Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems
With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 14; H. 19; S. 6309 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.10.2021
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated. |
|---|---|
| AbstractList | With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated. |
| Author | Tordecilla, Rafael D. Xhafa, Fatos Martins, Leandro do C. Juan, Angel A. Peyman, Mohammad Copado, Pedro J. |
| Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0003-4734-2414 surname: Peyman fullname: Peyman, Mohammad – sequence: 2 givenname: Pedro J. orcidid: 0000-0003-4219-5056 surname: Copado fullname: Copado, Pedro J. – sequence: 3 givenname: Rafael D. orcidid: 0000-0003-3028-1686 surname: Tordecilla fullname: Tordecilla, Rafael D. – sequence: 4 givenname: Leandro do C. orcidid: 0000-0001-6529-0270 surname: Martins fullname: Martins, Leandro do C. – sequence: 5 givenname: Fatos orcidid: 0000-0001-6569-5497 surname: Xhafa fullname: Xhafa, Fatos – sequence: 6 givenname: Angel A. orcidid: 0000-0003-1392-1776 surname: Juan fullname: Juan, Angel A. |
| BookMark | eNptUU1LAzEQDVLBqr34CwLehNVksx_JsZSqhUIP1qOE7GZ2Sdkma5Ie6q93dUVFnMsMM2_eMO-do4l1FhC6ouSWMUHuwNKMioIRcYKmVIgioaRkk1_1GZqFsCNDMEYZY1P0stQt4IXb94dobIuV1XjltnhuVXeMpg64cR7PW9MB3vTR7M2bisZZbCxe2QhdZ1qwEW-9sqF3Po7Tp2OIsA-X6LRRXYDZV75Az_fL7eIxWW8eVov5OqlZQWPCKsEprWqS66bhgjJCgKdlChXwqiirDATjJFc6A07qSglGtBakzktNG600u0CrkVc7tZO9N3vlj9IpIz8bzrdS-eGbDqSCVFQio5pClnGeq6aEskhFWoNIWZMPXNcjV-_d6wFClDt38IMcQaY5J6IseSYG1M2Iqr0LwUPzfZUS-eGG_HFjAJM_4NqMQkWvTPffyjtmTo5M |
| CitedBy_id | crossref_primary_10_3390_a15080289 crossref_primary_10_1016_j_eswa_2023_122380 crossref_primary_10_3390_rs17030550 crossref_primary_10_3390_app13010101 crossref_primary_10_3390_math10060982 crossref_primary_10_3390_vehicles4040065 crossref_primary_10_3390_en17051141 crossref_primary_10_3390_math12040571 crossref_primary_10_1007_s10586_022_03717_w crossref_primary_10_3390_futuretransp2040048 crossref_primary_10_1016_j_sca_2023_100056 crossref_primary_10_1007_s40031_024_01186_w crossref_primary_10_1155_2022_1518755 crossref_primary_10_3390_en15134764 crossref_primary_10_3390_su151813951 crossref_primary_10_3390_computers12020033 crossref_primary_10_3390_s22010066 crossref_primary_10_1016_j_iswa_2025_200585 crossref_primary_10_1108_MD_03_2023_0412 crossref_primary_10_3103_S0005105522020029 |
| Cites_doi | 10.1109/TITS.2014.2377074 10.1016/j.cie.2017.06.019 10.1016/j.sbspro.2011.04.530 10.3390/fi12110190 10.3390/s150614116 10.1016/j.comnet.2020.107530 10.1109/ICVES.2014.7063743 10.1007/978-3-319-03167-5 10.1109/TITS.2011.2158001 10.1109/JIOT.2016.2584538 10.1016/j.treng.2020.100013 10.1016/j.trpro.2015.09.037 10.1016/j.protcy.2013.04.008 10.1109/MNET.2018.1700364 10.1111/itor.12796 10.1016/j.future.2013.07.014 10.1016/j.cities.2017.01.011 10.4018/978-1-7998-0194-8.ch008 10.1109/TITS.2020.3025687 10.1007/978-3-319-18320-6_7 10.1080/01605682.2018.1494527 10.1109/HICSS.2015.280 10.1109/FiCloud.2014.83 10.3390/su13095188 10.1504/EJIE.2020.108581 10.1007/978-3-030-04203-5_13 10.1155/2019/3159762 10.1109/ACCESS.2019.2920488 10.1504/EJIE.2016.076382 10.1109/ICECTA.2017.8252060 10.1016/j.eswa.2014.05.015 10.1109/TII.2014.2299233 10.1016/j.dcan.2017.10.002 10.1007/s00521-020-05002-6 10.1007/s00607-020-00867-w 10.1007/s42421-020-00020-1 10.1109/MITP.2018.2876978 10.1109/ACCESS.2020.3015550 10.1553/giscience2019_01_s54 10.1007/978-3-642-33489-4_18 10.1007/s11116-016-9729-z 10.1049/iet-its.2018.0064 10.1109/TITS.2015.2405759 10.7763/IJMO.2012.V2.126 10.1016/j.trc.2018.10.007 10.1007/s00779-021-01634-0 10.1016/j.future.2018.11.039 10.1504/EJIE.2017.083257 10.1109/TITS.2012.2211870 10.1007/s00521-020-04874-y 10.1016/j.comcom.2019.12.003 10.3390/s19183916 10.1002/9780470496916 10.1002/net.22067 10.3390/su12041493 10.1109/MIC.2016.124 10.1145/2342509.2342513 10.1109/MCE.2019.2941457 10.3390/s16081324 10.1109/ACCESS.2019.2925134 10.1016/j.cie.2020.107080 10.1109/BigData.2017.8258497 10.1109/JIOT.2014.2306328 10.1111/itor.12322 10.1007/0-306-48056-5_12 10.1109/WoWMoM.2017.7974357 10.1016/j.is.2015.12.001 10.1109/ACCESS.2018.2815989 10.1109/AINA.2015.254 10.1109/TITS.2019.2954982 10.1016/j.trc.2004.07.007 10.1016/j.trc.2012.09.009 10.1145/3231053.3231120 10.1016/j.matpr.2021.03.479 10.1007/s12008-017-0391-2 10.1109/FMEC.2017.7946409 10.1080/10580530.2012.716740 10.1109/PERCOMW.2017.7917508 10.1016/j.ejor.2011.07.032 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en14196309 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_ae29b941d1e44885af7e76292ce923f5 10_3390_en14196309 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-3b9811bc05dff891300e8272ebe8b67b4e93805ad4e80cba930dd90c57d1fdad3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 19:08:01 EDT 2025 Mon Nov 24 21:40:57 EST 2025 Sat Nov 29 07:11:54 EST 2025 Tue Nov 18 21:52:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-3b9811bc05dff891300e8272ebe8b67b4e93805ad4e80cba930dd90c57d1fdad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4734-2414 0000-0003-1392-1776 0000-0003-4219-5056 0000-0001-6569-5497 0000-0003-3028-1686 0000-0001-6529-0270 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2580977849?pq-origsite=%requestingapplication% |
| PQID | 2580977849 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ae29b941d1e44885af7e76292ce923f5 proquest_journals_2580977849 crossref_primary_10_3390_en14196309 crossref_citationtrail_10_3390_en14196309 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ramos (ref_25) 2012; 2 ref_50 Dobre (ref_57) 2014; 37 Agatz (ref_11) 2011; 17 Xhafa (ref_52) 2021; 103 ref_91 Satunin (ref_21) 2014; 41 ref_58 ref_13 Li (ref_34) 2021; 33 ref_53 Camacho (ref_69) 2018; 12 ref_19 ref_17 ref_16 He (ref_56) 2014; 10 ref_15 ref_59 Karami (ref_35) 2020; 2 Teng (ref_82) 2019; 94 ref_60 Calabrese (ref_76) 2013; 26 (ref_26) 2015; 15 Ferone (ref_44) 2019; 70 Tufail (ref_67) 2021; 21 Darwish (ref_63) 2018; 6 Graser (ref_79) 2019; 1 Gruler (ref_1) 2017; 11 Jahangiri (ref_38) 2015; 16 Mohandu (ref_75) 2021; 47 Fikar (ref_89) 2016; 10 ref_24 ref_65 Zhang (ref_61) 2011; 12 ref_64 Lee (ref_70) 2020; 8 Mahdavinejad (ref_78) 2018; 4 Beneicke (ref_3) 2019; 9 Bistaffa (ref_88) 2019; 22 Fagnant (ref_29) 2018; 45 ref_27 Nguyen (ref_33) 2018; 12 Cheng (ref_68) 2015; 16 Taniguchi (ref_23) 2004; 12 Gal (ref_40) 2017; 64 Wang (ref_55) 2018; 32 Janssen (ref_14) 2012; 29 Abella (ref_18) 2017; 64 Panadero (ref_90) 2020; 14 ref_72 ref_71 Haghighat (ref_30) 2020; 2 Chica (ref_43) 2020; 44 Chen (ref_37) 2021; 22 Juan (ref_85) 2017; 24 Grasas (ref_12) 2017; 110 Chen (ref_51) 2019; 7 ref_32 ref_31 ref_74 Minh (ref_62) 2018; 20 ref_73 Saharan (ref_20) 2020; 150 (ref_10) 2013; 7 Yan (ref_54) 2012; 14 Tang (ref_8) 2019; 7 Zanella (ref_77) 2014; 1 ref_83 Martins (ref_45) 2021; 28 ref_81 Omrani (ref_39) 2015; 10 ref_80 Ahlgren (ref_7) 2016; 20 ref_47 Peter (ref_49) 2015; 5 ref_46 Shah (ref_22) 2012; 216 Chiang (ref_66) 2016; 3 ref_87 ref_41 ref_84 Adi (ref_86) 2020; 32 Martins (ref_2) 2021; 153 Lokhandwala (ref_28) 2018; 97 Boukerche (ref_36) 2020; 181 Juan (ref_42) 2015; 2 ref_48 ref_9 ref_5 ref_4 ref_6 |
| References_xml | – volume: 16 start-page: 1784 year: 2015 ident: ref_68 article-title: D2D for intelligent transportation systems: A feasibility study publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2377074 – volume: 110 start-page: 216 year: 2017 ident: ref_12 article-title: Biased randomization of heuristics using skewed probability distributions: A survey and some applications publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.06.019 – volume: 17 start-page: 532 year: 2011 ident: ref_11 article-title: Dynamic ride-sharing: A simulation study in metro Atlanta publication-title: Procedia Soc. Behav. Sci. doi: 10.1016/j.sbspro.2011.04.530 – ident: ref_74 – ident: ref_5 – ident: ref_60 doi: 10.3390/fi12110190 – ident: ref_80 – volume: 15 start-page: 14116 year: 2015 ident: ref_26 article-title: Analysis of intelligent transportation systems using model-driven simulations publication-title: Sensors doi: 10.3390/s150614116 – volume: 181 start-page: 107530 year: 2020 ident: ref_36 article-title: Machine Learning-based traffic prediction models for Intelligent Transportation Systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107530 – ident: ref_6 doi: 10.1109/ICVES.2014.7063743 – volume: 2 start-page: 62 year: 2015 ident: ref_42 article-title: A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems publication-title: Oper. Res. Perspect. – ident: ref_13 doi: 10.1007/978-3-319-03167-5 – volume: 12 start-page: 1624 year: 2011 ident: ref_61 article-title: Data-driven intelligent transportation systems: A survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2158001 – ident: ref_84 – volume: 3 start-page: 854 year: 2016 ident: ref_66 article-title: Fog and IoT: An overview of research opportunities publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2584538 – volume: 2 start-page: 100013 year: 2020 ident: ref_35 article-title: Smart transportation planning: Data, models, and algorithms publication-title: Transp. Eng. doi: 10.1016/j.treng.2020.100013 – volume: 10 start-page: 840 year: 2015 ident: ref_39 article-title: Predicting travel mode of individuals by machine learning publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.09.037 – volume: 7 start-page: 61 year: 2013 ident: ref_10 article-title: Framework for estimating travel time, distance, speed, and street segment level of service (los), based on GPS data publication-title: Procedia Technol. doi: 10.1016/j.protcy.2013.04.008 – volume: 32 start-page: 112 year: 2018 ident: ref_55 article-title: Enabling Collaborative Edge Computing for Software Defined Vehicular Networks publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1700364 – volume: 28 start-page: 201 year: 2021 ident: ref_45 article-title: Agile optimization of a two-echelon vehicle routing problem with pickup and delivery publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12796 – volume: 37 start-page: 267 year: 2014 ident: ref_57 article-title: Intelligent services for Big data science publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.07.014 – volume: 64 start-page: 47 year: 2017 ident: ref_18 article-title: A model for the analysis of data-driven innovation and value generation in smart cities’ ecosystems publication-title: Cities doi: 10.1016/j.cities.2017.01.011 – ident: ref_47 doi: 10.4018/978-1-7998-0194-8.ch008 – volume: 22 start-page: 1840 year: 2021 ident: ref_37 article-title: An edge traffic flow detection scheme based on deep learning in an intelligent transportation system publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3025687 – ident: ref_19 doi: 10.1007/978-3-319-18320-6_7 – volume: 70 start-page: 1362 year: 2019 ident: ref_44 article-title: Enhancing and extending the classical GRASP framework with biased randomisation and simulation publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2018.1494527 – ident: ref_17 doi: 10.1109/HICSS.2015.280 – ident: ref_4 doi: 10.1109/FiCloud.2014.83 – ident: ref_53 doi: 10.3390/su13095188 – volume: 14 start-page: 485 year: 2020 ident: ref_90 article-title: Maximising reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2020.108581 – ident: ref_72 doi: 10.1007/978-3-030-04203-5_13 – ident: ref_64 doi: 10.1155/2019/3159762 – ident: ref_27 – volume: 7 start-page: 74089 year: 2019 ident: ref_51 article-title: Internet of Things Based Smart Grids Supported by Intelligent Edge Computing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920488 – volume: 10 start-page: 323 year: 2016 ident: ref_89 article-title: A discrete-event driven metaheuristic for dynamic home service routing with synchronised trip sharing publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2016.076382 – ident: ref_32 doi: 10.1109/ICECTA.2017.8252060 – volume: 41 start-page: 6622 year: 2014 ident: ref_21 article-title: A multi-agent approach to intelligent transportation systems modeling with combinatorial auctions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.015 – volume: 10 start-page: 1587 year: 2014 ident: ref_56 article-title: Developing vehicular data cloud services in the IoT environment publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2299233 – volume: 4 start-page: 161 year: 2018 ident: ref_78 article-title: Machine learning for internet of things data analysis: A survey publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2017.10.002 – volume: 21 start-page: 107 year: 2021 ident: ref_67 article-title: A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 33 start-page: 613 year: 2021 ident: ref_34 article-title: Application on traffic flow prediction of machine learning in intelligent transportation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05002-6 – volume: 103 start-page: 361 year: 2021 ident: ref_52 article-title: Allocation of applications to Fog resources via semantic clustering techniques: With scenarios from intelligent transportation systems publication-title: Computing doi: 10.1007/s00607-020-00867-w – volume: 2 start-page: 115 year: 2020 ident: ref_30 article-title: Applications of deep learning in intelligent transportation systems publication-title: J. Big Data Anal. Transp. doi: 10.1007/s42421-020-00020-1 – volume: 20 start-page: 35 year: 2018 ident: ref_62 article-title: CFC-ITS: Context-Aware Fog Computing for Intelligent Transportation Systems publication-title: IT Prof. doi: 10.1109/MITP.2018.2876978 – volume: 8 start-page: 147313 year: 2020 ident: ref_70 article-title: Trustful Resource Management for Service Allocation in Fog-Enabled Intelligent Transportation Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015550 – volume: 1 start-page: 54 year: 2019 ident: ref_79 article-title: MovingPandas: Efficient structures for movement data in Python publication-title: GIForum doi: 10.1553/giscience2019_01_s54 – ident: ref_16 doi: 10.1007/978-3-642-33489-4_18 – volume: 45 start-page: 143 year: 2018 ident: ref_29 article-title: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas publication-title: Transportation doi: 10.1007/s11116-016-9729-z – volume: 12 start-page: 998 year: 2018 ident: ref_33 article-title: Deep learning methods in transportation domain: A review publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2018.0064 – volume: 16 start-page: 2406 year: 2015 ident: ref_38 article-title: Transportation Mode Recognition Using Mobile Phone Sensor Data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2405759 – volume: 2 start-page: 274 year: 2012 ident: ref_25 article-title: Modeling & simulation for intelligent transportation systems publication-title: Int. J. Model. Optim. doi: 10.7763/IJMO.2012.V2.126 – volume: 5 start-page: 266 year: 2015 ident: ref_49 article-title: FOG Computing and Its Real Time Applications publication-title: Int. J. Emerg. Technol. Adv. Eng. FOG Comput. Real Time Appl. – volume: 97 start-page: 45 year: 2018 ident: ref_28 article-title: Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of NYC publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.10.007 – ident: ref_73 doi: 10.1007/s00779-021-01634-0 – volume: 94 start-page: 351 year: 2019 ident: ref_82 article-title: A novel code data dissemination scheme for Internet of Things through mobile vehicle of smart cities publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.11.039 – ident: ref_24 – volume: 11 start-page: 228 year: 2017 ident: ref_1 article-title: Waste collection under uncertainty: A simheuristic based on variable neighbourhood search publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2017.083257 – volume: 14 start-page: 284 year: 2012 ident: ref_54 article-title: Security challenges in vehicular cloud computing publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2211870 – volume: 32 start-page: 16205 year: 2020 ident: ref_86 article-title: Machine learning and data analytics for the IoT publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04874-y – volume: 150 start-page: 603 year: 2020 ident: ref_20 article-title: Dynamic pricing techniques for Intelligent Transportation System in smart cities: A systematic review publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.12.003 – ident: ref_65 doi: 10.3390/s19183916 – ident: ref_41 doi: 10.1002/9780470496916 – ident: ref_46 doi: 10.1002/net.22067 – ident: ref_87 doi: 10.3390/su12041493 – volume: 20 start-page: 52 year: 2016 ident: ref_7 article-title: Internet of things for smart cities: Interoperability and open data publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2016.124 – ident: ref_48 doi: 10.1145/2342509.2342513 – volume: 9 start-page: 102 year: 2019 ident: ref_3 article-title: Empowering citizens’ cognition and decision making in smart sustainable cities publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2019.2941457 – ident: ref_31 doi: 10.3390/s16081324 – volume: 7 start-page: 84217 year: 2019 ident: ref_8 article-title: Phase timing optimization for smart traffic control based on fog computing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925134 – volume: 153 start-page: 107080 year: 2021 ident: ref_2 article-title: Optimizing ride-sharing operations in smart sustainable cities: Challenges and the need for agile algorithms publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107080 – ident: ref_83 doi: 10.1109/BigData.2017.8258497 – volume: 1 start-page: 22 year: 2014 ident: ref_77 article-title: Internet of things for smart cities publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2306328 – volume: 24 start-page: 1079 year: 2017 ident: ref_85 article-title: A biased-randomized metaheuristic for the capacitated location routing problem publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12322 – ident: ref_91 doi: 10.1007/0-306-48056-5_12 – ident: ref_59 doi: 10.1109/WoWMoM.2017.7974357 – volume: 64 start-page: 266 year: 2017 ident: ref_40 article-title: Traveling time prediction in scheduled transportation with journey segments publication-title: Inf. Syst. doi: 10.1016/j.is.2015.12.001 – volume: 6 start-page: 15679 year: 2018 ident: ref_63 article-title: Fog Based Intelligent Transportation Big Data Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2815989 – ident: ref_81 – ident: ref_9 doi: 10.1109/AINA.2015.254 – volume: 22 start-page: 119 year: 2019 ident: ref_88 article-title: A computational approach to quantify the benefits of ridesharing for policy makers and travellers publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2954982 – volume: 12 start-page: 235 year: 2004 ident: ref_23 article-title: Intelligent transportation system based dynamic vehicle routing and scheduling with variable travel times publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2004.07.007 – volume: 44 start-page: 311 year: 2020 ident: ref_43 article-title: Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation publication-title: Stat. Oper. Res. Trans. – volume: 26 start-page: 301 year: 2013 ident: ref_76 article-title: Understanding individual mobility patterns from urban sensing data: A mobile phone trace example publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2012.09.009 – ident: ref_71 doi: 10.1145/3231053.3231120 – volume: 47 start-page: 8 year: 2021 ident: ref_75 article-title: Survey on Big Data Techniques in Intelligent Transportation System (ITS) publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.03.479 – ident: ref_15 – volume: 12 start-page: 327 year: 2018 ident: ref_69 article-title: Emerging technologies and research challenges for intelligent transportation systems: 5G, HetNets, and SDN publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-017-0391-2 – ident: ref_50 doi: 10.1109/FMEC.2017.7946409 – volume: 29 start-page: 258 year: 2012 ident: ref_14 article-title: Benefits, Adoption Barriers and Myths of Open Data and Open Government publication-title: Inf. Syst. Manag. doi: 10.1080/10580530.2012.716740 – ident: ref_58 doi: 10.1109/PERCOMW.2017.7917508 – volume: 216 start-page: 239 year: 2012 ident: ref_22 article-title: Optimization models for assessing the peak capacity utilization of intelligent transportation systems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2011.07.032 |
| SSID | ssj0000331333 |
| Score | 2.4667568 |
| Snippet | With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 6309 |
| SubjectTerms | Cloud computing Datasets edge computing fog Heuristic intelligent transportation systems Internet of Things Machine learning Open data Optimization algorithms Optimization techniques Simulation Smart cities Traffic congestion Traffic flow Urban areas |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDA96EH_idEpALx7KkiZpk-OUDXeZHibsIiVN0jHQKlv17_cl7epAwYuXHtKUlveS1--jr5-H0LXlOch2QyKuUzgkDOIg5EERs1QmIi0MYSY0m0gnEzmbqceNVl--JqzGA9eG62sXq1xxaqmDTEIKXaQONrCKjQNtUgR6KaiejWQqxGDGIPliNY-UQV7fdyXlfrX5ysONN1AA9f-Iw-HlMtpHe40qxIP6aQ7QlisP0e4GK_AIPQ_t3OG6CQMMYF1aPH6b4kAV8axlDPITD-awy_EDxIHX5gdLvCjxuOVuVrilmddnG2L5MXoaDad391HTGyEyLKFVxHIlKc0NEbYo_KdGQpyM0xh8IvMkzblTTBKhLXeSmFwrRqxVxIjU0sJqy05Qp3wr3SnCyijuQAgauABMzDUtjJWJltQIESe2i27W9spMAw73_SteMkggvG2zb9t20VU7973GZfw669abvZ3hEddhAByfNY7P_nJ8F_XWTsuafbfKYiEJKFrJ1dl_3OMc7cS-hiUU7_VQp1p-uAu0bT6rxWp5GZbcF3402uU priority: 102 providerName: Directory of Open Access Journals |
| Title | Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems |
| URI | https://www.proquest.com/docview/2580977849 https://doaj.org/article/ae29b941d1e44885af7e76292ce923f5 |
| Volume | 14 |
| WOSCitedRecordID | wos000707231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH5i7Q7bgbFfWhmrLMFlh6h2bCf2CcFURA-UagKJHabIsZ0KiaXQlh33t_OcuAFp005cfLAdycpnf37Pfv4ewIETJZrtlibC5FhkHHkQ_aCEO6YymVeWctskm8inU3V1pWfxefQqhlVuOLEh6lbtOcRtIwmP3MKGE_NRKhVFy0UJfXh7l4QcUuGuNSbUeAH9ILyletCfTc5mP7ozF8o5umS8VSnl6O2PfM1EmIMhHvHJvtTI9__Fzs2Wc_LmeQe7A9vR9CRH7Vx5C1u-fgevnwgSvoefYzf3pM30gBXE1I5MFhekkS4Jgs4EbVxyNEcqIedINr_iK05yXZNJJ-65Jp1ketsaZdE_wOXJ-OLbaRITMCSWZ2yd8FIrxkpLpauqcJ9JqVdpniLwqszyUnjNFZXGCa-oLY3m1DlNrcwdq5xx_CP06kXtPwHRVguP1qbFDxAaYVhlncqMYlbKNHMD-Lr5_YWN6uQhScZNgV5KgKp4hGoA-13f21aT45-9jgOKXY-go91ULJbzIi7LwvhUl1owxzyOSklT5R63B51aj5ZvJQewtwG4iIt7VTziufv_5s_wKg0hME3s3x701st7_wVe2t_r69VyCP3j8XT2fdgcA2B59mc8jDP2AXm3-gQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKGAJOHCI6mdiHxAq0KpR22UPi1QOKDi2s6oE2bK7gPhT_EbGebUSiFsPXHKwnSiOv3yescffADzzskSz3dFE2gwvqUAeRD8oEZ7pVGWVo8I1ySayyUQfH5vpBvzqz8LEsMqeExui9gsX18i3udIUbRUtzavTr0nMGhV3V_sUGi0sDsLPH-iyrV7mb3F8n3O-tzt7s590WQUSJ1K2TkRpNGOlo8pXVdykozRonnHsjS7TrJTBCE2V9TJo6kprBPXeUKcyzypvvcDnXoJNiWDXI9ic5kfTD8OqDhUCnT7R6qAKYeh2qJmMKI8Rj-dmviZBwB_830xqezf-t89xE6535jPZafF-CzZCfRuunRNVvAMfd_08kDZbBRYQW3uSL2akkV-JotQE7XSyM0c6JO-QML90J1HJSU3yQaB0TQbZ97a2k3a_C-8vpH_3YFQv6nAfiHFGBrSYHd6AXq20rHJep1YzpxRP_Rhe9ANcuE5hPSb6-FygpxXBUJyBYQxPh7anra7IX1u9jjgZWkQt8KZgsZwXHbUUNnBTGsk8C_hWWtkqCzjFGe4CWu-VGsNWD6GiI6hVcYafB_-ufgJX9mdHh8VhPjl4CFd5DOlpYhm3YLRefguP4LL7vj5ZLR93_wKBTxeNt98isEkf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKGAJOHCI1s_EPiBUaFdEhWUPRSoHFBLbWVWCbNldQPw1fh3jxEkrgbj1wCUH24li-_M87PE3AE-crNBstzSRZYaPVKAcRD8oEY7pVGW1pcK2ySay2UwfHZn5Fvzq78KEsMpeJraC2i1t2COfcKUp2ipamkkdwyLme9MXJ1-TkEEqnLT26TQ6iBz4nz_QfVs_z_dwrp9yPt0_fPU6iRkGEitStklEZTRjlaXK1XU4sKPUa55x7Jmu0qyS3ghNVemk19RWpRHUOUOtyhyrXekEfvcCbKNJLuUItuf52_mHYYeHCoEOoOg4UYUwdOIbJgPiQ_TjGS3YJgv4Qxe0Cm567X8emutwNZrVZLdbBzdgyzc34coZssVb8HHfLTzpslhgASkbR_LlIWlpWQJZNUH7newuUEySdyhIv8QbquS4IflAXLohAx18Vxsp32_D-3Pp3x0YNcvG3wVirJEeLWmLL6C3K0tWW6fTUjOrFE_dGJ71k13YyLweEoB8LtADC8AoToExhsdD25OOb-SvrV4GzAwtAkd4W7BcLYoocorSc1MZyRzz-FdalXXmUfUZbj1a9bUaw04PpyIKrnVxiqV7_65-BJcQZMWbfHZwHy7zEOnThjjuwGiz-uYfwEX7fXO8Xj2My4LAp_OG22_761Hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Computing+and+IoT+Analytics+for+Agile+Optimization+in+Intelligent+Transportation+Systems&rft.jtitle=Energies+%28Basel%29&rft.au=Peyman%2C+Mohammad&rft.au=Copado%2C+Pedro+J.&rft.au=Tordecilla%2C+Rafael+D.&rft.au=Martins%2C+Leandro+do+C.&rft.date=2021-10-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=19&rft.spage=6309&rft_id=info:doi/10.3390%2Fen14196309&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14196309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |