A Finite Mixture GARCH Approach with EM Algorithm for Energy Forecasting Applications
Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximi...
Uloženo v:
| Vydáno v: | Energies (Basel) Ročník 14; číslo 9; s. 2352 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2021
|
| Témata: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximization (EM) algorithm is introduced. The applicability of this methodology is comprehensively evaluated for the forecasting of energy related time series including wind speed, wind power generation, and electricity price. Its forecasting performances are evaluated by various criteria, and also compared with those of the conventional AutoRegressive Moving-Average (ARMA) model and the less conventional ARMA-GARCH model. It is found that the proposed mixture GARCH model outperforms the other two models in terms of volatility modeling for all the energy related time series considered. This is proven to be statistically significant because the p-values of likelihood ratio test are less than 0.0001. On the other hand, in terms of estimations of mean wind speed, mean wind power output, and mean electricity price, no significant improvement from the proposed model is obtained. The results indicate that the proposed finite mixture GARCH model is a viable approach for mitigating the associated risk in energy related predictions thanks to the reduced errors on volatility modeling. |
|---|---|
| AbstractList | Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximization (EM) algorithm is introduced. The applicability of this methodology is comprehensively evaluated for the forecasting of energy related time series including wind speed, wind power generation, and electricity price. Its forecasting performances are evaluated by various criteria, and also compared with those of the conventional AutoRegressive Moving-Average (ARMA) model and the less conventional ARMA-GARCH model. It is found that the proposed mixture GARCH model outperforms the other two models in terms of volatility modeling for all the energy related time series considered. This is proven to be statistically significant because the p-values of likelihood ratio test are less than 0.0001. On the other hand, in terms of estimations of mean wind speed, mean wind power output, and mean electricity price, no significant improvement from the proposed model is obtained. The results indicate that the proposed finite mixture GARCH model is a viable approach for mitigating the associated risk in energy related predictions thanks to the reduced errors on volatility modeling. |
| Author | Peng, Yidong Zhang, Yang Shi, Jing Erdem, Ergin Qu, Xiuli |
| Author_xml | – sequence: 1 givenname: Yang surname: Zhang fullname: Zhang, Yang – sequence: 2 givenname: Yidong surname: Peng fullname: Peng, Yidong – sequence: 3 givenname: Xiuli surname: Qu fullname: Qu, Xiuli – sequence: 4 givenname: Jing surname: Shi fullname: Shi, Jing – sequence: 5 givenname: Ergin surname: Erdem fullname: Erdem, Ergin |
| BookMark | eNptkU9LAzEQxYMoqLUXP0HAm1BNMvsvx6W0VVAEsecwm82uKeumZlPUb2_aKoqYS4bkvd-8YU7JYe96Q8g5Z1cAkl2bnidMCkjFATnhUmYTznI4_FUfk_EwrFg8ABwATsiypHPb22DovX0PG2_oonyc3tByvfYO9TN9s-GZzu5p2bXOx_qFNs7TWW98-0HnzhuNQ7B9u3V0VmOwrh_OyFGD3WDGX_eILOezp-nN5O5hcTst7yYaMh4mCdRVJjCXpqmyIsmbDHUlRCWZRjQMuEzTDGQuOcZPxEwAFHWU8YpXRdPAiNzuubXDlVp7-4L-Qzm0avfgfKvQB6s7o2rUEurYyWAaYXXFNEiI4Kbgqcy3rIs9Kw7-ujFDUCu38X2Mr0QqCpHGGElUsb1KezcM3jRK27AbOni0neJMbXehfnYRLZd_LN9B_xF_ApskijA |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2022_107872 crossref_primary_10_3389_fenrg_2023_1323073 crossref_primary_10_1016_j_energy_2024_133206 |
| Cites_doi | 10.1016/j.enconman.2019.111799 10.1109/34.990138 10.1016/j.jeconom.2012.08.012 10.1002/for.1093 10.1016/j.jedc.2019.05.008 10.1016/j.patrec.2012.06.017 10.1162/089976603762553004 10.1007/s10107-019-01381-4 10.1016/j.eswa.2018.03.002 10.2307/2288097 10.1016/j.ress.2020.107053 10.1109/TPAMI.2018.2845371 10.1016/j.patrec.2019.04.001 10.1016/j.apenergy.2010.10.031 10.1002/er.4388 10.1080/02664760903521435 10.1145/6187.6192 10.1016/j.apenergy.2010.09.028 10.1080/15435075.2011.647170 10.1109/TPWRS.2005.846044 10.1016/j.enconman.2014.12.072 10.1016/j.eswa.2012.10.038 10.1016/j.econmod.2006.08.003 10.18637/jss.v011.i08 10.1109/TPAMI.2005.162 10.1109/TNN.2008.915110 10.1016/j.energy.2017.12.049 10.1007/s00181-017-1348-9 10.1016/j.jhydrol.2019.03.072 10.1016/j.ijforecast.2014.09.002 10.1016/0304-4076(86)90063-1 10.1016/j.physa.2020.125649 10.1002/jae.849 10.1016/j.renene.2020.02.117 10.1016/j.apenergy.2009.12.013 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en14092352 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest One Academic ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_dac93d9efea547fdb0c3931a4f81597f 10_3390_en14092352 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-43db62a79efb6847f6acb22b90caae031955639791a47faa62338d7f61b1b8ff3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650191700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:53:10 EDT 2025 Mon Jun 30 11:18:19 EDT 2025 Tue Nov 18 21:05:45 EST 2025 Sat Nov 29 07:15:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-43db62a79efb6847f6acb22b90caae031955639791a47faa62338d7f61b1b8ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/dac93d9efea547fdb0c3931a4f81597f |
| PQID | 2528257914 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dac93d9efea547fdb0c3931a4f81597f proquest_journals_2528257914 crossref_citationtrail_10_3390_en14092352 crossref_primary_10_3390_en14092352 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Schnabel (ref_40) 1985; 11 Hossain (ref_22) 2011; 38 Pernkopf (ref_28) 2005; 27 Leisch (ref_20) 2004; 11 Haas (ref_23) 2004; 2 Broda (ref_25) 2013; 172 Adedipe (ref_7) 2020; 202 Kim (ref_13) 2018; 103 Hosseini (ref_35) 2019; 181 ref_19 Cheng (ref_37) 2009; 28 Kass (ref_39) 1985; 80 Babatunde (ref_4) 2019; 43 Oliveira (ref_5) 2018; 144 Forster (ref_32) 2019; 125 Li (ref_8) 2010; 87 Bollerslev (ref_10) 1986; 31 Haas (ref_41) 2004; 2 Liu (ref_15) 2011; 88 Yu (ref_31) 2019; 41 Rombouts (ref_26) 2015; 31 Gu (ref_29) 2008; 19 Wang (ref_9) 2019; 198 ref_21 Hamdi (ref_27) 2018; 55 Sun (ref_18) 2015; 92 Nikolaev (ref_36) 2013; 40 Wu (ref_38) 2007; 24 ref_1 ref_3 Xing (ref_12) 2021; 566 Zhao (ref_30) 2012; 33 ref_2 Jamil (ref_6) 2020; 154 Garcia (ref_16) 2005; 20 Verbeek (ref_34) 2003; 15 Erdem (ref_42) 2011; 88 Alexander (ref_24) 2006; 21 Liu (ref_17) 2013; 10 Fathian (ref_11) 2019; 573 Augustyniak (ref_14) 2019; 104 Figueiredo (ref_33) 2002; 24 |
| References_xml | – volume: 198 start-page: 111799 year: 2019 ident: ref_9 article-title: A review of deep learning for renewable energy forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111799 – volume: 24 start-page: 381 year: 2002 ident: ref_33 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990138 – ident: ref_3 – volume: 172 start-page: 292 year: 2013 ident: ref_25 article-title: Stable mixture GARCH models publication-title: J. Econom. doi: 10.1016/j.jeconom.2012.08.012 – volume: 28 start-page: 247 year: 2009 ident: ref_37 article-title: On a dynamic mixture GARCH model publication-title: J. Forecast. doi: 10.1002/for.1093 – volume: 2 start-page: 493 year: 2004 ident: ref_41 article-title: A New Approach to Markov-Switching GARCH Models publication-title: J. Financ. Econ. – volume: 104 start-page: 111 year: 2019 ident: ref_14 article-title: A profitable modification to global quadratic hedging publication-title: J. Econ. Dyn. Control doi: 10.1016/j.jedc.2019.05.008 – volume: 33 start-page: 2120 year: 2012 ident: ref_30 article-title: Random swap EM algorithm for Gaussian mixture models publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.06.017 – volume: 15 start-page: 469 year: 2003 ident: ref_34 article-title: Efficient Greedy Learning of Gaussian Mixture Models publication-title: Neural Comput. doi: 10.1162/089976603762553004 – volume: 181 start-page: 187 year: 2019 ident: ref_35 article-title: An alternative to EM for Gaussian mixture models: Batch and stochastic Riemannian optimization publication-title: Math. Program. doi: 10.1007/s10107-019-01381-4 – volume: 103 start-page: 25 year: 2018 ident: ref_13 article-title: Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.002 – volume: 80 start-page: 247 year: 1985 ident: ref_39 article-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations publication-title: J. Am. Stat. Assoc. doi: 10.2307/2288097 – ident: ref_1 – volume: 202 start-page: 107053 year: 2020 ident: ref_7 article-title: Bayesian Network Modelling for the Wind Energy Industry: An Overview publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107053 – volume: 41 start-page: 1323 year: 2019 ident: ref_31 article-title: Density-preserving hierarchical EM algorithm: Simplifying Gaussian mixture models for ap-proximate inference publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2845371 – volume: 125 start-page: 349 year: 2019 ident: ref_32 article-title: K-means as a variational EM approximation of Gaussian mixture models publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.04.001 – volume: 88 start-page: 1405 year: 2011 ident: ref_42 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 43 start-page: 6078 year: 2019 ident: ref_4 article-title: A comprehensive state-of-the-art survey on power generation expansion planning with intermittent renewable energy source and energy storage publication-title: Int. J. Energy Res. doi: 10.1002/er.4388 – ident: ref_21 – volume: 2 start-page: 211 year: 2004 ident: ref_23 article-title: Mixed Normal Conditional Heteroskedasticity publication-title: J. Financ. Econ. – volume: 38 start-page: 533 year: 2011 ident: ref_22 article-title: Comparison of the finite mixture of ARMA-GARCH, back propagation neural networks and sup-port-vector machines in forecasting financial returns publication-title: J. Appl. Stat. doi: 10.1080/02664760903521435 – volume: 11 start-page: 419 year: 1985 ident: ref_40 article-title: A modular system of algorithms for unconstrained minimization publication-title: ACM Trans. Math. Softw. doi: 10.1145/6187.6192 – volume: 88 start-page: 724 year: 2011 ident: ref_15 article-title: Comprehensive evaluation of ARMA–GARCH (-M) approaches for modeling the mean and volatility of wind speed publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.09.028 – volume: 10 start-page: 151 year: 2013 ident: ref_17 article-title: An Integrated Wind Power Forecasting Methodology: Interval Estimation of Wind Speed, Operation Probability of Wind Turbine, and Conditional Expected Wind Power Output of A Wind Farm publication-title: Int. J. Green Energy doi: 10.1080/15435075.2011.647170 – volume: 20 start-page: 867 year: 2005 ident: ref_16 article-title: A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.846044 – volume: 92 start-page: 385 year: 2015 ident: ref_18 article-title: Empirical investigation on modeling solar radiation series with ARMA–GARCH models publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.12.072 – volume: 40 start-page: 2233 year: 2013 ident: ref_36 article-title: Heavy-tailed mixture GARCH volatility modeling and Value-at-Risk estimation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.10.038 – volume: 24 start-page: 329 year: 2007 ident: ref_38 article-title: Estimation of a utility-based asset pricing model using normal mixture GARCH (1,1) publication-title: Econ. Model. doi: 10.1016/j.econmod.2006.08.003 – volume: 11 start-page: 1 year: 2004 ident: ref_20 article-title: FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression inR publication-title: J. Stat. Softw. doi: 10.18637/jss.v011.i08 – volume: 27 start-page: 1344 year: 2005 ident: ref_28 article-title: Genetic-based EM algorithm for learning Gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.162 – volume: 19 start-page: 1154 year: 2008 ident: ref_29 article-title: Distributed EM algorithm for Gaussian mixtures in sensor networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.915110 – ident: ref_2 – volume: 144 start-page: 776 year: 2018 ident: ref_5 article-title: Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods publication-title: Energy doi: 10.1016/j.energy.2017.12.049 – volume: 55 start-page: 1925 year: 2018 ident: ref_27 article-title: Mixture periodic GARCH models: Theory and applications publication-title: Empir. Econ. doi: 10.1007/s00181-017-1348-9 – volume: 573 start-page: 82 year: 2019 ident: ref_11 article-title: Modeling streamflow time series using nonlinear SETAR-GARCH models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.072 – volume: 31 start-page: 635 year: 2015 ident: ref_26 article-title: Option pricing with asymmetric heteroskedastic normal mixture models publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2014.09.002 – volume: 31 start-page: 307 year: 1986 ident: ref_10 article-title: Generalized autoregressive conditional heteroskedasticity publication-title: J. Econ. doi: 10.1016/0304-4076(86)90063-1 – volume: 566 start-page: 125649 year: 2021 ident: ref_12 article-title: Forecasting price of financial market crash via a new nonlinear potential GARCH model publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2020.125649 – volume: 21 start-page: 307 year: 2006 ident: ref_24 article-title: Normal mixture GARCH (1,1): Applications to exchange rate modelling publication-title: J. Appl. Econom. doi: 10.1002/jae.849 – ident: ref_19 – volume: 154 start-page: 1 year: 2020 ident: ref_6 article-title: Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030 publication-title: Renew. Energy doi: 10.1016/j.renene.2020.02.117 – volume: 87 start-page: 2313 year: 2010 ident: ref_8 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.12.013 |
| SSID | ssj0000331333 |
| Score | 2.2852206 |
| Snippet | Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2352 |
| SubjectTerms | Algorithms Alternative energy sources COVID-19 Electricity EM algorithm finite mixture Forecasting GARCH Literature reviews Neural networks Parameter estimation Performance evaluation Prices Renewable resources Stochastic models Time series Volatility wind energy Wind farms Wind power wind speed |
| SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb7G-WNCLh2CSSZPsSaK0emkpouAt7G52tVDT2lbx5zuTbmtB8eI1GZJMZh_fzuMbxs5T5UdRaH0vVKC9SGjpibjQngQtbGJkJGNbNZtIOp306Ul0ncNt7NIqZ2titVAXA00-8suwQVWWiQiiq-GbR12jKLrqWmgssxViKsNxvnLd7HTv514WHwAPYTDlJQU831-akiiewqrSaGEnqgj7f6zH1SbT2vzv522xDQcveTYdD9tsyZQ7bH2BdHCXPWa81SOkydu9T4of8FuKGPHMsYtzcs3yZptn_Wd8w-TllSOw5c2qSJBTK08tx5QszbOF4Pcee2w1H27uPNdcwdMQBxMvgkLFoUyEsSrGLcrGUqswVMLXUhqqbSLqMIEaSbwpJcIkSAsUC1SgUmthn9XKQWkOGNeBUqkwQSBTfJDyJQCCsABxu40tQFJnF7MfnWvHPE4NMPo5nkDIKPm3UersbC47nPJt_Cp1TfaaSxBHdnVhMHrO3ZTLC6kFFKifkQ1UoVC-BgGojk0RwyW2zo5npszdxB3n33Y8_Pv2EVsLKb2lyn08ZrXJ6N2csFX9MemNR6duHH4BHxbncw priority: 102 providerName: ProQuest |
| Title | A Finite Mixture GARCH Approach with EM Algorithm for Energy Forecasting Applications |
| URI | https://www.proquest.com/docview/2528257914 https://doaj.org/article/dac93d9efea547fdb0c3931a4f81597f |
| Volume | 14 |
| WOSCitedRecordID | wos000650191700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHvQgPnF9EdCLh2LbqU1zrNJVD7ssoqCnkqSJLqyruKt48rc7k1YtKHjx0kMY0vabNjOTzHzD2EGmwySJXRjEGkyQSKMCmVYmUGCkE1YlKnW-2YTo97ObGzlotfqinLCaHrgG7qhSRkIlrbPqOBGu0qEBCZFKXIaWWDhafUMhW8GUX4MBMPiCmo8UMK4_smOidop9hVHLAnmi_h_rsDcu3WW21HiFPK-fZoXN2PEqW2xxBa6x65x3h-Qg8t7wjbb9-Rkd9PC8IQXntKPKix7PR3ePGPHfP3D0R3nha_s4deA0akI5zjxvnVmvs-tucXV6HjQ9EQIDaTQNEqh0GiuBgOgULYtLldFxrGVolLJUkkSMX1JIREg4pdC7gaxCsUhHOnMONtjs-HFsNxk3kdaZtFGkMpxIhwoAfacI3W2XOgDRYYefOJWmIQynvhWjEgMHwrT8xrTD9r9kn2qajF-lTgjuLwmitvYDqPCyUXj5l8I7bOdTWWXzv03K-JhqcPGtk63_uMc2W4gpd8UnNu6w2enzi91l8-Z1Opw877G5k6I_uNzznxxee-8Fjg0ueoPbD5m33dw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAl64Bs1UGAl4MDBqr3j2t4DQgYSGrWJcmilcnJ317slUpu0SYD2T_EbmXHsNBKIWw9cvau1xvs8O7Mz8wbgTWbCOJY-DKRBG8TK6kAlpQ00WuVTp2Od-KrZRDoYZEdHargGv5paGE6rbHRipajLieU78m25w1WWqYriD-cXAXeN4uhq00JjAYs9d_WTXLbZ-95n2t-3UnY7B592g7qrQGAxieZBjKVJpE6V8yYh3ewTbY2URoVWa8dFPcyZpehNmga1JvsAs5KmRSYymfdI696C9ZjB3oL1Ya8__Lq81QkRyenDBQ8qogq33ZgppWRV2bRy8lUNAv7Q_9Wh1r3_v32OB3CvNp9FvsD7Q1hz40ewsUKq-BgOc9EdsSUt-qNLjo-ILxwRE3nNni746ll0-iI_PSGJ5t_OBBnuolMVQQpuVWr1jJPBRb4S3H8Chzci11NojSdjtwnCRsZkykWRzmghE2pEMjIj8kt84hHTNrxrNrawNbM6N_g4LcjDYhAU1yBow-vl3PMFn8hfZ31kfCxnMAd49WAyPSlqlVKU2iosST6nd0iE0oQWFZI4PiMbNfVt2GqgU9SKaVZc4-bZv4dfwZ3dg_5-sd8b7D2Hu5JTeao8zy1ozaff3Qu4bX_MR7Ppy_ofEHB80zj7Da5LRPA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCF64Bs1UGAl4MDBir3j2t4DQoYmEJVEOVCpnNzd9W6J1CZtEqD9a_w6Zhw7jQTi1gNXe7XWeN_OzuzMvAF4lZkwjqUPA2nQBrGyOlBJaQONVvnU6Vgnvmo2kQ6H2eGhGm3Ar6YWhtMqG51YKepyavmOvCN3ucoyVVHc8XVaxGiv9-7sPOAOUhxpbdppLCGy7y5_kvs2f9vfo7V-LWWv--XDp6DuMBBYTKJFEGNpEqlT5bxJSE_7RFsjpVGh1dpxgQ_zZyn6qqaXWpOtgFlJwyITmcx7pHlvwCaZ5LFsweaoPxh9Xd3whIjkAOKSExVRhR03YXopWVU5rZ2CVbOAP86C6oDr3f2ff809uFOb1SJf7oP7sOEmD2BrjWzxIRzkojdmC1sMxhccNxEfOVIm8ppVXfCVtOgORH5yTBItvp0KMuhFtyqOFNzC1Oo5J4mLfC3o_wgOrkWux9CaTCduG4SNjMmUiyKd0UQm1IhkfEbkr_jEI6ZteNMscmFrxnVu_HFSkOfFgCiuANGGl6uxZ0uekb-Oes9YWY1gbvDqwXR2XNSqpii1VViSfE7vkgilCS0qJHF8RrZr6tuw08CoqBXWvLjC0JN_v34Btwhcxef-cP8p3Jac4VOlf-5AazH77p7BTftjMZ7PntfbQcDRdcPsN1hfTbA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Finite+Mixture+GARCH+Approach+with+EM+Algorithm+for+Energy+Forecasting+Applications&rft.jtitle=Energies+%28Basel%29&rft.au=Yang+Zhang&rft.au=Yidong+Peng&rft.au=Xiuli+Qu&rft.au=Jing+Shi&rft.date=2021-05-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=9&rft.spage=2352&rft_id=info:doi/10.3390%2Fen14092352&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dac93d9efea547fdb0c3931a4f81597f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |