E-RXAI-IoT: A Systematic Evaluation Framework of Rule-Based XAI Methods for Anomaly Detection in IoT Systems
The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques for anomaly detection. While prior work has explored deep learning-based explainable AI (XAI) methods, systematic studies evaluating rule-bas...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 188730 - 188754 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques for anomaly detection. While prior work has explored deep learning-based explainable AI (XAI) methods, systematic studies evaluating rule-based XAI approaches for IoT anomaly detection remain limited. In this paper, we fill this gap by investigating two state-of-the-art rule-based XAI methods-Anchor and RuleFit-across multiple machine learning models: Random Forest (RF), Decision Tree (DT), Deep Neural Network (DNN), and Support Vector Machine (SVM). We introduce a comprehensive evaluation framework that assesses these XAI methods using seven critical metrics mapped to AI and IoT security domains. These metrics are descriptive accuracy, sparsity, efficiency, stability, fidelity, coverage, and precision. We apply our framework to two distinct IoT datasets. The first one is the N-BaIoT dataset, which captures IoT botnet attacks (Mirai and Gafgyt) on commercial devices. The second is the MEMS dataset, which focuses on detecting anomalies in sensor readings from smart manufacturing processes. We perform a comprehensive evaluation of the seven XAI evaluation metrics for the two rule-based XAI methods for these two datasets. Through this study, we systematically highlight the strengths and limitations of rule-based XAI techniques in the context of IoT anomaly detection, providing practical insights into their interpretability and robustness. We have made the source code for our XAI evaluation framework publicly available for the community to foster reproducibility and encourage further research in this domain with more methods, metrics, and datasets. |
|---|---|
| AbstractList | The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques for anomaly detection. While prior work has explored deep learning-based explainable AI (XAI) methods, systematic studies evaluating rule-based XAI approaches for IoT anomaly detection remain limited. In this paper, we fill this gap by investigating two state-of-the-art rule-based XAI methods-Anchor and RuleFit-across multiple machine learning models: Random Forest (RF), Decision Tree (DT), Deep Neural Network (DNN), and Support Vector Machine (SVM). We introduce a comprehensive evaluation framework that assesses these XAI methods using seven critical metrics mapped to AI and IoT security domains. These metrics are descriptive accuracy, sparsity, efficiency, stability, fidelity, coverage, and precision. We apply our framework to two distinct IoT datasets. The first one is the N-BaIoT dataset, which captures IoT botnet attacks (Mirai and Gafgyt) on commercial devices. The second is the MEMS dataset, which focuses on detecting anomalies in sensor readings from smart manufacturing processes. We perform a comprehensive evaluation of the seven XAI evaluation metrics for the two rule-based XAI methods for these two datasets. Through this study, we systematically highlight the strengths and limitations of rule-based XAI techniques in the context of IoT anomaly detection, providing practical insights into their interpretability and robustness. We have made the source code for our XAI evaluation framework publicly available for the community to foster reproducibility and encourage further research in this domain with more methods, metrics, and datasets. |
| Author | Abdelrahim, Elsaid Md Namrita Gummadi, Anna Gad, Ibrahim Abdallah, Mustafa |
| Author_xml | – sequence: 1 givenname: Anna surname: Namrita Gummadi fullname: Namrita Gummadi, Anna organization: Computer and Information Technology Department, Purdue University in Indianapolis, Indianapolis, IN, USA – sequence: 2 givenname: Elsaid Md orcidid: 0000-0002-5054-3703 surname: Abdelrahim fullname: Abdelrahim, Elsaid Md email: elsaid.abdelrahim@nbu.edu.sa organization: Computer Science Department, Science College, Northern Border University (NBU), Arar, Saudi Arabia – sequence: 3 givenname: Ibrahim orcidid: 0000-0003-3388-9144 surname: Gad fullname: Gad, Ibrahim organization: Computer Science Department, Faculty of Science, Tanta University, Tanta, Egypt – sequence: 4 givenname: Mustafa orcidid: 0000-0002-9554-9260 surname: Abdallah fullname: Abdallah, Mustafa organization: Computer and Information Technology Department, Purdue University in Indianapolis, Indianapolis, IN, USA |
| BookMark | eNpNkUFvEzEQhS1UJErpL4CDJc4b7PHaXnNbQgqRipCaInGzHO8YNmzWxd6A8u9xuhHgOXj0NO-zR-85uRjjiIS85GzBOTNv2uVytdksgIFcCAVagnlCLoErUwkp1MV__TNynfOOldMUSepLMqyqu6_tulrH-7e0pZtjnnDvpt7T1S83HEoXR3qT3B5_x_SDxkDvDgNW71zGjhYj_YTT99hlGmKi7Rj3bjjS9zihf3T2Iy3kMza_IE-DGzJen-8r8uVmdb_8WN1-_rBetreVF4pPlZTccyUEnko1BrxulHQ-gKsdbrdb7X2nETjzTJsmBI2uLipo5aDjTFyR9cztotvZh9TvXTra6Hr7KMT0zbpUdhzQBmhUQK5q1sm6FltjvOi4llIb2RhdF9brmfWQ4s8D5snu4iGN5ftWgDIauARRpsQ85VPMOWH4-ypn9pSSnVOyp5TsOaXiejW7ekT85-AAIFUj_gBnwY2I |
| CODEN | IAECCG |
| Cites_doi | 10.1109/EuroSP48549.2020.00018 10.1109/ACCESS.2021.3059858 10.1177/154405910408300516 10.3390/s22030756 10.1007/978-3-319-63645-0_23 10.1145/3600160.3605162 10.1109/ICDCOT61034.2024.10515463 10.1007/978-3-030-28954-6 10.1109/WF-IoT62078.2024.10811456 10.1007/s00170-019-04563-8 10.1109/MilCIS.2015.7348942 10.3389/frai.2023.1099521 10.1016/j.datak.2021.101946 10.3390/fi12030044 10.26735/LPAO2070 10.1109/JIOT.2021.3102056 10.1016/j.jmsy.2018.01.003 10.1109/COMST.2023.3280465 10.1109/MPRV.2018.03367731 10.3389/frai.2024.1508821 10.1109/JIOT.2023.3287678 10.1109/ACCESS.2020.3047838 10.3390/s20071813 10.3390/s8020784 10.1145/3609333 10.1145/2542049 10.1145/3427228.3427256 10.1109/JIOT.2023.3260722 10.1145/3665926 10.18653/v1/2020.acl-main.491 10.1109/ACCESS.2024.3365140 10.1016/j.apenergy.2021.116601 10.1007/s10618-023-00933-9 10.1007/978-981-16-2102-4_36 10.1214/07-AOAS148 10.1016/j.icte.2021.04.012 10.1109/ACCESS.2024.3402446 10.1038/s42256-019-0138-9 10.3390/s23198153 10.1609/aaai.v32i1.11491 10.1016/j.future.2013.01.010 10.1109/JSEN.2016.2557345 10.1109/JSEN.2019.2947026 10.5555/3241189.3241275 10.1109/ICAIIC60209.2024.10463357 10.1109/JSEN.2021.3124886 10.1109/IS.2018.8710531 10.1007/3-540-44503-X_27 10.1109/TSC.2023.3327822 10.1007/s10845-019-01504-w 10.1016/j.iot.2025.101505 10.3390/s23010486 10.1109/LRA.2017.2714135 10.1109/SOCA.2019.00021 10.1145/2939672.2939778 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3627529 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 188754 |
| ExternalDocumentID | oai_doaj_org_article_f286fe1640d5443b99c3d17557958974 10_1109_ACCESS_2025_3627529 11222568 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia grantid: NBU-FFR-2025-159-01 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-551c1633e3e3e6892c7865acf2a4aebbb7ccd7e210c0798ff7ea4bb7276a2d103 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611682800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Mon Nov 17 19:32:14 EST 2025 Sat Nov 08 02:33:43 EST 2025 Sat Nov 29 06:53:23 EST 2025 Wed Nov 19 08:27:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-551c1633e3e3e6892c7865acf2a4aebbb7ccd7e210c0798ff7ea4bb7276a2d103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5054-3703 0000-0002-9554-9260 0000-0003-3388-9144 |
| OpenAccessLink | https://doaj.org/article/f286fe1640d5443b99c3d17557958974 |
| PQID | 3269721523 |
| PQPubID | 4845423 |
| PageCount | 25 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3627529 ieee_primary_11222568 doaj_primary_oai_doaj_org_article_f286fe1640d5443b99c3d17557958974 proquest_journals_3269721523 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 Guidotti (ref42) 2018 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 Abdallah (ref24) 2021 Braiek (ref49) 2024 ref17 ref16 ref19 ref18 Sundararajan (ref62) ref51 ref50 ref46 Jeff (ref22) 2019 ref45 ref48 Gunning (ref68) 2019; 40 ref47 ref41 Singh (ref52) 2021 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Koizumi (ref27) 2020 Computing (ref60) 2024 Bowler (ref10) 2020; 20 ref34 ref37 ref36 ref30 ref33 ref32 Li (ref1) 2014; 17 ref2 ref39 ref38 Nazir (ref35) 2023; 23 Das (ref12) 2020 Lundberg (ref69) Yepmo (ref31) 2022; 137 Shrikumar (ref63) ref23 ref67 ref26 ref25 ref20 ref64 ref66 ref21 ref65 ref28 ref29 Gummadi (ref54) 2025; 30 Shrikumar (ref70) 2017 ref61 Thombre (ref40) 2024 |
| References_xml | – ident: ref53 doi: 10.1109/EuroSP48549.2020.00018 – ident: ref33 doi: 10.1109/ACCESS.2021.3059858 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref69 article-title: A unified approach to interpreting model predictions – ident: ref55 doi: 10.1177/154405910408300516 – ident: ref6 doi: 10.3390/s22030756 – ident: ref57 doi: 10.1007/978-3-319-63645-0_23 – ident: ref46 doi: 10.1145/3600160.3605162 – ident: ref59 doi: 10.1109/ICDCOT61034.2024.10515463 – year: 2017 ident: ref70 article-title: Learning important features through propagating activation differences publication-title: arXiv:1704.02685 – ident: ref41 doi: 10.1007/978-3-030-28954-6 – ident: ref47 doi: 10.1109/WF-IoT62078.2024.10811456 – ident: ref26 doi: 10.1007/s00170-019-04563-8 – ident: ref37 doi: 10.1109/MilCIS.2015.7348942 – ident: ref30 doi: 10.3389/frai.2023.1099521 – volume: 137 year: 2022 ident: ref31 article-title: Anomaly explanation: A review publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2021.101946 – ident: ref58 doi: 10.3390/fi12030044 – ident: ref39 doi: 10.26735/LPAO2070 – ident: ref65 doi: 10.1109/JIOT.2021.3102056 – ident: ref5 doi: 10.1016/j.jmsy.2018.01.003 – ident: ref44 doi: 10.1109/COMST.2023.3280465 – volume-title: Boiler-Rad: Purdue’s Research Accelerated Discovery Cluster year: 2024 ident: ref60 – ident: ref19 doi: 10.1109/MPRV.2018.03367731 – ident: ref48 doi: 10.3389/frai.2024.1508821 – ident: ref38 doi: 10.1109/JIOT.2023.3287678 – ident: ref29 doi: 10.1109/ACCESS.2020.3047838 – volume: 20 start-page: 1813 issue: 7 year: 2020 ident: ref10 article-title: Monitoring mixing processes using ultrasonic sensors and machine learning publication-title: Sensors doi: 10.3390/s20071813 – ident: ref23 doi: 10.3390/s8020784 – ident: ref45 doi: 10.1145/3609333 – ident: ref8 doi: 10.1145/2542049 – volume: 40 start-page: 44 issue: 2 year: 2019 ident: ref68 article-title: Darpa’s explainable artificial intelligence (XAI) program publication-title: AI Mag. – ident: ref21 doi: 10.1145/3427228.3427256 – ident: ref15 doi: 10.1109/JIOT.2023.3260722 – ident: ref51 doi: 10.1145/3665926 – volume: 17 start-page: 243 issue: 2 year: 2014 ident: ref1 article-title: The Internet of Things: A survey publication-title: Comput. Netw. – ident: ref50 doi: 10.18653/v1/2020.acl-main.491 – ident: ref32 doi: 10.1109/ACCESS.2024.3365140 – year: 2024 ident: ref40 article-title: Explainable AI (XAI): Using decision trees to explain neural network model – start-page: 3319 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref62 article-title: Axiomatic attribution for deep networks – ident: ref18 doi: 10.1016/j.apenergy.2021.116601 – volume-title: Considerations for Accelerometer Selection When Monitoring Complex Machinery Vibration year: 2019 ident: ref22 – ident: ref43 doi: 10.1007/s10618-023-00933-9 – year: 2018 ident: ref42 article-title: Local rule-based explanations of black box decision systems – ident: ref7 doi: 10.1007/978-981-16-2102-4_36 – ident: ref17 doi: 10.1214/07-AOAS148 – ident: ref34 doi: 10.1016/j.icte.2021.04.012 – ident: ref13 doi: 10.1109/ACCESS.2024.3402446 – ident: ref67 doi: 10.1038/s42256-019-0138-9 – volume: 23 start-page: 8153 issue: 19 year: 2023 ident: ref35 article-title: A novel feature-selection algorithm in IoT networks for intrusion detection publication-title: Sensors doi: 10.3390/s23198153 – year: 2020 ident: ref12 article-title: Opportunities and challenges in explainable artificial intelligence (XAI): A survey publication-title: arXiv:2006.11371 – ident: ref16 doi: 10.1609/aaai.v32i1.11491 – ident: ref2 doi: 10.1016/j.future.2013.01.010 – ident: ref9 doi: 10.1109/JSEN.2016.2557345 – year: 2020 ident: ref27 article-title: Description and discussion on DCASE2020 challenge task2: Unsupervised anomalous sound detection for machine condition monitoring publication-title: arXiv:2006.05822 – year: 2021 ident: ref24 article-title: Anomaly detection through transfer learning in agriculture and manufacturing IoT systems publication-title: arXiv:2102.05814 – ident: ref36 doi: 10.1109/JSEN.2019.2947026 – ident: ref20 doi: 10.5555/3241189.3241275 – ident: ref61 doi: 10.1109/ICAIIC60209.2024.10463357 – ident: ref64 doi: 10.1109/JSEN.2021.3124886 – ident: ref4 doi: 10.1109/IS.2018.8710531 – year: 2021 ident: ref52 article-title: An empirical study of accuracy, fairness, explainability, distributional robustness, and adversarial robustness – start-page: 3145 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref63 article-title: Learning important features through propagating activation differences – year: 2024 ident: ref49 article-title: Machine learning robustness: A primer publication-title: arXiv:2404.00897 – ident: ref56 doi: 10.1007/3-540-44503-X_27 – ident: ref14 doi: 10.1109/TSC.2023.3327822 – ident: ref25 doi: 10.1007/s10845-019-01504-w – volume: 30 year: 2025 ident: ref54 article-title: A systematic evaluation of white-box explainable AI methods for anomaly detection in IoT systems publication-title: Internet Things doi: 10.1016/j.iot.2025.101505 – ident: ref3 doi: 10.3390/s23010486 – ident: ref11 doi: 10.1109/LRA.2017.2714135 – ident: ref28 doi: 10.1109/SOCA.2019.00021 – ident: ref66 doi: 10.1145/2939672.2939778 |
| SSID | ssj0000816957 |
| Score | 2.334833 |
| Snippet | The increasing complexity of Internet of Things (IoT) systems necessitates the development of interpretable and robust artificial intelligence (AI) techniques... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 188730 |
| SubjectTerms | Accuracy anchor Anomalies Anomaly detection Artificial intelligence Artificial neural networks coverage Datasets Decision trees Deep learning Explainable AI Explainable artificial intelligence fidelity Internet of Things IoT security Machine learning Measurement MEMS Microelectromechanical systems N-BaIoT precision Predictive models RuleFit Security Source code sparsity stability Support vector machines Systematics XAI evaluation metrics |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGP3EJg5wGAM2URiTDxyXLXXi2OaWlVbswDSNIfVm-ac0qSTT2k7af89nx-2Q0A4olyiKE8fPjt_zj_cBfOFjG6en6sKWhqFACazQNYoVV2rULLKmxrsUbIJfXor5XF7lzeppL4z3Pi0-86fxNM3lu96u41DZGXIDrH6N2IEdzvmwWWs7oBIjSEjGs7PQuJRn7WSCH4EakLLTKrrxJh751Pskk_4cVeWfX3HqX2Zv_jNn-7CXiSRpB-TfwgvfvYPXf9kLvofFtLietxfFRX_zlbTk59a0mUy3Ht9ktlmdRfpArtcLX5xjx-YIJiQ_UnjpJUFiS9qu_60Xj-SbX6XVWx257Qg-OT92eQC_ZtObyfciR1cobNWMVwVSJYtkrPLxaISklouGaRuorrU3xnBrHfcoCW3JpQiBe13jVcobTd24rA5ht-s7_wEIEzw0leXMIbqOBkMrb4KpOSpgbYUdwcmm1NXdYKKhkvgopRpAUhEklUEawXlEZntrdMBOF7DIVW5QKlDRBI9ir3TRws9IaSuHXIhxyQSKpBEcRJie3pcRGsHRBmiVm-tSIYeNLkYoyj8-k-wTvIpZHAZfjmB3db_2n-GlfVjdLu-PU038A6dH2oQ priority: 102 providerName: IEEE |
| Title | E-RXAI-IoT: A Systematic Evaluation Framework of Rule-Based XAI Methods for Anomaly Detection in IoT Systems |
| URI | https://ieeexplore.ieee.org/document/11222568 https://www.proquest.com/docview/3269721523 https://doaj.org/article/f286fe1640d5443b99c3d17557958974 |
| Volume | 13 |
| WOSCitedRecordID | wos001611682800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq23aNIm3uu6iB0V8wN5CniCsXdldBS_-didpd13w4EUKPYQ2aWbazPe1028QOmGZCZ-nisSkmgJB8TRRBZAVmyrgLKIg2tlYbILd3fHBQNwvlPoKOWGNPHBjuHNPeOkdgPrUBqk2LYTJLcQ8ygTlAIbD6guoZ4FMxTWYZ6WgrJUZylJxXnW7MCMghISe5UGaN4LKn1AUFfvbEiu_1uUYbPobaL1Fibhqrm4TLbl6C60taAduo2EveRhUN8nN6OkCV_hxrsiMe3MBb9yfpV7hkccP70OXXELUshhOxLexdvQEA2rFVT16VcNPfOWmMTWrxi81hp7bbic76Lnfe-peJ23phMTkZTZNAAcZQFq5C1vJBTGMl1QZT1ShnNaaGWOZA75nUia498ypAloJKxWxWZrvouV6VLs9hClnvswNoxZcZ4nXJHfa64IBvVWGmw46nVlRvjUKGTIyi1TIxugyGF22Ru-gy2Dp-aFB3jo2gNNl63T5l9M7aCf46We8LNDWknfQ4cxxsn0WJxIAapAoAsa9_x9jH6DVMJ_mNcwhWp6O390RWjEf05fJ-DjehrC__eodx58JvwFXXd2L |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP0EAwl44DpEYYAfeCRb4sSxzVtWWq1iq9AoUt8sxxdpUpegtUXi3_PZcTskxAPKSxTFieNjx-f4cj6AD7wwYXqqykzeMhQonmW6QrFic42aRVa0dTYGm-DzuVgu5de0WT3uhXHOxcVn7jicxrl825ttGCo7QW6A1a8Wd-EeqypaDNu19kMqIYaEZDx5CxW5PGnGY_wMVIGUHZfBjzcyydv-J9r0p7gqf_2MYw8zffKfeXsKjxOVJM2A_TO447rn8OgPg8EXsJpkl8tmls36xSfSkG9722Yy2bt8k-lufRbpPbncrlx2il2bJZiQXMQA02uC1JY0XX-tV7_IZ7eJ67c6ctURfHJ67PoQvk8ni_FZluIrZKasi02GZMkgHStdOGohqeGiZtp4qivt2rblxljuUBSanEvhPXe6wquU15raIi9fwkHXd-4VECa4r0vDmUV8LfUtLV3r24qjBtZGmBF83JW6-jHYaKgoP3KpBpBUAEklkEZwGpDZ3xo8sOMFLHKVmpTyVNTeodzLbTDxa6U0pUU2xLhkAmXSCA4DTLfvSwiN4GgHtEoNdq2QxQYfI5Tlr_-R7D08OFtcnKvz2fzLG3gYsjsMxRzBweZm697CffNzc7W-eRdr5W8sNd3L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-RXAI-IoT%3A+A+Systematic+Evaluation+Framework+of+Rule-Based+XAI+Methods+for+Anomaly+Detection+in+IoT+Systems&rft.jtitle=IEEE+access&rft.au=Namrita+Gummadi%2C+Anna&rft.au=Abdelrahim%2C+Elsaid+Md&rft.au=Gad%2C+Ibrahim&rft.au=Abdallah%2C+Mustafa&rft.date=2025-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=188730&rft.epage=188754&rft_id=info:doi/10.1109%2FACCESS.2025.3627529&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3627529 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |