TEGOA-CNN: An Improved Gannet Optimization Algorithm for CNN Hyperparameter Optimization in Remote Sensing Sence Classification
The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications like environmental monitoring and disaster assessment. However, the high dimensionality, nonlinearity, and heterogeneity of these images pose...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 17; číslo 17; s. 3087 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2025
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications like environmental monitoring and disaster assessment. However, the high dimensionality, nonlinearity, and heterogeneity of these images pose challenges for intelligent interpretation. While deep learning models (e.g., CNN) require balancing efficiency and parameter optimization, meta-heuristic algorithms establish self-organizing, parallelized search mechanisms capable of achieving asymptotic approximation towards the global optimum of parameters without requiring gradient information. In this paper, we first propose an improved Gannet Optimization Algorithm (GOA), named TEGOA, which uses the T-distribution perturbation and elite retention to address CNN’s parameter dependency. The experiment on CEC2017 shows that TEGOA has a better performance on composition functions. Hence, it is suitable for solving complex optimization problems. Then, we propose a classification model TEGOA-CNN, which combines TEGOA with CNN to increase the accuracy and efficiency of remote sensing sence classification. The experiments of TEGOA-CNN on two well-known datasets, UCM and AID, showed a higher performance in classification accuracy of remote sensing images. Particularly, TEGOA-CNN achieves 100% classification accuracy on 10 out of the 21 surface categories of UCM. |
|---|---|
| AbstractList | The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications like environmental monitoring and disaster assessment. However, the high dimensionality, nonlinearity, and heterogeneity of these images pose challenges for intelligent interpretation. While deep learning models (e.g., CNN) require balancing efficiency and parameter optimization, meta-heuristic algorithms establish self-organizing, parallelized search mechanisms capable of achieving asymptotic approximation towards the global optimum of parameters without requiring gradient information. In this paper, we first propose an improved Gannet Optimization Algorithm (GOA), named TEGOA, which uses the T-distribution perturbation and elite retention to address CNN’s parameter dependency. The experiment on CEC2017 shows that TEGOA has a better performance on composition functions. Hence, it is suitable for solving complex optimization problems. Then, we propose a classification model TEGOA-CNN, which combines TEGOA with CNN to increase the accuracy and efficiency of remote sensing sence classification. The experiments of TEGOA-CNN on two well-known datasets, UCM and AID, showed a higher performance in classification accuracy of remote sensing images. Particularly, TEGOA-CNN achieves 100% classification accuracy on 10 out of the 21 surface categories of UCM. |
| Audience | Academic |
| Author | Kumari, Saru Li, Haonan Wu, Tsu-Yang Yu, Chengyuan Por, Lip Yee |
| Author_xml | – sequence: 1 givenname: Tsu-Yang orcidid: 0000-0001-8970-2452 surname: Wu fullname: Wu, Tsu-Yang – sequence: 2 givenname: Chengyuan orcidid: 0009-0007-6047-248X surname: Yu fullname: Yu, Chengyuan – sequence: 3 givenname: Haonan orcidid: 0000-0002-3156-7160 surname: Li fullname: Li, Haonan – sequence: 4 givenname: Saru surname: Kumari fullname: Kumari, Saru – sequence: 5 givenname: Lip Yee orcidid: 0000-0001-5865-1533 surname: Por fullname: Por, Lip Yee |
| BookMark | eNpVUV1rFDEUDVLBWvviLwj4JkzN10wmvg1L3S6ULmh9DpnMzZplJxmTtFBf_OumXWk1F3LD5ZyTwz1v0UmIARB6T8kF54p8SplKKjnp5St0yohkjWCKnfzzfoPOc96TejiniohT9Pv2cr0dmtXNzWc8BLyZlxTvYcJrEwIUvF2Kn_0vU3wMeDjsYvLlx4xdTLhS8NXDAmkxycxQIP2P9gF_hTkWwN8gZB92j90CXh1Mzt55-wR7h147c8hw_refoe9fLm9XV831dr1ZDdeN5R0tjeitIe3UWdWPgrCejZNyVjpDRsMcJaMFblvV8VZS0SsxtdNoqSHQiVFIyfgZ2hx1p2j2ekl-NulBR-P10yCmnTapeHsADaDatuWtGJUQHelH2klWbwvW8Y5A1fpw1Kq7-nkHueh9vEuh2tecCVUdcEIr6uKI2pkq6oOLJRlba4LZ25qc83U-9PUvwSXtKuHjkWBTzDmBe7ZJiX4MWL8EzP8AxsOY6g |
| Cites_doi | 10.1109/36.763284 10.1109/72.265964 10.3390/pr11051502 10.1016/j.isprsjprs.2010.11.001 10.1109/TIP.2018.2890749 10.4249/scholarpedia.6915 10.1109/TGRS.2017.2685945 10.1038/s41598-024-78761-0 10.1186/s40537-021-00444-8 10.1007/s10462-017-9605-z 10.3390/rs14205095 10.3390/rs11131529 10.3390/rs11050494 10.1016/j.rse.2014.01.011 10.1016/j.isprsjprs.2019.04.015 10.53106/160792642023012401001 10.1109/LGRS.2016.2628406 10.1109/MGRS.2013.2244672 10.1109/JSTARS.2022.3148139 10.1109/TEVC.2010.2059031 10.1016/j.future.2019.02.028 10.1109/ACCESS.2022.3147821 10.1109/MGRS.2016.2540798 10.1002/int.22535 10.1016/j.advengsoft.2013.12.007 10.1109/TGRS.2015.2420659 10.1016/j.matcom.2022.06.007 10.1109/TGRS.2023.3305545 10.1371/journal.pone.0275346 10.3390/biomimetics8020235 10.3390/biomimetics8020149 10.1145/1869790.1869829 10.1007/s00521-023-08261-1 10.1016/j.compstruc.2014.03.007 10.1007/s12145-017-0286-6 10.1016/j.ins.2017.03.027 10.4018/978-1-59904-941-0.ch065 10.1016/j.rse.2019.111510 10.1111/1467-9868.00391 10.1016/j.future.2020.03.055 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/rs17173087 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_ee9555354b944608b16728b1cecf360e A855543716 10_3390_rs17173087 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c361t-48ca05d6c98b40282bd9fc7fa0ba2f10bce3c59635714894d5dbc1a0e64b47723 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570112600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 15:05:35 EDT 2025 Mon Sep 22 07:15:31 EDT 2025 Tue Nov 04 18:10:24 EST 2025 Sat Nov 29 07:13:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-48ca05d6c98b40282bd9fc7fa0ba2f10bce3c59635714894d5dbc1a0e64b47723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3156-7160 0000-0001-5865-1533 0000-0001-8970-2452 0009-0007-6047-248X |
| OpenAccessLink | https://www.proquest.com/docview/3249714301?pq-origsite=%requestingapplication% |
| PQID | 3249714301 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ee9555354b944608b16728b1cecf360e proquest_journals_3249714301 gale_infotracacademiconefile_A855543716 crossref_primary_10_3390_rs17173087 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Cheng (ref_25) 2014; 139 Shehadeh (ref_40) 2023; 35 Azzalini (ref_37) 2003; 65 Wan (ref_31) 2023; 61 ref_14 ref_36 ref_13 Gong (ref_4) 2020; 236 Plaza (ref_12) 2013; 1 Das (ref_24) 2010; 15 ref_32 Zhao (ref_1) 2017; 10 Zhu (ref_3) 2014; 144 Abdollahzadeh (ref_27) 2021; 36 Ngo (ref_18) 2023; 14 Ganashree (ref_33) 2024; 14 ref_39 ref_38 Sedaghat (ref_10) 2015; 53 Sukawattanavijit (ref_30) 2017; 14 Mountrakis (ref_8) 2011; 66 Tu (ref_11) 2019; 28 Hussain (ref_17) 2019; 52 Chu (ref_29) 2023; 24 Oyelade (ref_28) 2022; 10 Mirjalili (ref_20) 2014; 69 ref_22 Tso (ref_23) 1999; 37 ref_42 Xia (ref_6) 2017; 55 ref_41 Alzubaidi (ref_15) 2021; 8 Pan (ref_34) 2022; 202 Ma (ref_16) 2019; 152 Zhang (ref_7) 2016; 4 Li (ref_26) 2020; 111 Wang (ref_19) 2017; 402 Heidari (ref_21) 2019; 97 Rudolph (ref_35) 1994; 5 ref_9 Karaboga (ref_43) 2010; 5 ref_5 Zhang (ref_2) 2022; 15 |
| References_xml | – volume: 37 start-page: 1255 year: 1999 ident: ref_23 article-title: Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.763284 – volume: 5 start-page: 96 year: 1994 ident: ref_35 article-title: Convergence analysis of canonical genetic algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.265964 – ident: ref_39 doi: 10.3390/pr11051502 – volume: 66 start-page: 247 year: 2011 ident: ref_8 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 28 start-page: 2799 year: 2019 ident: ref_11 article-title: Action-stage emphasized spatiotemporal VLAD for video action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2890749 – volume: 5 start-page: 6915 year: 2010 ident: ref_43 article-title: Artificial bee colony algorithm publication-title: Scholarpedia doi: 10.4249/scholarpedia.6915 – volume: 55 start-page: 3965 year: 2017 ident: ref_6 article-title: AID: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – volume: 14 start-page: 172 year: 2023 ident: ref_18 article-title: Optimal Parameter-Feature Selection Using Binary PSO for Enhanced Classification Performance publication-title: J. Inf. Hiding Multimed. Signal Process. – ident: ref_22 doi: 10.1038/s41598-024-78761-0 – volume: 8 start-page: 53 year: 2021 ident: ref_15 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – volume: 52 start-page: 2191 year: 2019 ident: ref_17 article-title: Metaheuristic research: A comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – ident: ref_5 doi: 10.3390/rs14205095 – ident: ref_9 doi: 10.3390/rs11131529 – ident: ref_14 doi: 10.3390/rs11050494 – volume: 144 start-page: 152 year: 2014 ident: ref_3 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.011 – volume: 152 start-page: 166 year: 2019 ident: ref_16 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 24 start-page: 1 year: 2023 ident: ref_29 article-title: BFGO: Bamboo Forest Growth Optimization Algorithm publication-title: J. Internet Technol. doi: 10.53106/160792642023012401001 – volume: 14 start-page: 284 year: 2017 ident: ref_30 article-title: GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2628406 – volume: 1 start-page: 6 year: 2013 ident: ref_12 article-title: Hyperspectral remote sensing data analysis and future challenges publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2013.2244672 – volume: 15 start-page: 1814 year: 2022 ident: ref_2 article-title: Progress and challenges in intelligent remote sensing satellite systems publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3148139 – volume: 15 start-page: 4 year: 2010 ident: ref_24 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 97 start-page: 849 year: 2019 ident: ref_21 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 10 start-page: 16150 year: 2022 ident: ref_28 article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147821 – volume: 4 start-page: 22 year: 2016 ident: ref_7 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 36 start-page: 5887 year: 2021 ident: ref_27 article-title: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – volume: 69 start-page: 46 year: 2014 ident: ref_20 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 53 start-page: 5283 year: 2015 ident: ref_10 article-title: Remote sensing image matching based on adaptive binning SIFT descriptor publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2420659 – volume: 202 start-page: 343 year: 2022 ident: ref_34 article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2022.06.007 – volume: 61 start-page: 5520115 year: 2023 ident: ref_31 article-title: Adaptive multistrategy particle swarm optimization for hyperspectral remote sensing image band selection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3305545 – ident: ref_38 doi: 10.1371/journal.pone.0275346 – ident: ref_32 doi: 10.3390/biomimetics8020235 – ident: ref_41 doi: 10.3390/biomimetics8020149 – ident: ref_42 doi: 10.1145/1869790.1869829 – volume: 35 start-page: 10733 year: 2023 ident: ref_40 article-title: Chernobyl disaster optimizer (CDO): A novel meta-heuristic method for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08261-1 – volume: 139 start-page: 98 year: 2014 ident: ref_25 article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.03.007 – volume: 10 start-page: 137 year: 2017 ident: ref_1 article-title: An overview of satellite remote sensing technology used in China’s environmental protection publication-title: Earth Sci. Inform. doi: 10.1007/s12145-017-0286-6 – volume: 402 start-page: 50 year: 2017 ident: ref_19 article-title: Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.03.027 – ident: ref_36 – ident: ref_13 doi: 10.4018/978-1-59904-941-0.ch065 – volume: 14 start-page: 347 year: 2024 ident: ref_33 article-title: Land scene classification from remote sensing images using improved artificial bee colony optimization algorithm publication-title: Int. J. Electr. Comput. Eng. – volume: 236 start-page: 111510 year: 2020 ident: ref_4 article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111510 – volume: 65 start-page: 367 year: 2003 ident: ref_37 article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00391 – volume: 111 start-page: 300 year: 2020 ident: ref_26 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 |
| SSID | ssj0000331904 |
| Score | 2.4075391 |
| Snippet | The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 3087 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Datasets Deep learning elite retention Environmental monitoring Feature selection Gannet Optimization Algorithm Genetic algorithms Heterogeneity Heuristic methods hyperparameters optimization Hyperspectral imaging Image acquisition Image resolution Integrated approach Land use Machine learning Mathematical optimization Mutation Neural networks Nonlinear systems Optimization Optimization algorithms Parameters Population decline Remote sensing remote sensing sence classification Support vector machines T-distribution perturbation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8igl6k9gNfqxJooafF7Cb7EW-r-HEoT2lt8RaS2VkV-tay77XQk_-6M9nVvh5KL152YUkgzGSS3y87-Y0QHwiyYhqInWQeMDEhAIVU4RNdYVEGKBHjgf63T-V0Wl1d2YulUl-cEzbIAw-G20e0eZ7r3ARLzEVVIS3KjJ6A0OpCIa--qrRLZCquwZqmljKDHqkmXr_fz1P-4aw4d25pB4pC_f9ajuMec_JCbI7gUNbDoLbECnYvxfpYp_zm9ytxf3l8el4nR9Ppgaw7OZwIYCNPPd-ukecU_7PxYqWsv1_fEfO_mUnCpZK6yDPinD1rfc84B-bv1red_IzkNpRfOKW9u-Y3oIxFMzmdKDZ7Lb6eHF8enSVjCYUEdJEuElOBV3lTgK2CYXoVGttC2XoVfNamKgBqyC2L0hEvsqbJmwCpV1iYYAh46zditbvrcFvIrPANwYvWc1yluvWYEz5AqBBsk4GZiPePZnU_BqUMRwyDje_-GH8iDtniTy1Y3Tp-IJ-70efufz6fiI_sL8cxuOg9-PEqAQ2U1axcXVF3o4kKTsTOo0vdGJxzRxjSctl3lb59jtG8ExsZFwWOiWc7YnXR_8RdsQa_Frfzfi_OywdYH-ei priority: 102 providerName: Directory of Open Access Journals |
| Title | TEGOA-CNN: An Improved Gannet Optimization Algorithm for CNN Hyperparameter Optimization in Remote Sensing Sence Classification |
| URI | https://www.proquest.com/docview/3249714301 https://doaj.org/article/ee9555354b944608b16728b1cecf360e |
| Volume | 17 |
| WOSCitedRecordID | wos001570112600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYILb8RCWVkCiVNUJ3ZeXFBabVskSKO2oMIlsp3JthKbLdmA1Ev71zvj9bZwgAsXR4odxdJ4xvONx98w9gZdVggNopNIWwiUMRZVKtGBzCBJjU0BXED_y8e0LLPj47zyAbeFT6tc2URnqJu5pRj5Jm78OdXqFuH7sx8BVY2i01VfQuM2WyeWhNCl7h1ex1iExAUm1JKVVCK63-wXIR07C8qg-20fcnT9fzPKbqfZefC_c3zI7nsfkxfLRfGI3YLuMbvry52fnD9hl0eT3f0i2C7Ld7zo-DKwAA3f1XRJh--jGZn5-5m8-D7FXwwnM47uLcdP-B5C154ow2eUSvPn6NOOHwBKH_ghZcZ3U3pa4K72JmUluWFP2eedydH2XuArMQRWJuEQqMxqETeJzTOjCKWZJm9t2mphdNSGwliQNs6J2w7hVa6auDE21AISZRT67_IZW-vmHTxnPEp0g15Kq0k9Q9lqiNHNAJuBzZvIqhF7vZJLfbYk3KgRqJD06hvpjdgWiex6BJFkuxfzflp7nasB8jiOZaxMjqBXZCZM0ghbC7aViYARe0sCr0mVh15b7W8k4ESJFKsuMvxcSUSUI7axEnjtdXxR30j7xb-7X7J7EVUNdplpG2xt6H_CK3bH_hpOF_2YrW9Nyupg7KIBY7eAqb2YYFvF37C_-vCp-noFyyL8pw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKm98EYECqwEiJPVtXft2EgImdI2UdM0glCVk9ldj9NKjVOcAOqJf8RvZMZxWjjArQcutmTvWl7729n5ZucB8JxUVvQtsZPAOPS0tY6mVGQ8FWPUsa6DWBv0D_udwSA-OkqGK_BzGQvDbpVLmVgL6nzq2Ea-SQt_wrW6pf_m7IvHVaN4d3VZQmMBiz08_06Ubfa6947-74sg2NkebXW9pqqA51Tkzz0dOyPDPHJJbDUzDpsnhesURloTFL60DpULE87TRlQh0XmYW-cbiZG2mnRRRc-9Bquawd6C1WFvf_jpwqojFUFa6kUeVKUSuVnNfN7oluyz99vKVxcI-NsyUK9tOzf_t69yC240WrRIF7C_DStY3oG1pqD78fld-DHa3j1Iva3B4JVIS7EwnWAudg2HIYkDEpSTJgJVpKdjGtL8eCJIgRfURXSJnFecFH3CzkJ_tj4pxXskfKP4wL7_5ZjPDkVdXZT9rupm9-DjlYz_PrTKaYkPQASRyUkPKwwLIF8VBkNSpNDF6JI8cLoNz5Y4yM4WKUUyomKMluwSLW14yxC5aMFpwOsL02qcNVIlQ0zCMFShtgnRehlbP-oEdHToChVJbMNLBljGwmpeGWeamAt6UU77laUxddeKOHMbNpYAyxopNssu0fXw37efwlp3tN_P-r3B3iNYD7hGcu2HtwGtefUVH8N1921-MqueNBNGwOerRuMv4upUzw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQZQLb9SFApYAcYrWiZ0XEkKh7bZVq-0KSlVxMbYz2VZisyUbQD3xv_h1zOTRwgFuPXBJpMSO4uTzeL7xPBh7jior-BbZSWAceMpah1MqMp5MIIqtiwEag_7hXjweJ0dH6WSJ_exjYcitspeJjaDO545s5ENc-FOq1S38YdG5RUw2Rm9Ov3hUQYp2WvtyGi1EduHsO9K3xeudDfzXL4JgtHmwvu11FQY8JyO_9lTijAjzyKWJVcQ-bJ4WLi6MsCYofGEdSBemlLMNaUOq8jC3zjcCImUV6qUSn3uFXY2RY5I74ST8eG7fERLBLVSbEVXKVAyrhU9b3oK8935bA5tSAX9bEJpVbnTrf_4-t9nNTrfmWTsZ7rAlKO-yla7M-_HZPfbjYHNrP_PWx-NXPCt5a1CBnG8ZCk7i-yg-Z11cKs8-T3FI9fGMo1rPsQvfRspeUar0GbkQ_dn6pOTvAFEP_D1FBJRTOjvgTc1R8sZqmt1nHy5l_A_YcjkvYZXxIDI5ameFIbHky8JAiOoVuARcmgdODdizHhP6tE00opGgEXL0BXIG7C3B5bwFJQdvLsyrqe5kjQZIwzCUobIpkn2RWD-KAzw6cIWMBAzYSwKbJhFWV8aZLhIDX5SSgekswe5KIpMesLUebLqTbQt9gbSH_779lF1HCOq9nfHuI3YjoMLJjXPeGluuq6_wmF1z3-qTRfWkmTmcfbpsKP4COvBcMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TEGOA-CNN%3A+An+Improved+Gannet+Optimization+Algorithm+for+CNN+Hyperparameter+Optimization+in+Remote+Sensing+Sence+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tsu-Yang%2C+Wu&rft.au=Yu%2C+Chengyuan&rft.au=Li%2C+Haonan&rft.au=Kumari+Saru&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=17&rft.spage=3087&rft_id=info:doi/10.3390%2Frs17173087&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |