBSanEvhPXe6wquU15raIi9fwkHXd-4VECa4r0vDmUV8LfUtLV3r24qjBtZGmBF83JW6-jHYaKgoP3KpBpBUAEklkEZwGpDZ3xo8sOMFLHKVmpTyVNTeodzLbTDxa6U0pUU2xLhkAmXSCA4DTLfvSwiN4GgHtEoNdq2QxQYfI5Tlr_-R7D08OFtcnKvz2fzLG3gYsjsMxRzBweZm697CffNzc7W-eRdr5W8sNd3L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-RXAI-IoT%3A+A+Systematic+Evaluation+Framework+of+Rule-Based+XAI+Methods+for+Anomaly+Detection+in+IoT+Systems&rft.jtitle=IEEE+access&rft.au=Namrita+Gummadi%2C+Anna&rft.au=Abdelrahim%2C+Elsaid+Md&rft.au=Gad%2C+Ibrahim&rft.au=Abdallah%2C+Mustafa&rft.date=2025-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=188730&rft.epage=188754&rft_id=info:doi/10.1109%2FACCESS.2025.3627529&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3627529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon