TEGOA-CNN: An Improved Gannet Optimization Algorithm for CNN Hyperparameter Optimization in Remote Sensing Sence Classification

The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications like environmental monitoring and disaster assessment. However, the high dimensionality, nonlinearity, and heterogeneity of these images pose...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 17; no. 17; p. 3087
Main Authors: Wu, Tsu-Yang, Yu, Chengyuan, Li, Haonan, Kumari, Saru, Por, Lip Yee
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2025
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications like environmental monitoring and disaster assessment. However, the high dimensionality, nonlinearity, and heterogeneity of these images pose challenges for intelligent interpretation. While deep learning models (e.g., CNN) require balancing efficiency and parameter optimization, meta-heuristic algorithms establish self-organizing, parallelized search mechanisms capable of achieving asymptotic approximation towards the global optimum of parameters without requiring gradient information. In this paper, we first propose an improved Gannet Optimization Algorithm (GOA), named TEGOA, which uses the T-distribution perturbation and elite retention to address CNN’s parameter dependency. The experiment on CEC2017 shows that TEGOA has a better performance on composition functions. Hence, it is suitable for solving complex optimization problems. Then, we propose a classification model TEGOA-CNN, which combines TEGOA with CNN to increase the accuracy and efficiency of remote sensing sence classification. The experiments of TEGOA-CNN on two well-known datasets, UCM and AID, showed a higher performance in classification accuracy of remote sensing images. Particularly, TEGOA-CNN achieves 100% classification accuracy on 10 out of the 21 surface categories of UCM.
AbstractList The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications like environmental monitoring and disaster assessment. However, the high dimensionality, nonlinearity, and heterogeneity of these images pose challenges for intelligent interpretation. While deep learning models (e.g., CNN) require balancing efficiency and parameter optimization, meta-heuristic algorithms establish self-organizing, parallelized search mechanisms capable of achieving asymptotic approximation towards the global optimum of parameters without requiring gradient information. In this paper, we first propose an improved Gannet Optimization Algorithm (GOA), named TEGOA, which uses the T-distribution perturbation and elite retention to address CNN’s parameter dependency. The experiment on CEC2017 shows that TEGOA has a better performance on composition functions. Hence, it is suitable for solving complex optimization problems. Then, we propose a classification model TEGOA-CNN, which combines TEGOA with CNN to increase the accuracy and efficiency of remote sensing sence classification. The experiments of TEGOA-CNN on two well-known datasets, UCM and AID, showed a higher performance in classification accuracy of remote sensing images. Particularly, TEGOA-CNN achieves 100% classification accuracy on 10 out of the 21 surface categories of UCM.
Audience Academic
Author Kumari, Saru
Li, Haonan
Wu, Tsu-Yang
Yu, Chengyuan
Por, Lip Yee
Author_xml – sequence: 1
  givenname: Tsu-Yang
  orcidid: 0000-0001-8970-2452
  surname: Wu
  fullname: Wu, Tsu-Yang
– sequence: 2
  givenname: Chengyuan
  orcidid: 0009-0007-6047-248X
  surname: Yu
  fullname: Yu, Chengyuan
– sequence: 3
  givenname: Haonan
  orcidid: 0000-0002-3156-7160
  surname: Li
  fullname: Li, Haonan
– sequence: 4
  givenname: Saru
  surname: Kumari
  fullname: Kumari, Saru
– sequence: 5
  givenname: Lip Yee
  orcidid: 0000-0001-5865-1533
  surname: Por
  fullname: Por, Lip Yee
BookMark eNpVUV1rFDEUDVLBWvviLwj4JkzN10wmvg1L3S6ULmh9DpnMzZplJxmTtFBf_OumXWk1F3LD5ZyTwz1v0UmIARB6T8kF54p8SplKKjnp5St0yohkjWCKnfzzfoPOc96TejiniohT9Pv2cr0dmtXNzWc8BLyZlxTvYcJrEwIUvF2Kn_0vU3wMeDjsYvLlx4xdTLhS8NXDAmkxycxQIP2P9gF_hTkWwN8gZB92j90CXh1Mzt55-wR7h147c8hw_refoe9fLm9XV831dr1ZDdeN5R0tjeitIe3UWdWPgrCejZNyVjpDRsMcJaMFblvV8VZS0SsxtdNoqSHQiVFIyfgZ2hx1p2j2ekl-NulBR-P10yCmnTapeHsADaDatuWtGJUQHelH2klWbwvW8Y5A1fpw1Kq7-nkHueh9vEuh2tecCVUdcEIr6uKI2pkq6oOLJRlba4LZ25qc83U-9PUvwSXtKuHjkWBTzDmBe7ZJiX4MWL8EzP8AxsOY6g
Cites_doi 10.1109/36.763284
10.1109/72.265964
10.3390/pr11051502
10.1016/j.isprsjprs.2010.11.001
10.1109/TIP.2018.2890749
10.4249/scholarpedia.6915
10.1109/TGRS.2017.2685945
10.1038/s41598-024-78761-0
10.1186/s40537-021-00444-8
10.1007/s10462-017-9605-z
10.3390/rs14205095
10.3390/rs11131529
10.3390/rs11050494
10.1016/j.rse.2014.01.011
10.1016/j.isprsjprs.2019.04.015
10.53106/160792642023012401001
10.1109/LGRS.2016.2628406
10.1109/MGRS.2013.2244672
10.1109/JSTARS.2022.3148139
10.1109/TEVC.2010.2059031
10.1016/j.future.2019.02.028
10.1109/ACCESS.2022.3147821
10.1109/MGRS.2016.2540798
10.1002/int.22535
10.1016/j.advengsoft.2013.12.007
10.1109/TGRS.2015.2420659
10.1016/j.matcom.2022.06.007
10.1109/TGRS.2023.3305545
10.1371/journal.pone.0275346
10.3390/biomimetics8020235
10.3390/biomimetics8020149
10.1145/1869790.1869829
10.1007/s00521-023-08261-1
10.1016/j.compstruc.2014.03.007
10.1007/s12145-017-0286-6
10.1016/j.ins.2017.03.027
10.4018/978-1-59904-941-0.ch065
10.1016/j.rse.2019.111510
10.1111/1467-9868.00391
10.1016/j.future.2020.03.055
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs17173087
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ee9555354b944608b16728b1cecf360e
A855543716
10_3390_rs17173087
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-48ca05d6c98b40282bd9fc7fa0ba2f10bce3c59635714894d5dbc1a0e64b47723
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570112600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 15:05:35 EDT 2025
Mon Sep 22 07:15:31 EDT 2025
Tue Nov 04 18:10:24 EST 2025
Sat Nov 29 07:13:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-48ca05d6c98b40282bd9fc7fa0ba2f10bce3c59635714894d5dbc1a0e64b47723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3156-7160
0000-0001-5865-1533
0000-0001-8970-2452
0009-0007-6047-248X
OpenAccessLink https://doaj.org/article/ee9555354b944608b16728b1cecf360e
PQID 3249714301
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ee9555354b944608b16728b1cecf360e
proquest_journals_3249714301
gale_infotracacademiconefile_A855543716
crossref_primary_10_3390_rs17173087
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_25) 2014; 139
Shehadeh (ref_40) 2023; 35
Azzalini (ref_37) 2003; 65
Wan (ref_31) 2023; 61
ref_14
ref_36
ref_13
Gong (ref_4) 2020; 236
Plaza (ref_12) 2013; 1
Das (ref_24) 2010; 15
ref_32
Zhao (ref_1) 2017; 10
Zhu (ref_3) 2014; 144
Abdollahzadeh (ref_27) 2021; 36
Ngo (ref_18) 2023; 14
Ganashree (ref_33) 2024; 14
ref_39
ref_38
Sedaghat (ref_10) 2015; 53
Sukawattanavijit (ref_30) 2017; 14
Mountrakis (ref_8) 2011; 66
Tu (ref_11) 2019; 28
Hussain (ref_17) 2019; 52
Chu (ref_29) 2023; 24
Oyelade (ref_28) 2022; 10
Mirjalili (ref_20) 2014; 69
ref_22
Tso (ref_23) 1999; 37
ref_42
Xia (ref_6) 2017; 55
ref_41
Alzubaidi (ref_15) 2021; 8
Pan (ref_34) 2022; 202
Ma (ref_16) 2019; 152
Zhang (ref_7) 2016; 4
Li (ref_26) 2020; 111
Wang (ref_19) 2017; 402
Heidari (ref_21) 2019; 97
Rudolph (ref_35) 1994; 5
ref_9
Karaboga (ref_43) 2010; 5
ref_5
Zhang (ref_2) 2022; 15
References_xml – volume: 37
  start-page: 1255
  year: 1999
  ident: ref_23
  article-title: Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.763284
– volume: 5
  start-page: 96
  year: 1994
  ident: ref_35
  article-title: Convergence analysis of canonical genetic algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265964
– ident: ref_39
  doi: 10.3390/pr11051502
– volume: 66
  start-page: 247
  year: 2011
  ident: ref_8
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 28
  start-page: 2799
  year: 2019
  ident: ref_11
  article-title: Action-stage emphasized spatiotemporal VLAD for video action recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2890749
– volume: 5
  start-page: 6915
  year: 2010
  ident: ref_43
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6915
– volume: 55
  start-page: 3965
  year: 2017
  ident: ref_6
  article-title: AID: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– volume: 14
  start-page: 172
  year: 2023
  ident: ref_18
  article-title: Optimal Parameter-Feature Selection Using Binary PSO for Enhanced Classification Performance
  publication-title: J. Inf. Hiding Multimed. Signal Process.
– ident: ref_22
  doi: 10.1038/s41598-024-78761-0
– volume: 8
  start-page: 53
  year: 2021
  ident: ref_15
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 52
  start-page: 2191
  year: 2019
  ident: ref_17
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– ident: ref_5
  doi: 10.3390/rs14205095
– ident: ref_9
  doi: 10.3390/rs11131529
– ident: ref_14
  doi: 10.3390/rs11050494
– volume: 144
  start-page: 152
  year: 2014
  ident: ref_3
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.011
– volume: 152
  start-page: 166
  year: 2019
  ident: ref_16
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 24
  start-page: 1
  year: 2023
  ident: ref_29
  article-title: BFGO: Bamboo Forest Growth Optimization Algorithm
  publication-title: J. Internet Technol.
  doi: 10.53106/160792642023012401001
– volume: 14
  start-page: 284
  year: 2017
  ident: ref_30
  article-title: GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2628406
– volume: 1
  start-page: 6
  year: 2013
  ident: ref_12
  article-title: Hyperspectral remote sensing data analysis and future challenges
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2013.2244672
– volume: 15
  start-page: 1814
  year: 2022
  ident: ref_2
  article-title: Progress and challenges in intelligent remote sensing satellite systems
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3148139
– volume: 15
  start-page: 4
  year: 2010
  ident: ref_24
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_21
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 10
  start-page: 16150
  year: 2022
  ident: ref_28
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147821
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_7
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 36
  start-page: 5887
  year: 2021
  ident: ref_27
  article-title: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22535
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_20
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 53
  start-page: 5283
  year: 2015
  ident: ref_10
  article-title: Remote sensing image matching based on adaptive binning SIFT descriptor
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2420659
– volume: 202
  start-page: 343
  year: 2022
  ident: ref_34
  article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2022.06.007
– volume: 61
  start-page: 5520115
  year: 2023
  ident: ref_31
  article-title: Adaptive multistrategy particle swarm optimization for hyperspectral remote sensing image band selection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3305545
– ident: ref_38
  doi: 10.1371/journal.pone.0275346
– ident: ref_32
  doi: 10.3390/biomimetics8020235
– ident: ref_41
  doi: 10.3390/biomimetics8020149
– ident: ref_42
  doi: 10.1145/1869790.1869829
– volume: 35
  start-page: 10733
  year: 2023
  ident: ref_40
  article-title: Chernobyl disaster optimizer (CDO): A novel meta-heuristic method for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08261-1
– volume: 139
  start-page: 98
  year: 2014
  ident: ref_25
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 10
  start-page: 137
  year: 2017
  ident: ref_1
  article-title: An overview of satellite remote sensing technology used in China’s environmental protection
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-017-0286-6
– volume: 402
  start-page: 50
  year: 2017
  ident: ref_19
  article-title: Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.03.027
– ident: ref_36
– ident: ref_13
  doi: 10.4018/978-1-59904-941-0.ch065
– volume: 14
  start-page: 347
  year: 2024
  ident: ref_33
  article-title: Land scene classification from remote sensing images using improved artificial bee colony optimization algorithm
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 236
  start-page: 111510
  year: 2020
  ident: ref_4
  article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111510
– volume: 65
  start-page: 367
  year: 2003
  ident: ref_37
  article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00391
– volume: 111
  start-page: 300
  year: 2020
  ident: ref_26
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
SSID ssj0000331904
Score 2.4074543
Snippet The evolution of remote sensing technology has led to significant improvements in high-resolution and hyperspectral image acquisition, enhancing applications...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3087
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Datasets
Deep learning
elite retention
Environmental monitoring
Feature selection
Gannet Optimization Algorithm
Genetic algorithms
Heterogeneity
Heuristic methods
hyperparameters optimization
Hyperspectral imaging
Image acquisition
Image resolution
Integrated approach
Land use
Machine learning
Mathematical optimization
Mutation
Neural networks
Nonlinear systems
Optimization
Optimization algorithms
Parameters
Population decline
Remote sensing
remote sensing sence classification
Support vector machines
T-distribution perturbation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFd8VCQZZA4hTViR-xuaBQ9XFAW0SL1JsVP7KtxGZLNiBx4q8z43hbOMCFSyLFtmLp84w945lvCHktfAQt5-rCtYoXIgRVaGkcCJ6HpirqMLHrf6jnc312Zj5mh9s6h1VudGJS1GHl0Ue-Cxu_wVrdrHx3-bXAqlF4u5pLaNwkt5AloUyheydXPhbGYYExMbGScrDud4d1idfODCPoftuHEl3_35Ry2mkO7v_vHB-Qe_mMSZtpUTwkN2L_iNzJ5c7PfzwmP0_3D4-bYm8-f0ubnk6OhRjoYYtJOvQY1Mgy52fS5ssCfjGeLykcbykMoUdgug5IGb7EUJo_e1_09FME9CM9wcj4foFvH2mqvYlRSanbE_L5YP9076jIlRgKz1U5FkL7lsmgvNFOoJXmgul83bXMtVVXMucj99Igtx2YV0YEGZwvWxaVcALO73ybbPWrPj4l1HTaMF7BeMeF8FyrKBVvO83qILtSz8irDS72ciLcsGCoIHr2Gr0ZeY-QXfVAkuz0YTUsbJY5G6ORUnIpnAGjl2lXqrqCp4--44rFGXmDgFsU5XFofZszEmCiSIplGw3DBQeLckZ2NoDbLONre432s383Pyd3K6wanCLTdsjWOHyLL8ht_328WA8v05L9BQwA9b4
  priority: 102
  providerName: ProQuest
Title TEGOA-CNN: An Improved Gannet Optimization Algorithm for CNN Hyperparameter Optimization in Remote Sensing Sence Classification
URI https://www.proquest.com/docview/3249714301
https://doaj.org/article/ee9555354b944608b16728b1cecf360e
Volume 17
WOSCitedRecordID wos001570112600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kCnoRP_FpfSwoeArdZD-y6y0tr62gaWgrVC_LfqUt-FLJewpe9F93Jkn1eRAvXjaQ3YVlZmd2fsnsbwh5KUICL-fLzDvFMxGjyrQ0HgwvQFeRdBzZ9d-Wda3PzkyzUeoLc8JGeuBRcDspGSkll8IbQC5M-1yVBbQhhZYrltD7stJsgKnBB3PYWkyMfKQccP1Ov8rxhzPD3LmNE2gg6v-bOx7OmP175O4UHNJqXNR9ciN1D8jtqU75xbeH5Mfp4uCoyvbq-jWtOjp-EUiRHji8XUOPwP6X08VKWn06vwLkf7GkEJdSmEIPAXP2yPW9xByYP0dfdvQ4gdoSPcGU9u4cnyHRoWgmphMNwx6R9_uL073DbCqhkAWu8nUmdHBMRhWM9gLhlY-mDWXrmHdFmzMfEg_SICkd4CIjoow-5I4lJbyAwJs_JlvdVZeeEGpabRgvYL7nQgSuVZKKu1azMso21zPy4lqs9vPIlGEBYaDw7W_hz8guSvzXCGS3Hl6Azu2kc_svnc_IK9SXRRtc9y646SoBLBTZrGylYbrgAAVnZPtapXYyzpWFGNJg2XeWP_0fq3lG7hRYFHhIPNsmW-v-S3pOboWv68tVPyc3dxd1czwf9uccU0tPsP2-gLaRH6G_efOu-fATy9ztoA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVK58I1YKGAJEKeoTuwkNhJCobTdVbfbFSxSOYXYcbaV2GzJBlBP_CN-IzNJtoUD3HrgkkixHdnJ84zHnpkH8Exah1LOxJ7JIuHJPI88FWqDE89iUeBU3mbXH8XjsTo60pM1-LmKhSG3ypVMbAR1vrC0R76Fil8TVzf3X59-8Yg1ik5XVxQaLSz23dl3NNmWr4Zv8f8-D4Ldnen2wOtYBTwrIr_2pLIZD_PIamUkWRwm14WNi4ybLCh8bqwTNtSUpw1NBS3zMDfWz7iLpJG4FhX43iuwLgnsPVifDA8mH893dbhASHPZ5kEVQvOtaunTQTcnn73fNF9DEPA3NdDott0b_9tXuQnXu1U0S1rY34I1V96GjY7Q_fjsDvyY7uwdJt72ePySJSVrt05czvYyCkNihygo510EKks-z3BI9fGc4QKeYRM2QOO8oqToc3IW-rP2ScneOcS3Y-_J97-c0d061rCLkt9VU-0ufLiU8d-DXrko3X1gulCaiwDbGyGlFSpyYSSyQvE4Dwtf9eHpCgfpaZtSJEVTjNCSXqClD28IIuc1KA1482BRzdJOqqTO6TAMRSiNRrOeK-NHcYBX62whIu768IIAlpKwqqvMZl3MBXaU0n6licLmUqDN3IfNFcDSToot0wt0Pfh38RPYGEwPRuloON5_CNcC4khu_PA2oVdXX90juGq_1SfL6nE3YRh8umw0_gL7klRY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgCVAnKJ1YjuxkRAKbbetWqUrKFLFJcSPbCux2ZINoJ74X_w6ZvJo4QC3HrgkUmxHeXwe-7Nn5iPkubAerJxJAlPEPBDOxYGS2kDHs1AUeeW67Pp7SZapw0M9XSE_h1gYdKscbGJrqN3C4hr5GAZ-jVrdLByXvVvEdGPy5uRLgApSuNM6yGl0ENn1p9-Bvi1f72zAv34RRZPNg_XtoFcYCCyPwyYQyhZMuthqZQSyD-N0aZOyYKaIypAZ67mVGnO2AW3QwklnbFgwHwsjYF7K4b6XyOUEOCa6E07lx7P1HcYB3Ex0GVE512xcL0Pc8mbovffbGNhKBfxtQGhHucnN__n73CI3-rk1TbvOcJus-OoOudbLvB-d3iU_Dja39tNgPcte0bSi3YKKd3SrwOAkug_mc97HpdL08wxeqTmaU5jWU2hCt4Gy15gqfY4uRH_WPq7oOw-o9_Q9RgRUMzxbT1vNUfTGaqvdIx8u5P3vk9VqUfkHhOpSacYjaG-4EJar2MuYF6ViiZNlqEbk2YCJ_KRLNJIDQUPk5OfIGZG3CJezGpgcvL2wqGd5b2ty77WUkkthNJB9pkwYJxEcrbclj5kfkZcIthxNWFMXtugjMeBBMRlYnipoLjgw6RFZG8CW97ZtmZ8j7eG_i5-SqwDBfG8n231ErkconNw6562R1ab-6h-TK_Zbc7ysn7Q9h5JPFw3FX1MvW7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TEGOA-CNN%3A+An+Improved+Gannet+Optimization+Algorithm+for+CNN+Hyperparameter+Optimization+in+Remote+Sensing+Sence+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tsu-Yang+Wu&rft.au=Chengyuan+Yu&rft.au=Haonan+Li&rft.au=Saru+Kumari&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=17&rft.spage=3087&rft_id=info:doi/10.3390%2Frs17173087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee9555354b944608b16728b1cecf360e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon