A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation

Distributed generation (DG) aims to generate part of the required electrical energy on a small scale closer to the places of consumption. Integration of DG into an existing electric distribution network (EDN) has technical, economic, and environmental benefits. DG placement is typically determined b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 15; číslo 9; s. 3063
Hlavní autori: Gallego Pareja, Luis A., López-Lezama, Jesús M., Gómez Carmona, Oscar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2022
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Distributed generation (DG) aims to generate part of the required electrical energy on a small scale closer to the places of consumption. Integration of DG into an existing electric distribution network (EDN) has technical, economic, and environmental benefits. DG placement is typically determined by investors and local conditions such as the availability of energy resources, space, and licenses, among other factors. When the location of DG is not a decision of the distribution network operator (DNO), the simultaneous integration of distribution network reconfiguration (DNR) and DG placement can maximize the benefits of DG and mitigate eventual negative impacts. DNR consists of altering the EDN topology to improve its performance while maintaining the radiality of the network. DNR and optimal placement of DG (OPDG) are challenging optimization problems since they involve integer and continuous variables subject to nonlinear constraints and a nonlinear objective function. Due to their nonlinear and nonconvex nature, most approaches to solve these problems resort to metaheuristic techniques. The main drawbacks of such methodologies lie in the fact that they are not guaranteed to reach an optimal solution, and most of them require the fine-tuning of several parameters. This paper recasts the nonlinear DNR and OPGD problems into linear equivalents to obtain a mixed-integer linear programming (MILP) model that guarantees global optimal solutions. Several tests were carried out on benchmark EDNs evidencing the applicability and effectiveness of the proposed approach. It was found that when no DG units are considered, the proposed model can find the same results reported in the specialized literature but in less computational time; furthermore, the inclusion of DG units along with DNR usually allows the model to find better solutions than those previously reported in the specialized literature.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en15093063