Computation Offloading Toward Edge Computing

We are living in a world where massive end devices perform computing everywhere and everyday. However, these devices are constrained by the battery and computational resources. With the increasing number of intelligent applications (e.g., augmented reality and face recognition) that require much mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE Jg. 107; H. 8; S. 1584 - 1607
Hauptverfasser: Lin, Li, Liao, Xiaofei, Jin, Hai, Li, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9219, 1558-2256
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are living in a world where massive end devices perform computing everywhere and everyday. However, these devices are constrained by the battery and computational resources. With the increasing number of intelligent applications (e.g., augmented reality and face recognition) that require much more computational power, they shift to perform computation offloading to the cloud, known as mobile cloud computing (MCC). Unfortunately, the cloud is usually far away from end devices, leading to a high latency as well as the bad quality of experience (QoE) for latency-sensitive applications. In this context, the emergence of edge computing is no coincidence. Edge computing extends the cloud to the edge of the network, close to end users, bringing ultra-low latency and high bandwidth. Consequently, there is a trend of computation offloading toward edge computing. In this paper, we provide a comprehensive perspective on this trend. First, we give an insight into the architecture refactoring in edge computing. Based on that insight, this paper reviews the state-of-the-art research on computation offloading in terms of application partitioning, task allocation, resource management, and distributed execution, with highlighting features for edge computing. Then, we illustrate some disruptive application scenarios that we envision as critical drivers for the flourish of edge computing, such as real-time video analytics, smart "things" (e.g., smart city and smart home), vehicle applications, and cloud gaming. Finally, we discuss the opportunities and future research directions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2019.2922285