A Finite Mixture GARCH Approach with EM Algorithm for Energy Forecasting Applications

Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 14; číslo 9; s. 2352
Hlavní autoři: Zhang, Yang, Peng, Yidong, Qu, Xiuli, Shi, Jing, Erdem, Ergin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2021
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximization (EM) algorithm is introduced. The applicability of this methodology is comprehensively evaluated for the forecasting of energy related time series including wind speed, wind power generation, and electricity price. Its forecasting performances are evaluated by various criteria, and also compared with those of the conventional AutoRegressive Moving-Average (ARMA) model and the less conventional ARMA-GARCH model. It is found that the proposed mixture GARCH model outperforms the other two models in terms of volatility modeling for all the energy related time series considered. This is proven to be statistically significant because the p-values of likelihood ratio test are less than 0.0001. On the other hand, in terms of estimations of mean wind speed, mean wind power output, and mean electricity price, no significant improvement from the proposed model is obtained. The results indicate that the proposed finite mixture GARCH model is a viable approach for mitigating the associated risk in energy related predictions thanks to the reduced errors on volatility modeling.
AbstractList Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximization (EM) algorithm is introduced. The applicability of this methodology is comprehensively evaluated for the forecasting of energy related time series including wind speed, wind power generation, and electricity price. Its forecasting performances are evaluated by various criteria, and also compared with those of the conventional AutoRegressive Moving-Average (ARMA) model and the less conventional ARMA-GARCH model. It is found that the proposed mixture GARCH model outperforms the other two models in terms of volatility modeling for all the energy related time series considered. This is proven to be statistically significant because the p-values of likelihood ratio test are less than 0.0001. On the other hand, in terms of estimations of mean wind speed, mean wind power output, and mean electricity price, no significant improvement from the proposed model is obtained. The results indicate that the proposed finite mixture GARCH model is a viable approach for mitigating the associated risk in energy related predictions thanks to the reduced errors on volatility modeling.
Author Peng, Yidong
Zhang, Yang
Shi, Jing
Erdem, Ergin
Qu, Xiuli
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
– sequence: 2
  givenname: Yidong
  surname: Peng
  fullname: Peng, Yidong
– sequence: 3
  givenname: Xiuli
  surname: Qu
  fullname: Qu, Xiuli
– sequence: 4
  givenname: Jing
  surname: Shi
  fullname: Shi, Jing
– sequence: 5
  givenname: Ergin
  surname: Erdem
  fullname: Erdem, Ergin
BookMark eNptkU9LAzEQxYMoqLUXP0HAm1BNMvsvx6W0VVAEsecwm82uKeumZlPUb2_aKoqYS4bkvd-8YU7JYe96Q8g5Z1cAkl2bnidMCkjFATnhUmYTznI4_FUfk_EwrFg8ABwATsiypHPb22DovX0PG2_oonyc3tByvfYO9TN9s-GZzu5p2bXOx_qFNs7TWW98-0HnzhuNQ7B9u3V0VmOwrh_OyFGD3WDGX_eILOezp-nN5O5hcTst7yYaMh4mCdRVJjCXpqmyIsmbDHUlRCWZRjQMuEzTDGQuOcZPxEwAFHWU8YpXRdPAiNzuubXDlVp7-4L-Qzm0avfgfKvQB6s7o2rUEurYyWAaYXXFNEiI4Kbgqcy3rIs9Kw7-ujFDUCu38X2Mr0QqCpHGGElUsb1KezcM3jRK27AbOni0neJMbXehfnYRLZd_LN9B_xF_ApskijA
CitedBy_id crossref_primary_10_1016_j_compeleceng_2022_107872
crossref_primary_10_3389_fenrg_2023_1323073
crossref_primary_10_1016_j_energy_2024_133206
Cites_doi 10.1016/j.enconman.2019.111799
10.1109/34.990138
10.1016/j.jeconom.2012.08.012
10.1002/for.1093
10.1016/j.jedc.2019.05.008
10.1016/j.patrec.2012.06.017
10.1162/089976603762553004
10.1007/s10107-019-01381-4
10.1016/j.eswa.2018.03.002
10.2307/2288097
10.1016/j.ress.2020.107053
10.1109/TPAMI.2018.2845371
10.1016/j.patrec.2019.04.001
10.1016/j.apenergy.2010.10.031
10.1002/er.4388
10.1080/02664760903521435
10.1145/6187.6192
10.1016/j.apenergy.2010.09.028
10.1080/15435075.2011.647170
10.1109/TPWRS.2005.846044
10.1016/j.enconman.2014.12.072
10.1016/j.eswa.2012.10.038
10.1016/j.econmod.2006.08.003
10.18637/jss.v011.i08
10.1109/TPAMI.2005.162
10.1109/TNN.2008.915110
10.1016/j.energy.2017.12.049
10.1007/s00181-017-1348-9
10.1016/j.jhydrol.2019.03.072
10.1016/j.ijforecast.2014.09.002
10.1016/0304-4076(86)90063-1
10.1016/j.physa.2020.125649
10.1002/jae.849
10.1016/j.renene.2020.02.117
10.1016/j.apenergy.2009.12.013
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14092352
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest One Academic
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_dac93d9efea547fdb0c3931a4f81597f
10_3390_en14092352
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-43db62a79efb6847f6acb22b90caae031955639791a47faa62338d7f61b1b8ff3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650191700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:53:10 EDT 2025
Mon Jun 30 11:18:19 EDT 2025
Tue Nov 18 21:05:45 EST 2025
Sat Nov 29 07:15:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-43db62a79efb6847f6acb22b90caae031955639791a47faa62338d7f61b1b8ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/dac93d9efea547fdb0c3931a4f81597f
PQID 2528257914
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_dac93d9efea547fdb0c3931a4f81597f
proquest_journals_2528257914
crossref_citationtrail_10_3390_en14092352
crossref_primary_10_3390_en14092352
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Schnabel (ref_40) 1985; 11
Hossain (ref_22) 2011; 38
Pernkopf (ref_28) 2005; 27
Leisch (ref_20) 2004; 11
Haas (ref_23) 2004; 2
Broda (ref_25) 2013; 172
Adedipe (ref_7) 2020; 202
Kim (ref_13) 2018; 103
Hosseini (ref_35) 2019; 181
ref_19
Cheng (ref_37) 2009; 28
Kass (ref_39) 1985; 80
Babatunde (ref_4) 2019; 43
Oliveira (ref_5) 2018; 144
Forster (ref_32) 2019; 125
Li (ref_8) 2010; 87
Bollerslev (ref_10) 1986; 31
Haas (ref_41) 2004; 2
Liu (ref_15) 2011; 88
Yu (ref_31) 2019; 41
Rombouts (ref_26) 2015; 31
Gu (ref_29) 2008; 19
Wang (ref_9) 2019; 198
ref_21
Hamdi (ref_27) 2018; 55
Sun (ref_18) 2015; 92
Nikolaev (ref_36) 2013; 40
Wu (ref_38) 2007; 24
ref_1
ref_3
Xing (ref_12) 2021; 566
Zhao (ref_30) 2012; 33
ref_2
Jamil (ref_6) 2020; 154
Garcia (ref_16) 2005; 20
Verbeek (ref_34) 2003; 15
Erdem (ref_42) 2011; 88
Alexander (ref_24) 2006; 21
Liu (ref_17) 2013; 10
Fathian (ref_11) 2019; 573
Augustyniak (ref_14) 2019; 104
Figueiredo (ref_33) 2002; 24
References_xml – volume: 198
  start-page: 111799
  year: 2019
  ident: ref_9
  article-title: A review of deep learning for renewable energy forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111799
– volume: 24
  start-page: 381
  year: 2002
  ident: ref_33
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990138
– ident: ref_3
– volume: 172
  start-page: 292
  year: 2013
  ident: ref_25
  article-title: Stable mixture GARCH models
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2012.08.012
– volume: 28
  start-page: 247
  year: 2009
  ident: ref_37
  article-title: On a dynamic mixture GARCH model
  publication-title: J. Forecast.
  doi: 10.1002/for.1093
– volume: 2
  start-page: 493
  year: 2004
  ident: ref_41
  article-title: A New Approach to Markov-Switching GARCH Models
  publication-title: J. Financ. Econ.
– volume: 104
  start-page: 111
  year: 2019
  ident: ref_14
  article-title: A profitable modification to global quadratic hedging
  publication-title: J. Econ. Dyn. Control
  doi: 10.1016/j.jedc.2019.05.008
– volume: 33
  start-page: 2120
  year: 2012
  ident: ref_30
  article-title: Random swap EM algorithm for Gaussian mixture models
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.06.017
– volume: 15
  start-page: 469
  year: 2003
  ident: ref_34
  article-title: Efficient Greedy Learning of Gaussian Mixture Models
  publication-title: Neural Comput.
  doi: 10.1162/089976603762553004
– volume: 181
  start-page: 187
  year: 2019
  ident: ref_35
  article-title: An alternative to EM for Gaussian mixture models: Batch and stochastic Riemannian optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01381-4
– volume: 103
  start-page: 25
  year: 2018
  ident: ref_13
  article-title: Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.002
– volume: 80
  start-page: 247
  year: 1985
  ident: ref_39
  article-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2288097
– ident: ref_1
– volume: 202
  start-page: 107053
  year: 2020
  ident: ref_7
  article-title: Bayesian Network Modelling for the Wind Energy Industry: An Overview
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107053
– volume: 41
  start-page: 1323
  year: 2019
  ident: ref_31
  article-title: Density-preserving hierarchical EM algorithm: Simplifying Gaussian mixture models for ap-proximate inference
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2845371
– volume: 125
  start-page: 349
  year: 2019
  ident: ref_32
  article-title: K-means as a variational EM approximation of Gaussian mixture models
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.04.001
– volume: 88
  start-page: 1405
  year: 2011
  ident: ref_42
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 43
  start-page: 6078
  year: 2019
  ident: ref_4
  article-title: A comprehensive state-of-the-art survey on power generation expansion planning with intermittent renewable energy source and energy storage
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4388
– ident: ref_21
– volume: 2
  start-page: 211
  year: 2004
  ident: ref_23
  article-title: Mixed Normal Conditional Heteroskedasticity
  publication-title: J. Financ. Econ.
– volume: 38
  start-page: 533
  year: 2011
  ident: ref_22
  article-title: Comparison of the finite mixture of ARMA-GARCH, back propagation neural networks and sup-port-vector machines in forecasting financial returns
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760903521435
– volume: 11
  start-page: 419
  year: 1985
  ident: ref_40
  article-title: A modular system of algorithms for unconstrained minimization
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/6187.6192
– volume: 88
  start-page: 724
  year: 2011
  ident: ref_15
  article-title: Comprehensive evaluation of ARMA–GARCH (-M) approaches for modeling the mean and volatility of wind speed
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.09.028
– volume: 10
  start-page: 151
  year: 2013
  ident: ref_17
  article-title: An Integrated Wind Power Forecasting Methodology: Interval Estimation of Wind Speed, Operation Probability of Wind Turbine, and Conditional Expected Wind Power Output of A Wind Farm
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2011.647170
– volume: 20
  start-page: 867
  year: 2005
  ident: ref_16
  article-title: A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.846044
– volume: 92
  start-page: 385
  year: 2015
  ident: ref_18
  article-title: Empirical investigation on modeling solar radiation series with ARMA–GARCH models
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.072
– volume: 40
  start-page: 2233
  year: 2013
  ident: ref_36
  article-title: Heavy-tailed mixture GARCH volatility modeling and Value-at-Risk estimation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.10.038
– volume: 24
  start-page: 329
  year: 2007
  ident: ref_38
  article-title: Estimation of a utility-based asset pricing model using normal mixture GARCH (1,1)
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2006.08.003
– volume: 11
  start-page: 1
  year: 2004
  ident: ref_20
  article-title: FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression inR
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v011.i08
– volume: 27
  start-page: 1344
  year: 2005
  ident: ref_28
  article-title: Genetic-based EM algorithm for learning Gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.162
– volume: 19
  start-page: 1154
  year: 2008
  ident: ref_29
  article-title: Distributed EM algorithm for Gaussian mixtures in sensor networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.915110
– ident: ref_2
– volume: 144
  start-page: 776
  year: 2018
  ident: ref_5
  article-title: Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.049
– volume: 55
  start-page: 1925
  year: 2018
  ident: ref_27
  article-title: Mixture periodic GARCH models: Theory and applications
  publication-title: Empir. Econ.
  doi: 10.1007/s00181-017-1348-9
– volume: 573
  start-page: 82
  year: 2019
  ident: ref_11
  article-title: Modeling streamflow time series using nonlinear SETAR-GARCH models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.072
– volume: 31
  start-page: 635
  year: 2015
  ident: ref_26
  article-title: Option pricing with asymmetric heteroskedastic normal mixture models
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2014.09.002
– volume: 31
  start-page: 307
  year: 1986
  ident: ref_10
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: J. Econ.
  doi: 10.1016/0304-4076(86)90063-1
– volume: 566
  start-page: 125649
  year: 2021
  ident: ref_12
  article-title: Forecasting price of financial market crash via a new nonlinear potential GARCH model
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2020.125649
– volume: 21
  start-page: 307
  year: 2006
  ident: ref_24
  article-title: Normal mixture GARCH (1,1): Applications to exchange rate modelling
  publication-title: J. Appl. Econom.
  doi: 10.1002/jae.849
– ident: ref_19
– volume: 154
  start-page: 1
  year: 2020
  ident: ref_6
  article-title: Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.02.117
– volume: 87
  start-page: 2313
  year: 2010
  ident: ref_8
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.013
SSID ssj0000331333
Score 2.2852206
Snippet Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2352
SubjectTerms Algorithms
Alternative energy sources
COVID-19
Electricity
EM algorithm
finite mixture
Forecasting
GARCH
Literature reviews
Neural networks
Parameter estimation
Performance evaluation
Prices
Renewable resources
Stochastic models
Time series
Volatility
wind energy
Wind farms
Wind power
wind speed
SummonAdditionalLinks – databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb7G-WNCLh2CSSZPsSaK0emkpouAt7G52tVDT2lbx5zuTbmtB8eI1GZJMZh_fzuMbxs5T5UdRaH0vVKC9SGjpibjQngQtbGJkJGNbNZtIOp306Ul0ncNt7NIqZ2titVAXA00-8suwQVWWiQiiq-GbR12jKLrqWmgssxViKsNxvnLd7HTv514WHwAPYTDlJQU831-akiiewqrSaGEnqgj7f6zH1SbT2vzv522xDQcveTYdD9tsyZQ7bH2BdHCXPWa81SOkydu9T4of8FuKGPHMsYtzcs3yZptn_Wd8w-TllSOw5c2qSJBTK08tx5QszbOF4Pcee2w1H27uPNdcwdMQBxMvgkLFoUyEsSrGLcrGUqswVMLXUhqqbSLqMIEaSbwpJcIkSAsUC1SgUmthn9XKQWkOGNeBUqkwQSBTfJDyJQCCsABxu40tQFJnF7MfnWvHPE4NMPo5nkDIKPm3UersbC47nPJt_Cp1TfaaSxBHdnVhMHrO3ZTLC6kFFKifkQ1UoVC-BgGojk0RwyW2zo5npszdxB3n33Y8_Pv2EVsLKb2lyn08ZrXJ6N2csFX9MemNR6duHH4BHxbncw
  priority: 102
  providerName: ProQuest
Title A Finite Mixture GARCH Approach with EM Algorithm for Energy Forecasting Applications
URI https://www.proquest.com/docview/2528257914
https://doaj.org/article/dac93d9efea547fdb0c3931a4f81597f
Volume 14
WOSCitedRecordID wos000650191700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHvQgPnF9EdCLh2LbqU1zrNJVD7ssoqCnkqSJLqyruKt48rc7k1YtKHjx0kMY0vabNjOTzHzD2EGmwySJXRjEGkyQSKMCmVYmUGCkE1YlKnW-2YTo97ObGzlotfqinLCaHrgG7qhSRkIlrbPqOBGu0qEBCZFKXIaWWDhafUMhW8GUX4MBMPiCmo8UMK4_smOidop9hVHLAnmi_h_rsDcu3WW21HiFPK-fZoXN2PEqW2xxBa6x65x3h-Qg8t7wjbb9-Rkd9PC8IQXntKPKix7PR3ePGPHfP3D0R3nha_s4deA0akI5zjxvnVmvs-tucXV6HjQ9EQIDaTQNEqh0GiuBgOgULYtLldFxrGVolLJUkkSMX1JIREg4pdC7gaxCsUhHOnMONtjs-HFsNxk3kdaZtFGkMpxIhwoAfacI3W2XOgDRYYefOJWmIQynvhWjEgMHwrT8xrTD9r9kn2qajF-lTgjuLwmitvYDqPCyUXj5l8I7bOdTWWXzv03K-JhqcPGtk63_uMc2W4gpd8UnNu6w2enzi91l8-Z1Opw877G5k6I_uNzznxxee-8Fjg0ueoPbD5m33dw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAl64Bs1UGAl4MDBqr3j2t4DQgYSGrWJcmilcnJ317slUpu0SYD2T_EbmXHsNBKIWw9cvau1xvs8O7Mz8wbgTWbCOJY-DKRBG8TK6kAlpQ00WuVTp2Od-KrZRDoYZEdHargGv5paGE6rbHRipajLieU78m25w1WWqYriD-cXAXeN4uhq00JjAYs9d_WTXLbZ-95n2t-3UnY7B592g7qrQGAxieZBjKVJpE6V8yYh3ewTbY2URoVWa8dFPcyZpehNmga1JvsAs5KmRSYymfdI696C9ZjB3oL1Ya8__Lq81QkRyenDBQ8qogq33ZgppWRV2bRy8lUNAv7Q_9Wh1r3_v32OB3CvNp9FvsD7Q1hz40ewsUKq-BgOc9EdsSUt-qNLjo-ILxwRE3nNni746ll0-iI_PSGJ5t_OBBnuolMVQQpuVWr1jJPBRb4S3H8Chzci11NojSdjtwnCRsZkykWRzmghE2pEMjIj8kt84hHTNrxrNrawNbM6N_g4LcjDYhAU1yBow-vl3PMFn8hfZ31kfCxnMAd49WAyPSlqlVKU2iosST6nd0iE0oQWFZI4PiMbNfVt2GqgU9SKaVZc4-bZv4dfwZ3dg_5-sd8b7D2Hu5JTeao8zy1ozaff3Qu4bX_MR7Ppy_ofEHB80zj7Da5LRPA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCF64Bs1UGAl4MDBir3j2t4DQoYmEJVEOVCpnNzd9W6J1CZtEqD9a_w6Zhw7jQTi1gNXe7XWeN_OzuzMvAF4lZkwjqUPA2nQBrGyOlBJaQONVvnU6Vgnvmo2kQ6H2eGhGm3Ar6YWhtMqG51YKepyavmOvCN3ucoyVVHc8XVaxGiv9-7sPOAOUhxpbdppLCGy7y5_kvs2f9vfo7V-LWWv--XDp6DuMBBYTKJFEGNpEqlT5bxJSE_7RFsjpVGh1dpxgQ_zZyn6qqaXWpOtgFlJwyITmcx7pHlvwCaZ5LFsweaoPxh9Xd3whIjkAOKSExVRhR03YXopWVU5rZ2CVbOAP86C6oDr3f2ff809uFOb1SJf7oP7sOEmD2BrjWzxIRzkojdmC1sMxhccNxEfOVIm8ppVXfCVtOgORH5yTBItvp0KMuhFtyqOFNzC1Oo5J4mLfC3o_wgOrkWux9CaTCduG4SNjMmUiyKd0UQm1IhkfEbkr_jEI6ZteNMscmFrxnVu_HFSkOfFgCiuANGGl6uxZ0uekb-Oes9YWY1gbvDqwXR2XNSqpii1VViSfE7vkgilCS0qJHF8RrZr6tuw08CoqBXWvLjC0JN_v34Btwhcxef-cP8p3Jac4VOlf-5AazH77p7BTftjMZ7PntfbQcDRdcPsN1hfTbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Finite+Mixture+GARCH+Approach+with+EM+Algorithm+for+Energy+Forecasting+Applications&rft.jtitle=Energies+%28Basel%29&rft.au=Yang+Zhang&rft.au=Yidong+Peng&rft.au=Xiuli+Qu&rft.au=Jing+Shi&rft.date=2021-05-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=9&rft.spage=2352&rft_id=info:doi/10.3390%2Fen14092352&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dac93d9efea547fdb0c3931a4f81597f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon