Automatic Generation Control Considering Uncertainties of the Key Parameters in the Frequency Response Model
The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. Most of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM), such as system...
Saved in:
| Published in: | IEEE transactions on power systems Vol. 37; no. 6; pp. 4605 - 4617 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0885-8950, 1558-0679 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. Most of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM), such as system inertia and load damping factors. This paper proposes an automatic generation control (AGC) method considering the uncertainties of these key parameters. First, the historical power system operation data following large power disturbances are used to identify the FRM key parameters offline. Second, the offline identification results and the normal operation data right before the large power disturbance are used to train the online probability estimation model of the FRM key parameters. Third, the online estimation results of the FRM key parameters are used as the input, and the model predictive-based AGC optimization method is developed based on distributionally robust optimization (DRO) theory. Case studies conducted on the IEEE 118-bus system show that the proposed AGC method outperforms the widely utilized PI-based and PID-based control methods in terms of performance and efficiency. |
|---|---|
| AbstractList | The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. Most of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM), such as system inertia and load damping factors. This paper proposes an automatic generation control (AGC) method considering the uncertainties of these key parameters. First, the historical power system operation data following large power disturbances are used to identify the FRM key parameters offline. Second, the offline identification results and the normal operation data right before the large power disturbance are used to train the online probability estimation model of the FRM key parameters. Third, the online estimation results of the FRM key parameters are used as the input, and the model predictive-based AGC optimization method is developed based on distributionally robust optimization (DRO) theory. Case studies conducted on the IEEE 118-bus system show that the proposed AGC method outperforms the widely utilized PI-based and PID-based control methods in terms of performance and efficiency. |
| Author | Mujeeb, Asad Liu, Likai Hu, Zechun |
| Author_xml | – sequence: 1 givenname: Likai orcidid: 0000-0003-3142-9865 surname: Liu fullname: Liu, Likai email: llk17@mails.tsinghua.edu.cn organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Zechun orcidid: 0000-0002-1870-3375 surname: Hu fullname: Hu, Zechun email: zechhu@tsinghua.edu.cn organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Asad surname: Mujeeb fullname: Mujeeb, Asad email: asd20@mails.tsinghua.edu.cn organization: Department of Electrical Engineering, Tsinghua University, Beijing, China |
| BookMark | eNp9kMtOAjEUhhuDiYC-gG6auB487UznsiRE0IiRIMTlpMyc0ZKhxbYseHvLJS5cuDrX_1y-Huloo5GQWwYDxqB4WMw-5u8DDpwPYiZiAcUF6TIh8gjSrOiQLuS5iPJCwBXpObcGgDQUuqQd7rzZSK8qOkGNNnhG05HR3pr2YJ2q0Sr9SZe6Quul0l6ho6ah_gvpC-7pTFq5QY_WUaWP2bHF7x3qak_n6LZhBtJXU2N7TS4b2Tq8Ods-WY4fF6OnaPo2eR4Np1EVp8xHgnMmocpZIhPGY0hWgq2EEHUNKwAsMIU0j7NqJbBJ86RAEWJMWF1z2dQc4z65P83dWhMOcb5cm53VYWXJM55BEl7noYufuiprnLPYlFurNtLuSwblgWp5pFoeqJZnqkGU_xFVyh-heStV-7_07iRViPi7q8g4sCKJfwAGz4ho |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_3390_fractalfract7110807 crossref_primary_10_1109_TPWRS_2024_3453945 crossref_primary_10_1109_TSG_2024_3493124 crossref_primary_10_1016_j_apenergy_2023_120994 crossref_primary_10_1016_j_chaos_2024_115444 crossref_primary_10_1049_rpg2_12842 crossref_primary_10_1109_TPWRS_2023_3321847 crossref_primary_10_1016_j_epsr_2023_109916 crossref_primary_10_1109_TSTE_2025_3540599 |
| Cites_doi | 10.1016/j.ijepes.2019.05.034 10.1162/neco.1997.9.8.1735 10.1109/TPWRS.2019.2908988 10.1049/iet-gtd.2016.1734 10.1109/TPWRS.2012.2209901 10.1109/TPWRS.2015.2434837 10.1109/TPWRS.2010.2051168 10.1109/TPWRS.2014.2375918 10.1109/TPWRS.2018.2872868 10.1109/TPWRD.2014.2306062 10.1109/59.709084 10.1109/TPWRS.2015.2501458 10.3182/20140824-6-ZA-1003.02615 10.1109/ITOEC.2017.8122408 10.1109/TPWRS.2018.2881359 10.2307/1913267 10.1109/TPWRS.2014.2333776 10.1109/TPWRS.2017.2649579 10.1109/TPWRS.2017.2773531 10.1257/jep.15.4.143 10.1109/JSYST.2015.2444893 10.1109/TPWRS.2019.2894769 10.1016/j.epsr.2009.10.026 10.1016/j.ijepes.2012.06.032 10.1016/j.rser.2021.111176 10.1109/TPWRS.2017.2705761 10.1109/TSG.2016.2615473 10.1109/TII.2017.2764800 10.1109/TSG.2020.3022563 10.1007/978-0-387-84878-5 10.1109/TPWRS.2015.2412614 10.1109/TPWRS.2021.3134811 10.21314/JOR.2000.038 10.1109/TPWRS.2018.2846744 10.1109/TPWRS.2018.2843381 10.1109/TPWRS.2019.2915249 10.1109/TPWRS.2019.2905037 10.1287/opre.2014.1314 10.1109/ISAP.2017.8071383 10.1016/j.epsr.2018.04.008 10.1109/TPWRS.2019.2934318 10.1201/b10869 10.1016/j.orl.2021.01.012 10.1109/TPWRS.2018.2824823 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRS.2022.3153509 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 4617 |
| ExternalDocumentID | 10_1109_TPWRS_2022_3153509 9720194 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Research and Development Program of Inner Mongolia grantid: 2021ZD0039 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c361t-5221a0c814a412304b51b555dd0b00e9e606837cb5ef6849e5068e41dd2afd2e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871076600040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Fri Jul 25 18:54:53 EDT 2025 Tue Nov 18 22:30:52 EST 2025 Sat Nov 29 02:52:27 EST 2025 Wed Aug 27 02:18:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-5221a0c814a412304b51b555dd0b00e9e606837cb5ef6849e5068e41dd2afd2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3142-9865 0000-0002-1870-3375 |
| PQID | 2727046792 |
| PQPubID | 85441 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TPWRS_2022_3153509 proquest_journals_2727046792 crossref_citationtrail_10_1109_TPWRS_2022_3153509 ieee_primary_9720194 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov. 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 kisiala (ref43) 2015 ref45 ref48 ref47 ref42 wood (ref46) 2013 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 kingma (ref38) 2017 p (ref40) 2017; 171 ref24 ref23 ref26 ref25 ref20 ref22 ref21 goodfellow (ref37) 2016; 1 ref28 ref27 ref29 |
| References_xml | – ident: ref21 doi: 10.1016/j.ijepes.2019.05.034 – ident: ref35 doi: 10.1162/neco.1997.9.8.1735 – ident: ref26 doi: 10.1109/TPWRS.2019.2908988 – ident: ref5 doi: 10.1049/iet-gtd.2016.1734 – ident: ref13 doi: 10.1109/TPWRS.2012.2209901 – year: 2015 ident: ref43 article-title: Conditional value-at-risk: Theory and applications – ident: ref48 doi: 10.1109/TPWRS.2015.2434837 – ident: ref44 doi: 10.1109/TPWRS.2010.2051168 – ident: ref9 doi: 10.1109/TPWRS.2014.2375918 – ident: ref24 doi: 10.1109/TPWRS.2018.2872868 – ident: ref20 doi: 10.1109/TPWRD.2014.2306062 – ident: ref2 doi: 10.1109/59.709084 – ident: ref32 doi: 10.1109/TPWRS.2015.2501458 – ident: ref14 doi: 10.3182/20140824-6-ZA-1003.02615 – ident: ref23 doi: 10.1109/ITOEC.2017.8122408 – ident: ref6 doi: 10.1109/TPWRS.2018.2881359 – ident: ref17 doi: 10.2307/1913267 – ident: ref33 doi: 10.1109/TPWRS.2014.2333776 – ident: ref25 doi: 10.1109/TPWRS.2017.2649579 – ident: ref47 doi: 10.1109/TPWRS.2017.2773531 – ident: ref36 doi: 10.1257/jep.15.4.143 – ident: ref45 doi: 10.1109/JSYST.2015.2444893 – ident: ref31 doi: 10.1109/TPWRS.2019.2894769 – ident: ref4 doi: 10.1016/j.epsr.2009.10.026 – ident: ref8 doi: 10.1016/j.ijepes.2012.06.032 – ident: ref12 doi: 10.1016/j.rser.2021.111176 – ident: ref11 doi: 10.1109/TPWRS.2017.2705761 – ident: ref27 doi: 10.1109/TSG.2016.2615473 – ident: ref28 doi: 10.1109/TII.2017.2764800 – ident: ref30 doi: 10.1109/TSG.2020.3022563 – ident: ref3 doi: 10.1007/978-0-387-84878-5 – ident: ref10 doi: 10.1109/TPWRS.2015.2412614 – ident: ref15 doi: 10.1109/TPWRS.2021.3134811 – year: 2013 ident: ref46 publication-title: Power Generation Operation and Control – ident: ref42 doi: 10.21314/JOR.2000.038 – year: 2017 ident: ref38 article-title: Adam: A Method for Stochastic Optimization – ident: ref29 doi: 10.1109/TPWRS.2018.2846744 – ident: ref22 doi: 10.1109/TPWRS.2018.2843381 – ident: ref34 doi: 10.1109/TPWRS.2019.2915249 – volume: 171 start-page: 115 year: 2017 ident: ref40 article-title: Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations publication-title: Math Program – ident: ref16 doi: 10.1109/TPWRS.2019.2905037 – ident: ref39 doi: 10.1287/opre.2014.1314 – volume: 1 year: 2016 ident: ref37 publication-title: Deep Learning – ident: ref18 doi: 10.1109/ISAP.2017.8071383 – ident: ref19 doi: 10.1016/j.epsr.2018.04.008 – ident: ref7 doi: 10.1109/TPWRS.2019.2934318 – ident: ref1 doi: 10.1201/b10869 – ident: ref41 doi: 10.1016/j.orl.2021.01.012 – ident: ref49 doi: 10.1109/TPWRS.2018.2824823 |
| SSID | ssj0006679 |
| Score | 2.4866972 |
| Snippet | The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. Most of them are connected to the grid via... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4605 |
| SubjectTerms | Automatic control Automatic generation control Control methods Damping Data models distributionally robust optimization Electric vehicles Electronic devices Estimation Frequency control Frequency response Mathematical models model predictive control Optimization Parameter identification Predictive models probability estimation Proportional integral derivative Regulation Turbines Uncertainty |
| Title | Automatic Generation Control Considering Uncertainties of the Key Parameters in the Frequency Response Model |
| URI | https://ieeexplore.ieee.org/document/9720194 https://www.proquest.com/docview/2727046792 |
| Volume | 37 |
| WOSCitedRecordID | wos000871076600040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD644YM-eBfnjTz4ptUmTdrkcYhDUMbQDX0rbZLCYGyyi7B_70nSDUERpC9tSUro1-Sck37nOwBXCRVGodsaMRlXEa-yLCrRs4hUWjAuaZUa7ZF-zrpd-f6uehtws86FsdZ68pm9daf-X76Z6IXbKrtTGZorxRvQyLI05GqtV900Dbp6UopIKhGvEmRiddfvvb28YijIGEaoIhGOfPjNCPmqKj-WYm9fOrv_G9ke7NR-JGkH4Pdhw44PYPubuuAhjNqL-cQrspIgLu0wIPeBm05WlTqxKRkg8p4Z4NRVyaQi6BWSJ7skvcJxt5wAJxmO_d3ONHCvl-QlsGstceXURkcw6Dz07x-jurhCpJOUzjEAZbSItaS84NTtDJeClkIIY2KciVZZjGwweNWlsFUqubICry2nxrCiMswmx9AcT8b2BIhOBFpaqbnRkhdVIU1S4qE1-oaZTlUL6Opt57pWHncFMEa5j0BilXuEcodQXiPUgut1n4-gu_Fn60OHybplDUcLzleg5vXUnOUMPbYYzYNip7_3OoMt9-yQcHgOzfl0YS9gU3_Oh7Pppf_qvgAJWtVC |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBN65o0aZNHEYfiHEMn-lbaJAVhbDI3wX_vSdINQRGkL21JaOjX5JyTfuc7AKcJFUah2xoxGVcRr7IsKtGziFRaMC5plRrtkW5nnY58eVHdOTif5cJYaz35zF64U_8v3wz1xG2VNVWG5krxeVgUnLM4ZGvN1t00Dcp6UopIKhFPU2Ri1ex1nx8eMRhkDGNUkQhHP_xmhnxdlR-LsbcwrfX_jW0D1mpPklwG6Ddhzg62YPWbvuA29C8n46HXZCVBXtqhQK4CO51Ma3ViU_KE2HtugNNXJcOKoF9I7uwn6RaOveUkOMnrwN9tjQL7-pM8BH6tJa6gWn8HnlrXvaubqC6vEOkkpWMMQRktYi0pLzh1e8OloKUQwpgY56JVFmMbDF91KWyVSq6swGvLqTGsqAyzyS4sDIYDuwdEJwJtrdTcaMmLqpAmKfHQGr3DTKeqAXT6tnNda4-7Ehj93Mcgsco9QrlDKK8RasDZrM9bUN74s_W2w2TWsoajAYdTUPN6cr7nDH22GA2EYvu_9zqB5ZvefTtv33buDmDFPSekHx7Cwng0sUewpD_Gr--jY_8FfgFHAdiJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Generation+Control+Considering+Uncertainties+of+the+Key+Parameters+in+the+Frequency+Response+Model&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Liu%2C+Likai&rft.au=Hu%2C+Zechun&rft.au=Mujeeb%2C+Asad&rft.date=2022-11-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=37&rft.issue=6&rft.spage=4605&rft.epage=4617&rft_id=info:doi/10.1109%2FTPWRS.2022.3153509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2022_3153509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |