Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution
The Vandermonde decomposition of Toeplitz matrices, discovered by Carathéodory and Fejér in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1-D frequency estimation. Many related numerical tools have also been developed for multidimensional (MD)...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 62; H. 6; S. 3685 - 3701 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Vandermonde decomposition of Toeplitz matrices, discovered by Carathéodory and Fejér in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1-D frequency estimation. Many related numerical tools have also been developed for multidimensional (MD), especially 2-D, frequency estimation; however, a fundamental question has remained unresolved as to whether an analog of the Vandermonde decomposition holds for multilevel Toeplitz matrices in the MD case. In this paper, an affirmative answer to this question and a constructive method for finding the decomposition are provided when the matrix rank is lower than the dimension of each Toeplitz block. A numerical method for searching for a decomposition is also proposed when the matrix rank is higher. The new results are applied to study the MD frequency estimation within the recent super-resolution framework. A precise formulation of the atomic \ell _{0} norm is derived using the Vandermonde decomposition. Practical algorithms for frequency estimation are proposed based on the relaxation techniques. Extensive numerical simulations are provided to demonstrate the effectiveness of these algorithms compared with the existing atomic norm and subspace methods. |
|---|---|
| AbstractList | The Vandermonde decomposition of Toeplitz matrices, discovered by Caratheodory and Fejer in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1-D frequency estimation. Many related numerical tools have also been developed for multidimensional (MD), especially 2-D, frequency estimation; however, a fundamental question has remained unresolved as to whether an analog of the Vandermonde decomposition holds for multilevel Toeplitz matrices in the MD case. In this paper, an affirmative answer to this question and a constructive method for finding the decomposition are provided when the matrix rank is lower than the dimension of each Toeplitz block. A numerical method for searching for a decomposition is also proposed when the matrix rank is higher. The new results are applied to study the MD frequency estimation within the recent super-resolution framework. A precise formulation of the atomic $\ell _{0}$ norm is derived using the Vandermonde decomposition. Practical algorithms for frequency estimation are proposed based on the relaxation techniques. Extensive numerical simulations are provided to demonstrate the effectiveness of these algorithms compared with the existing atomic norm and subspace methods. The Vandermonde decomposition of Toeplitz matrices, discovered by Caratheodory and Fejer in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1-D frequency estimation. Many related numerical tools have also been developed for multidimensional (MD), especially 2-D, frequency estimation; however, a fundamental question has remained unresolved as to whether an analog of the Vandermonde decomposition holds for multilevel Toeplitz matrices in the MD case. In this paper, an affirmative answer to this question and a constructive method for finding the decomposition are provided when the matrix rank is lower than the dimension of each Toeplitz block. A numerical method for searching for a decomposition is also proposed when the matrix rank is higher. The new results are applied to study the MD frequency estimation within the recent super-resolution framework. A precise formulation of the atomic ... norm is derived using the Vandermonde decomposition. Practical algorithms for frequency estimation are proposed based on the relaxation techniques. Extensive numerical simulations are provided to demonstrate the effectiveness of these algorithms compared with the existing atomic norm and subspace methods. (ProQuest: ... denotes formulae/symbols omitted.) The Vandermonde decomposition of Toeplitz matrices, discovered by Carathéodory and Fejér in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1-D frequency estimation. Many related numerical tools have also been developed for multidimensional (MD), especially 2-D, frequency estimation; however, a fundamental question has remained unresolved as to whether an analog of the Vandermonde decomposition holds for multilevel Toeplitz matrices in the MD case. In this paper, an affirmative answer to this question and a constructive method for finding the decomposition are provided when the matrix rank is lower than the dimension of each Toeplitz block. A numerical method for searching for a decomposition is also proposed when the matrix rank is higher. The new results are applied to study the MD frequency estimation within the recent super-resolution framework. A precise formulation of the atomic \ell _{0} norm is derived using the Vandermonde decomposition. Practical algorithms for frequency estimation are proposed based on the relaxation techniques. Extensive numerical simulations are provided to demonstrate the effectiveness of these algorithms compared with the existing atomic norm and subspace methods. |
| Author | Yang, Zai Stoica, Petre Xie, Lihua |
| Author_xml | – sequence: 1 givenname: Zai surname: Yang fullname: Yang, Zai email: yangzai@ntu.edu.sg organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Lihua surname: Xie fullname: Xie, Lihua email: elhxie@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Petre surname: Stoica fullname: Stoica, Petre email: ps@it.uu.se organization: Department of Information Technology, Uppsala University, Uppsala, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-307982$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kU1v1DAQhi1UJLaFOxKXSFw4kMWOP2IfV22BSq2QYClHy_FOwJUTB9sBtb8epykceuDikUfPM7LnPUZHYxgBoZcEbwnB6t3-Yr9tMBHbhnOKGXmCNoTztlaCsyO0wZjIWjEmn6HjlG7KlXHSbFC4NuMB4hDKWZ2BDcMUkssujFXoq6vZZ-fhF_hqH2DyLt9VVyZHZyFV31z-Ue2m0rXmXshhFQ5ugDGVjvHVl3mCWH-GFPy8QM_R0974BC8e6gn6-v58f_qxvvz04eJ0d1lbKkiuaWd43xtMoG07q7jsbSd6QUBiZZUBJWxLcGcPfUOVwErZVnIqGIGDpLLj9AS9Xeem3zDNnZ6iG0y81cE4feaudzrE73qeNcWtkk3B36z4FMPPGVLWg0sWvDcjhDlpIhvOpGoZLujrR-hNmGP5a6FaxXgjOF4GipWyMaQUodfW5fs15Wic1wTrJTZdYtNLbPohtiLiR-Lfp_9HebUqDgD-4e0SMCb0D-XFpqo |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3290031 crossref_primary_10_1109_JSTSP_2019_2918481 crossref_primary_10_1109_TWC_2023_3281308 crossref_primary_10_1007_s11760_024_03689_x crossref_primary_10_1109_TWC_2022_3172885 crossref_primary_10_3390_electronics13050846 crossref_primary_10_3390_rs15010013 crossref_primary_10_1109_TSP_2019_2951220 crossref_primary_10_1016_j_dsp_2019_05_009 crossref_primary_10_1038_s41598_019_47845_7 crossref_primary_10_1109_TVT_2020_2998128 crossref_primary_10_1016_j_dsp_2020_102784 crossref_primary_10_3390_s19183961 crossref_primary_10_1109_TSP_2017_2659650 crossref_primary_10_1016_j_sigpro_2019_04_024 crossref_primary_10_1016_j_ymssp_2025_112869 crossref_primary_10_1007_s11045_021_00767_y crossref_primary_10_1109_ACCESS_2018_2820165 crossref_primary_10_1109_TSP_2022_3170688 crossref_primary_10_1109_LSP_2020_2972470 crossref_primary_10_1109_TGRS_2024_3395510 crossref_primary_10_1049_iet_rsn_2018_5168 crossref_primary_10_1109_ACCESS_2020_2982413 crossref_primary_10_1121_10_0000983 crossref_primary_10_1109_TSP_2022_3173150 crossref_primary_10_1109_LSP_2022_3176211 crossref_primary_10_3390_en13164102 crossref_primary_10_1109_TSP_2022_3198188 crossref_primary_10_1016_j_dsp_2020_102938 crossref_primary_10_1109_TIM_2025_3556225 crossref_primary_10_1137_23M1587737 crossref_primary_10_1016_j_sigpro_2021_108351 crossref_primary_10_1109_TSP_2022_3198863 crossref_primary_10_1080_2150704X_2023_2203338 crossref_primary_10_1109_TGRS_2022_3223524 crossref_primary_10_1109_TSP_2022_3150964 crossref_primary_10_1016_j_sigpro_2018_02_008 crossref_primary_10_3390_s25175583 crossref_primary_10_1049_iet_rsn_2019_0329 crossref_primary_10_1016_j_dsp_2025_105439 crossref_primary_10_1109_ACCESS_2021_3054660 crossref_primary_10_1109_TCSI_2023_3247886 crossref_primary_10_1049_iet_rsn_2019_0445 crossref_primary_10_1016_j_ymssp_2022_108869 crossref_primary_10_1109_JSAC_2020_3005472 crossref_primary_10_1007_s11425_021_2151_0 crossref_primary_10_1109_ACCESS_2019_2949152 crossref_primary_10_1109_JIOT_2025_3570553 crossref_primary_10_1109_TWC_2021_3062558 crossref_primary_10_1016_j_aeue_2024_155217 crossref_primary_10_3390_rs16142517 crossref_primary_10_1049_sil2_12092 crossref_primary_10_1109_TSP_2023_3309459 crossref_primary_10_1109_TIT_2024_3413534 crossref_primary_10_1016_j_sigpro_2020_107665 crossref_primary_10_1109_LWC_2019_2949800 crossref_primary_10_1016_j_dsp_2021_103266 crossref_primary_10_1016_j_sigpro_2021_108016 crossref_primary_10_1121_10_0005059 crossref_primary_10_1109_TIT_2017_2757003 crossref_primary_10_1109_JSTSP_2024_3400046 crossref_primary_10_1109_TAES_2025_3542747 crossref_primary_10_1016_j_phycom_2023_101999 crossref_primary_10_1109_LAWP_2021_3103514 crossref_primary_10_3390_en13143609 crossref_primary_10_1109_LSP_2020_2995107 crossref_primary_10_1002_ett_4642 crossref_primary_10_1109_JSTSP_2021_3066126 crossref_primary_10_1016_j_sigpro_2020_107577 crossref_primary_10_1109_TWC_2024_3436059 crossref_primary_10_1109_TCOMM_2024_3522046 crossref_primary_10_1109_LCOMM_2020_2989548 crossref_primary_10_1109_LSP_2024_3419695 crossref_primary_10_1109_TSP_2021_3062556 crossref_primary_10_3390_en13215775 crossref_primary_10_1121_1_5042239 crossref_primary_10_1155_2019_6797168 crossref_primary_10_1109_LSP_2025_3539252 crossref_primary_10_1109_TSP_2024_3486533 crossref_primary_10_1016_j_dsp_2020_102900 crossref_primary_10_1016_j_automatica_2021_109948 crossref_primary_10_1016_j_jsv_2020_115758 crossref_primary_10_3390_rs17132278 crossref_primary_10_1109_LWC_2020_2969661 crossref_primary_10_1109_TVT_2024_3385776 crossref_primary_10_1109_ACCESS_2019_2903654 crossref_primary_10_1109_TII_2020_3015730 crossref_primary_10_1109_JSTSP_2019_2937632 crossref_primary_10_1109_LGRS_2020_3027818 crossref_primary_10_1109_LWC_2022_3184114 crossref_primary_10_3390_electronics9020347 crossref_primary_10_1109_TSP_2017_2781652 crossref_primary_10_1109_TWC_2024_3350069 crossref_primary_10_1049_iet_rsn_2017_0060 crossref_primary_10_1121_10_0024891 crossref_primary_10_1109_ACCESS_2022_3205616 crossref_primary_10_1016_j_sigpro_2025_109929 crossref_primary_10_1109_TVT_2022_3152512 crossref_primary_10_1117_1_JRS_17_034502 crossref_primary_10_1109_ACCESS_2023_3348414 crossref_primary_10_1016_j_aeue_2025_155686 crossref_primary_10_1016_j_dsp_2022_103823 crossref_primary_10_1109_TSP_2021_3094718 crossref_primary_10_1016_j_sigpro_2022_108897 crossref_primary_10_1109_ACCESS_2019_2950016 crossref_primary_10_1016_j_sigpro_2017_11_008 crossref_primary_10_1049_iet_rsn_2020_0065 crossref_primary_10_1109_TAES_2021_3126370 crossref_primary_10_1109_TSP_2018_2853124 crossref_primary_10_1007_s11005_022_01514_5 crossref_primary_10_1016_j_ymssp_2019_02_011 crossref_primary_10_1109_LSP_2024_3453753 crossref_primary_10_1109_TCOMM_2018_2864737 crossref_primary_10_1109_TSP_2017_2736512 crossref_primary_10_1016_j_sigpro_2017_01_035 crossref_primary_10_1049_iet_spr_2020_0201 crossref_primary_10_1109_TVT_2020_2985903 crossref_primary_10_1109_TSP_2021_3113497 crossref_primary_10_1016_j_dsp_2022_103898 crossref_primary_10_1016_j_aeue_2024_155371 crossref_primary_10_1088_1742_6596_904_1_012015 crossref_primary_10_1016_j_sigpro_2024_109656 crossref_primary_10_1049_iet_rsn_2018_5214 crossref_primary_10_1109_TCOMM_2024_3397856 crossref_primary_10_1109_TAES_2023_3249150 crossref_primary_10_1109_TSP_2021_3076894 crossref_primary_10_3390_app13053067 crossref_primary_10_1007_s10208_017_9372_x crossref_primary_10_1016_j_sigpro_2019_06_023 crossref_primary_10_1007_s00034_021_01829_z crossref_primary_10_1109_TWC_2023_3239340 crossref_primary_10_1121_10_0002029 crossref_primary_10_1109_JSEN_2017_2709329 crossref_primary_10_1016_j_sigpro_2017_07_024 crossref_primary_10_1109_ACCESS_2020_2972366 crossref_primary_10_1109_LCOMM_2022_3199460 crossref_primary_10_1109_TSP_2021_3068353 crossref_primary_10_1177_14613484221104622 crossref_primary_10_1016_j_sigpro_2017_07_028 crossref_primary_10_1109_TAES_2024_3456755 crossref_primary_10_1109_TSP_2020_2970343 crossref_primary_10_1109_MSP_2023_3255558 crossref_primary_10_1109_TAES_2020_3034012 |
| Cites_doi | 10.1109/TSP.2002.801933 10.1109/TSP.2014.2386283 10.1007/BF01199078 10.1109/TSP.2006.882077 10.1109/TSP.2007.899530 10.1007/BF03014796 10.1109/TSP.2015.2493987 10.1109/8.142630 10.1109/78.824672 10.1109/78.157226 10.1109/TIT.2005.862083 10.1109/ISIT.2015.7282808 10.1109/TAC.2006.890479 10.1007/s10208-012-9135-7 10.1109/TSP.2013.2273443 10.1109/ICASSP.1995.478488 10.1109/TSP.2015.2420541 10.1109/TIT.2013.2277451 10.1109/78.942615 10.1561/2200000016 10.1016/0024-3795(92)90420-F 10.1109/ITA.2014.6804267 10.1109/8.233122 10.1002/cpa.21455 10.1109/TIT.2014.2368122 10.1109/TIT.2014.2343623 10.1109/TSP.2015.2399861 10.1007/s00041-013-9292-3 10.1109/18.923759 10.1109/TSP.2014.2358961 10.1017/CBO9781139020411 10.1007/s00020-015-2217-6 10.1103/PhysRevA.66.062311 10.1111/j.1365-246X.1973.tb03424.x 10.1080/10556789908805762 10.1109/SSP.2014.6884632 10.1137/070697835 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 ADTPV AOWAS DF2 |
| DOI | 10.1109/TIT.2016.2553041 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 3701 |
| ExternalDocumentID | oai_DiVA_org_uu_307982 4081325091 10_1109_TIT_2016_2553041 7451201 |
| Genre | orig-research Feature |
| GrantInformation_xml | – fundername: Ministry of Education - Singapore; Ministry of Education, Singapore grantid: AcRF TIER 1 RG78/15 funderid: 10.13039/501100001459 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG F28 FR3 ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c361t-3ba5ffa01e77bc958fcb6f61e809c9ae96c710bcdf2396099c7853641ed838b53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 210 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380070600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 1557-9654 |
| IngestDate | Tue Nov 04 16:47:34 EST 2025 Thu Oct 02 10:21:18 EDT 2025 Sun Jun 29 15:30:39 EDT 2025 Tue Nov 18 22:33:40 EST 2025 Sat Nov 29 03:31:36 EST 2025 Wed Aug 27 08:31:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | multilevel Toeplitz matrix The Vandermonde decomposition super-resolution multidimensional frequency estimation atomic norm |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-3ba5ffa01e77bc958fcb6f61e809c9ae96c710bcdf2396099c7853641ed838b53 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1794526502 |
| PQPubID | 36024 |
| PageCount | 17 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_307982 ieee_primary_7451201 crossref_citationtrail_10_1109_TIT_2016_2553041 proquest_journals_1794526502 proquest_miscellaneous_1825489740 crossref_primary_10_1109_TIT_2016_2553041 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 kronecker (ref33) 1968 ref2 ref1 ref39 ref17 ref38 ref19 ref18 rudin (ref16) 1987 ref24 ref23 ref26 ref20 ref42 dumitrescu (ref25) 2007 ref41 stoica (ref4) 2005 ref21 ref43 ref28 yang (ref22) 2014 ref29 ref8 ref7 ref9 ref3 ref6 heckel (ref27) 2014 ref5 ref40 |
| References_xml | – ident: ref9 doi: 10.1109/TSP.2002.801933 – ident: ref32 doi: 10.1109/TSP.2014.2386283 – ident: ref34 doi: 10.1007/BF01199078 – ident: ref10 doi: 10.1109/TSP.2006.882077 – year: 1987 ident: ref16 publication-title: Real and Complex Analysis – ident: ref11 doi: 10.1109/TSP.2007.899530 – ident: ref2 doi: 10.1007/BF03014796 – year: 2014 ident: ref27 article-title: Superresolution radar – ident: ref23 doi: 10.1109/TSP.2015.2493987 – ident: ref7 doi: 10.1109/8.142630 – ident: ref29 doi: 10.1109/78.824672 – ident: ref8 doi: 10.1109/78.157226 – ident: ref13 doi: 10.1109/TIT.2005.862083 – ident: ref1 doi: 10.1109/ISIT.2015.7282808 – year: 2014 ident: ref22 article-title: Exact joint sparse frequency recovery via optimization methods – ident: ref30 doi: 10.1109/TAC.2006.890479 – ident: ref17 doi: 10.1007/s10208-012-9135-7 – ident: ref19 doi: 10.1109/TSP.2013.2273443 – ident: ref6 doi: 10.1109/ICASSP.1995.478488 – ident: ref20 doi: 10.1109/TSP.2015.2420541 – ident: ref14 doi: 10.1109/TIT.2013.2277451 – ident: ref40 doi: 10.1109/78.942615 – ident: ref43 doi: 10.1561/2200000016 – ident: ref39 doi: 10.1016/0024-3795(92)90420-F – ident: ref24 doi: 10.1109/ITA.2014.6804267 – ident: ref5 doi: 10.1109/8.233122 – year: 2005 ident: ref4 publication-title: Spectral Analysis of Signals – ident: ref12 doi: 10.1002/cpa.21455 – ident: ref21 doi: 10.1109/TIT.2014.2368122 – ident: ref36 doi: 10.1109/TIT.2014.2343623 – ident: ref26 doi: 10.1109/TSP.2015.2399861 – ident: ref18 doi: 10.1007/s00041-013-9292-3 – ident: ref28 doi: 10.1109/18.923759 – ident: ref37 doi: 10.1109/TSP.2014.2358961 – ident: ref38 doi: 10.1017/CBO9781139020411 – ident: ref35 doi: 10.1007/s00020-015-2217-6 – year: 2007 ident: ref25 publication-title: Positive Trigonometric Polynomials and Signal Processing Applications – ident: ref31 doi: 10.1103/PhysRevA.66.062311 – ident: ref3 doi: 10.1111/j.1365-246X.1973.tb03424.x – year: 1968 ident: ref33 publication-title: Leopold Kronecker's Werke – ident: ref42 doi: 10.1080/10556789908805762 – ident: ref15 doi: 10.1109/SSP.2014.6884632 – ident: ref41 doi: 10.1137/070697835 |
| SSID | ssj0014512 |
| Score | 2.6213872 |
| Snippet | The Vandermonde decomposition of Toeplitz matrices, discovered by Carathéodory and Fejér in the 1910s and rediscovered by Pisarenko in the 1970s, forms the... The Vandermonde decomposition of Toeplitz matrices, discovered by Caratheodory and Fejer in the 1910s and rediscovered by Pisarenko in the 1970s, forms the... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3685 |
| SubjectTerms | Algorithms Atomic measurements atomic norm Blocking Computer simulation Covariance matrices Decomposition Electronic mail Estimating techniques Frequency distribution Frequency estimation Mathematical models Matrix Matrix decomposition multidimensional frequency estimation Multilevel multilevel Toeplitz matrix Norms Numerical simulation Signal resolution Subspace methods superresolution The Vandermonde decomposition |
| Title | Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution |
| URI | https://ieeexplore.ieee.org/document/7451201 https://www.proquest.com/docview/1794526502 https://www.proquest.com/docview/1825489740 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-307982 |
| Volume | 62 |
| WOSCitedRecordID | wos000380070600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 1557-9654 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ba9VAEB5q8aAHq61itJYV9CCYvk2yye4eH7alHiyCz9rbkmxm8UF5Ke8lHvz17uzmxRak4C2Q3bDwzczOZGa-AXgnZCGEcDJF52zqhSJLdZ7bVNUZV07o1okmDJuQFxfq6kp_3YGPUy8MIobiMzymx5DLbzs70K-ymRT-eqJmrQdSVrFXa8oY0Ktodb0C-5hjm5Lkerb4vKAaruo4pxk5IrtzBYWZKnfdy9uUoeGaOdv7vwM-hSejO8nmEf9nsIOrfdjbjmpgo-buw-NbvIMH0F2GnhYvgS2yE6Sy8rF2i3WOhZ7cayomYosOvZPa_2ZfApM_btiPZf-Tzf9mvVnfxQ0tjQmIFB_s23CD65QyA1Gun8P3s9PFp_N0nLyQ2qLK-rRo6tK5mmcoZWN1qZxtKldlqLi2ROddWe-ZNLZ1eUGUddpKf-1XIsNWFaopixewu-pW-BJYVdS190qxrF0uSucjppp7m6p4a8m1lAnMtmAYO9KS03SMaxPCE66Nh88QfGaEL4EP046bSMlxz9oDQmlaNwKUwOEWbzPq7MaQaaJhATxP4O302msbpVDqFXaDX0MBtfIxGE_gfZST6dtE1H2yvJwbLxJmGIy3nlrlr_59gtfwiM4Zi84OYbdfD_gGHtpf_XKzPgqi_QeBFfiB |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KFbQPVlulqa2uoA-C6W2STbJ5PFpLi-0hGGvflmQziwflUu6SPvjXu7PZiy2I4Fsgu2FhfuxMZub7AN6LPBFCmDxEY3RolSIKizjWoawiLo0oGiNqRzaRz2by-rr4ugGfxlkYRHTNZ3hEj66W37S6p19lk1zY64mGtR4Rc5af1hprBvRy8LvWhG3WsS5K8mJSnpfUxZUdxcSSI6IHl5BjVXkYYN4HDXUXzen2_x3xOTzzASWbDhrwAjZwsQPba7IG5m13B7buIQ_uQnvlplqsDjbITpAay333FmsNc1O5N9ROxMoWbZja_WKXDssfV-zHvPvJpn_q3qxrhw0NEQUMIB_sW3-Ly5BqA4Nmv4Tvp5_L47PQcy-EOsmiLkzqKjWm4hHmea2LVBpdZyaLUPJCE6B3pm1sUuvGxAmB1hU6txd_JiJsZCLrNHkFm4t2gXvAsqSqbFyKaWVikRqbM1XcelXJG03BZR7AZC0MpT0wOfFj3CiXoPBCWfEpEp_y4gvg47jjdgDl-MfaXZLSuM4LKICDtbyVt9qVIudEdAE8DuDd-NraGxVRqgW2vV1DKbW0WRgP4MOgJ-O3Car7ZH41VVYlVN8r6z8LGe___QRv4clZeXmhLs5nX17DUzrz0IJ2AJvdssdDeKzvuvlq-cap-W-RCPvK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vandermonde+Decomposition+of+Multilevel+Toeplitz+Matrices+With+Application+to+Multidimensional+Super-Resolution&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Yang%2C+Zai&rft.au=Xie%2C+Lihua&rft.au=Stoica%2C+Petre&rft.date=2016-06-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=62&rft.issue=6&rft.spage=3685&rft.epage=3701&rft_id=info:doi/10.1109%2FTIT.2016.2553041&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |