Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems

With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 14; H. 19; S. 6309
Hauptverfasser: Peyman, Mohammad, Copado, Pedro J., Tordecilla, Rafael D., Martins, Leandro do C., Xhafa, Fatos, Juan, Angel A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2021
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.
AbstractList With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.
Author Tordecilla, Rafael D.
Xhafa, Fatos
Martins, Leandro do C.
Juan, Angel A.
Peyman, Mohammad
Copado, Pedro J.
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0003-4734-2414
  surname: Peyman
  fullname: Peyman, Mohammad
– sequence: 2
  givenname: Pedro J.
  orcidid: 0000-0003-4219-5056
  surname: Copado
  fullname: Copado, Pedro J.
– sequence: 3
  givenname: Rafael D.
  orcidid: 0000-0003-3028-1686
  surname: Tordecilla
  fullname: Tordecilla, Rafael D.
– sequence: 4
  givenname: Leandro do C.
  orcidid: 0000-0001-6529-0270
  surname: Martins
  fullname: Martins, Leandro do C.
– sequence: 5
  givenname: Fatos
  orcidid: 0000-0001-6569-5497
  surname: Xhafa
  fullname: Xhafa, Fatos
– sequence: 6
  givenname: Angel A.
  orcidid: 0000-0003-1392-1776
  surname: Juan
  fullname: Juan, Angel A.
BookMark eNptUU1LAzEQDVLBqr34CwLehNVksx_JsZSqhUIP1qOE7GZ2Sdkma5Ie6q93dUVFnMsMM2_eMO-do4l1FhC6ouSWMUHuwNKMioIRcYKmVIgioaRkk1_1GZqFsCNDMEYZY1P0stQt4IXb94dobIuV1XjltnhuVXeMpg64cR7PW9MB3vTR7M2bisZZbCxe2QhdZ1qwEW-9sqF3Po7Tp2OIsA-X6LRRXYDZV75Az_fL7eIxWW8eVov5OqlZQWPCKsEprWqS66bhgjJCgKdlChXwqiirDATjJFc6A07qSglGtBakzktNG600u0CrkVc7tZO9N3vlj9IpIz8bzrdS-eGbDqSCVFQio5pClnGeq6aEskhFWoNIWZMPXNcjV-_d6wFClDt38IMcQaY5J6IseSYG1M2Iqr0LwUPzfZUS-eGG_HFjAJM_4NqMQkWvTPffyjtmTo5M
CitedBy_id crossref_primary_10_3390_a15080289
crossref_primary_10_1016_j_eswa_2023_122380
crossref_primary_10_3390_rs17030550
crossref_primary_10_3390_app13010101
crossref_primary_10_3390_math10060982
crossref_primary_10_3390_vehicles4040065
crossref_primary_10_3390_en17051141
crossref_primary_10_3390_math12040571
crossref_primary_10_1007_s10586_022_03717_w
crossref_primary_10_3390_futuretransp2040048
crossref_primary_10_1016_j_sca_2023_100056
crossref_primary_10_1007_s40031_024_01186_w
crossref_primary_10_1155_2022_1518755
crossref_primary_10_3390_en15134764
crossref_primary_10_3390_su151813951
crossref_primary_10_3390_computers12020033
crossref_primary_10_3390_s22010066
crossref_primary_10_1016_j_iswa_2025_200585
crossref_primary_10_1108_MD_03_2023_0412
crossref_primary_10_3103_S0005105522020029
Cites_doi 10.1109/TITS.2014.2377074
10.1016/j.cie.2017.06.019
10.1016/j.sbspro.2011.04.530
10.3390/fi12110190
10.3390/s150614116
10.1016/j.comnet.2020.107530
10.1109/ICVES.2014.7063743
10.1007/978-3-319-03167-5
10.1109/TITS.2011.2158001
10.1109/JIOT.2016.2584538
10.1016/j.treng.2020.100013
10.1016/j.trpro.2015.09.037
10.1016/j.protcy.2013.04.008
10.1109/MNET.2018.1700364
10.1111/itor.12796
10.1016/j.future.2013.07.014
10.1016/j.cities.2017.01.011
10.4018/978-1-7998-0194-8.ch008
10.1109/TITS.2020.3025687
10.1007/978-3-319-18320-6_7
10.1080/01605682.2018.1494527
10.1109/HICSS.2015.280
10.1109/FiCloud.2014.83
10.3390/su13095188
10.1504/EJIE.2020.108581
10.1007/978-3-030-04203-5_13
10.1155/2019/3159762
10.1109/ACCESS.2019.2920488
10.1504/EJIE.2016.076382
10.1109/ICECTA.2017.8252060
10.1016/j.eswa.2014.05.015
10.1109/TII.2014.2299233
10.1016/j.dcan.2017.10.002
10.1007/s00521-020-05002-6
10.1007/s00607-020-00867-w
10.1007/s42421-020-00020-1
10.1109/MITP.2018.2876978
10.1109/ACCESS.2020.3015550
10.1553/giscience2019_01_s54
10.1007/978-3-642-33489-4_18
10.1007/s11116-016-9729-z
10.1049/iet-its.2018.0064
10.1109/TITS.2015.2405759
10.7763/IJMO.2012.V2.126
10.1016/j.trc.2018.10.007
10.1007/s00779-021-01634-0
10.1016/j.future.2018.11.039
10.1504/EJIE.2017.083257
10.1109/TITS.2012.2211870
10.1007/s00521-020-04874-y
10.1016/j.comcom.2019.12.003
10.3390/s19183916
10.1002/9780470496916
10.1002/net.22067
10.3390/su12041493
10.1109/MIC.2016.124
10.1145/2342509.2342513
10.1109/MCE.2019.2941457
10.3390/s16081324
10.1109/ACCESS.2019.2925134
10.1016/j.cie.2020.107080
10.1109/BigData.2017.8258497
10.1109/JIOT.2014.2306328
10.1111/itor.12322
10.1007/0-306-48056-5_12
10.1109/WoWMoM.2017.7974357
10.1016/j.is.2015.12.001
10.1109/ACCESS.2018.2815989
10.1109/AINA.2015.254
10.1109/TITS.2019.2954982
10.1016/j.trc.2004.07.007
10.1016/j.trc.2012.09.009
10.1145/3231053.3231120
10.1016/j.matpr.2021.03.479
10.1007/s12008-017-0391-2
10.1109/FMEC.2017.7946409
10.1080/10580530.2012.716740
10.1109/PERCOMW.2017.7917508
10.1016/j.ejor.2011.07.032
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14196309
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_ae29b941d1e44885af7e76292ce923f5
10_3390_en14196309
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-3b9811bc05dff891300e8272ebe8b67b4e93805ad4e80cba930dd90c57d1fdad3
IEDL.DBID PIMPY
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 19:08:01 EDT 2025
Mon Nov 24 21:40:57 EST 2025
Sat Nov 29 07:11:54 EST 2025
Tue Nov 18 21:52:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-3b9811bc05dff891300e8272ebe8b67b4e93805ad4e80cba930dd90c57d1fdad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4734-2414
0000-0003-1392-1776
0000-0003-4219-5056
0000-0001-6569-5497
0000-0003-3028-1686
0000-0001-6529-0270
OpenAccessLink https://www.proquest.com/publiccontent/docview/2580977849?pq-origsite=%requestingapplication%
PQID 2580977849
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_ae29b941d1e44885af7e76292ce923f5
proquest_journals_2580977849
crossref_primary_10_3390_en14196309
crossref_citationtrail_10_3390_en14196309
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ramos (ref_25) 2012; 2
ref_50
Dobre (ref_57) 2014; 37
Agatz (ref_11) 2011; 17
Xhafa (ref_52) 2021; 103
ref_91
Satunin (ref_21) 2014; 41
ref_58
ref_13
Li (ref_34) 2021; 33
ref_53
Camacho (ref_69) 2018; 12
ref_19
ref_17
ref_16
He (ref_56) 2014; 10
ref_15
ref_59
Karami (ref_35) 2020; 2
Teng (ref_82) 2019; 94
ref_60
Calabrese (ref_76) 2013; 26
(ref_26) 2015; 15
Ferone (ref_44) 2019; 70
Tufail (ref_67) 2021; 21
Darwish (ref_63) 2018; 6
Graser (ref_79) 2019; 1
Gruler (ref_1) 2017; 11
Jahangiri (ref_38) 2015; 16
Mohandu (ref_75) 2021; 47
Fikar (ref_89) 2016; 10
ref_24
ref_65
Zhang (ref_61) 2011; 12
ref_64
Lee (ref_70) 2020; 8
Mahdavinejad (ref_78) 2018; 4
Beneicke (ref_3) 2019; 9
Bistaffa (ref_88) 2019; 22
Fagnant (ref_29) 2018; 45
ref_27
Nguyen (ref_33) 2018; 12
Cheng (ref_68) 2015; 16
Taniguchi (ref_23) 2004; 12
Gal (ref_40) 2017; 64
Wang (ref_55) 2018; 32
Janssen (ref_14) 2012; 29
Abella (ref_18) 2017; 64
Panadero (ref_90) 2020; 14
ref_72
ref_71
Haghighat (ref_30) 2020; 2
Chica (ref_43) 2020; 44
Chen (ref_37) 2021; 22
Juan (ref_85) 2017; 24
Grasas (ref_12) 2017; 110
Chen (ref_51) 2019; 7
ref_32
ref_31
ref_74
Minh (ref_62) 2018; 20
ref_73
Saharan (ref_20) 2020; 150
(ref_10) 2013; 7
Yan (ref_54) 2012; 14
Tang (ref_8) 2019; 7
Zanella (ref_77) 2014; 1
ref_83
Martins (ref_45) 2021; 28
ref_81
Omrani (ref_39) 2015; 10
ref_80
Ahlgren (ref_7) 2016; 20
ref_47
Peter (ref_49) 2015; 5
ref_46
Shah (ref_22) 2012; 216
Chiang (ref_66) 2016; 3
ref_87
ref_41
ref_84
Adi (ref_86) 2020; 32
Martins (ref_2) 2021; 153
Lokhandwala (ref_28) 2018; 97
Boukerche (ref_36) 2020; 181
Juan (ref_42) 2015; 2
ref_48
ref_9
ref_5
ref_4
ref_6
References_xml – volume: 16
  start-page: 1784
  year: 2015
  ident: ref_68
  article-title: D2D for intelligent transportation systems: A feasibility study
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2377074
– volume: 110
  start-page: 216
  year: 2017
  ident: ref_12
  article-title: Biased randomization of heuristics using skewed probability distributions: A survey and some applications
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.06.019
– volume: 17
  start-page: 532
  year: 2011
  ident: ref_11
  article-title: Dynamic ride-sharing: A simulation study in metro Atlanta
  publication-title: Procedia Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2011.04.530
– ident: ref_74
– ident: ref_5
– ident: ref_60
  doi: 10.3390/fi12110190
– ident: ref_80
– volume: 15
  start-page: 14116
  year: 2015
  ident: ref_26
  article-title: Analysis of intelligent transportation systems using model-driven simulations
  publication-title: Sensors
  doi: 10.3390/s150614116
– volume: 181
  start-page: 107530
  year: 2020
  ident: ref_36
  article-title: Machine Learning-based traffic prediction models for Intelligent Transportation Systems
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107530
– ident: ref_6
  doi: 10.1109/ICVES.2014.7063743
– volume: 2
  start-page: 62
  year: 2015
  ident: ref_42
  article-title: A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems
  publication-title: Oper. Res. Perspect.
– ident: ref_13
  doi: 10.1007/978-3-319-03167-5
– volume: 12
  start-page: 1624
  year: 2011
  ident: ref_61
  article-title: Data-driven intelligent transportation systems: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2158001
– ident: ref_84
– volume: 3
  start-page: 854
  year: 2016
  ident: ref_66
  article-title: Fog and IoT: An overview of research opportunities
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2584538
– volume: 2
  start-page: 100013
  year: 2020
  ident: ref_35
  article-title: Smart transportation planning: Data, models, and algorithms
  publication-title: Transp. Eng.
  doi: 10.1016/j.treng.2020.100013
– volume: 10
  start-page: 840
  year: 2015
  ident: ref_39
  article-title: Predicting travel mode of individuals by machine learning
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2015.09.037
– volume: 7
  start-page: 61
  year: 2013
  ident: ref_10
  article-title: Framework for estimating travel time, distance, speed, and street segment level of service (los), based on GPS data
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2013.04.008
– volume: 32
  start-page: 112
  year: 2018
  ident: ref_55
  article-title: Enabling Collaborative Edge Computing for Software Defined Vehicular Networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700364
– volume: 28
  start-page: 201
  year: 2021
  ident: ref_45
  article-title: Agile optimization of a two-echelon vehicle routing problem with pickup and delivery
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12796
– volume: 37
  start-page: 267
  year: 2014
  ident: ref_57
  article-title: Intelligent services for Big data science
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.07.014
– volume: 64
  start-page: 47
  year: 2017
  ident: ref_18
  article-title: A model for the analysis of data-driven innovation and value generation in smart cities’ ecosystems
  publication-title: Cities
  doi: 10.1016/j.cities.2017.01.011
– ident: ref_47
  doi: 10.4018/978-1-7998-0194-8.ch008
– volume: 22
  start-page: 1840
  year: 2021
  ident: ref_37
  article-title: An edge traffic flow detection scheme based on deep learning in an intelligent transportation system
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3025687
– ident: ref_19
  doi: 10.1007/978-3-319-18320-6_7
– volume: 70
  start-page: 1362
  year: 2019
  ident: ref_44
  article-title: Enhancing and extending the classical GRASP framework with biased randomisation and simulation
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2018.1494527
– ident: ref_17
  doi: 10.1109/HICSS.2015.280
– ident: ref_4
  doi: 10.1109/FiCloud.2014.83
– ident: ref_53
  doi: 10.3390/su13095188
– volume: 14
  start-page: 485
  year: 2020
  ident: ref_90
  article-title: Maximising reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2020.108581
– ident: ref_72
  doi: 10.1007/978-3-030-04203-5_13
– ident: ref_64
  doi: 10.1155/2019/3159762
– ident: ref_27
– volume: 7
  start-page: 74089
  year: 2019
  ident: ref_51
  article-title: Internet of Things Based Smart Grids Supported by Intelligent Edge Computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920488
– volume: 10
  start-page: 323
  year: 2016
  ident: ref_89
  article-title: A discrete-event driven metaheuristic for dynamic home service routing with synchronised trip sharing
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2016.076382
– ident: ref_32
  doi: 10.1109/ICECTA.2017.8252060
– volume: 41
  start-page: 6622
  year: 2014
  ident: ref_21
  article-title: A multi-agent approach to intelligent transportation systems modeling with combinatorial auctions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.05.015
– volume: 10
  start-page: 1587
  year: 2014
  ident: ref_56
  article-title: Developing vehicular data cloud services in the IoT environment
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2299233
– volume: 4
  start-page: 161
  year: 2018
  ident: ref_78
  article-title: Machine learning for internet of things data analysis: A survey
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2017.10.002
– volume: 21
  start-page: 107
  year: 2021
  ident: ref_67
  article-title: A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 33
  start-page: 613
  year: 2021
  ident: ref_34
  article-title: Application on traffic flow prediction of machine learning in intelligent transportation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05002-6
– volume: 103
  start-page: 361
  year: 2021
  ident: ref_52
  article-title: Allocation of applications to Fog resources via semantic clustering techniques: With scenarios from intelligent transportation systems
  publication-title: Computing
  doi: 10.1007/s00607-020-00867-w
– volume: 2
  start-page: 115
  year: 2020
  ident: ref_30
  article-title: Applications of deep learning in intelligent transportation systems
  publication-title: J. Big Data Anal. Transp.
  doi: 10.1007/s42421-020-00020-1
– volume: 20
  start-page: 35
  year: 2018
  ident: ref_62
  article-title: CFC-ITS: Context-Aware Fog Computing for Intelligent Transportation Systems
  publication-title: IT Prof.
  doi: 10.1109/MITP.2018.2876978
– volume: 8
  start-page: 147313
  year: 2020
  ident: ref_70
  article-title: Trustful Resource Management for Service Allocation in Fog-Enabled Intelligent Transportation Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015550
– volume: 1
  start-page: 54
  year: 2019
  ident: ref_79
  article-title: MovingPandas: Efficient structures for movement data in Python
  publication-title: GIForum
  doi: 10.1553/giscience2019_01_s54
– ident: ref_16
  doi: 10.1007/978-3-642-33489-4_18
– volume: 45
  start-page: 143
  year: 2018
  ident: ref_29
  article-title: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas
  publication-title: Transportation
  doi: 10.1007/s11116-016-9729-z
– volume: 12
  start-page: 998
  year: 2018
  ident: ref_33
  article-title: Deep learning methods in transportation domain: A review
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2018.0064
– volume: 16
  start-page: 2406
  year: 2015
  ident: ref_38
  article-title: Transportation Mode Recognition Using Mobile Phone Sensor Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2405759
– volume: 2
  start-page: 274
  year: 2012
  ident: ref_25
  article-title: Modeling & simulation for intelligent transportation systems
  publication-title: Int. J. Model. Optim.
  doi: 10.7763/IJMO.2012.V2.126
– volume: 5
  start-page: 266
  year: 2015
  ident: ref_49
  article-title: FOG Computing and Its Real Time Applications
  publication-title: Int. J. Emerg. Technol. Adv. Eng. FOG Comput. Real Time Appl.
– volume: 97
  start-page: 45
  year: 2018
  ident: ref_28
  article-title: Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of NYC
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.10.007
– ident: ref_73
  doi: 10.1007/s00779-021-01634-0
– volume: 94
  start-page: 351
  year: 2019
  ident: ref_82
  article-title: A novel code data dissemination scheme for Internet of Things through mobile vehicle of smart cities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.11.039
– ident: ref_24
– volume: 11
  start-page: 228
  year: 2017
  ident: ref_1
  article-title: Waste collection under uncertainty: A simheuristic based on variable neighbourhood search
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2017.083257
– volume: 14
  start-page: 284
  year: 2012
  ident: ref_54
  article-title: Security challenges in vehicular cloud computing
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2211870
– volume: 32
  start-page: 16205
  year: 2020
  ident: ref_86
  article-title: Machine learning and data analytics for the IoT
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04874-y
– volume: 150
  start-page: 603
  year: 2020
  ident: ref_20
  article-title: Dynamic pricing techniques for Intelligent Transportation System in smart cities: A systematic review
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.12.003
– ident: ref_65
  doi: 10.3390/s19183916
– ident: ref_41
  doi: 10.1002/9780470496916
– ident: ref_46
  doi: 10.1002/net.22067
– ident: ref_87
  doi: 10.3390/su12041493
– volume: 20
  start-page: 52
  year: 2016
  ident: ref_7
  article-title: Internet of things for smart cities: Interoperability and open data
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2016.124
– ident: ref_48
  doi: 10.1145/2342509.2342513
– volume: 9
  start-page: 102
  year: 2019
  ident: ref_3
  article-title: Empowering citizens’ cognition and decision making in smart sustainable cities
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2019.2941457
– ident: ref_31
  doi: 10.3390/s16081324
– volume: 7
  start-page: 84217
  year: 2019
  ident: ref_8
  article-title: Phase timing optimization for smart traffic control based on fog computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925134
– volume: 153
  start-page: 107080
  year: 2021
  ident: ref_2
  article-title: Optimizing ride-sharing operations in smart sustainable cities: Challenges and the need for agile algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107080
– ident: ref_83
  doi: 10.1109/BigData.2017.8258497
– volume: 1
  start-page: 22
  year: 2014
  ident: ref_77
  article-title: Internet of things for smart cities
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2306328
– volume: 24
  start-page: 1079
  year: 2017
  ident: ref_85
  article-title: A biased-randomized metaheuristic for the capacitated location routing problem
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12322
– ident: ref_91
  doi: 10.1007/0-306-48056-5_12
– ident: ref_59
  doi: 10.1109/WoWMoM.2017.7974357
– volume: 64
  start-page: 266
  year: 2017
  ident: ref_40
  article-title: Traveling time prediction in scheduled transportation with journey segments
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2015.12.001
– volume: 6
  start-page: 15679
  year: 2018
  ident: ref_63
  article-title: Fog Based Intelligent Transportation Big Data Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2815989
– ident: ref_81
– ident: ref_9
  doi: 10.1109/AINA.2015.254
– volume: 22
  start-page: 119
  year: 2019
  ident: ref_88
  article-title: A computational approach to quantify the benefits of ridesharing for policy makers and travellers
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2954982
– volume: 12
  start-page: 235
  year: 2004
  ident: ref_23
  article-title: Intelligent transportation system based dynamic vehicle routing and scheduling with variable travel times
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2004.07.007
– volume: 44
  start-page: 311
  year: 2020
  ident: ref_43
  article-title: Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation
  publication-title: Stat. Oper. Res. Trans.
– volume: 26
  start-page: 301
  year: 2013
  ident: ref_76
  article-title: Understanding individual mobility patterns from urban sensing data: A mobile phone trace example
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2012.09.009
– ident: ref_71
  doi: 10.1145/3231053.3231120
– volume: 47
  start-page: 8
  year: 2021
  ident: ref_75
  article-title: Survey on Big Data Techniques in Intelligent Transportation System (ITS)
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.03.479
– ident: ref_15
– volume: 12
  start-page: 327
  year: 2018
  ident: ref_69
  article-title: Emerging technologies and research challenges for intelligent transportation systems: 5G, HetNets, and SDN
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-017-0391-2
– ident: ref_50
  doi: 10.1109/FMEC.2017.7946409
– volume: 29
  start-page: 258
  year: 2012
  ident: ref_14
  article-title: Benefits, Adoption Barriers and Myths of Open Data and Open Government
  publication-title: Inf. Syst. Manag.
  doi: 10.1080/10580530.2012.716740
– ident: ref_58
  doi: 10.1109/PERCOMW.2017.7917508
– volume: 216
  start-page: 239
  year: 2012
  ident: ref_22
  article-title: Optimization models for assessing the peak capacity utilization of intelligent transportation systems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.07.032
SSID ssj0000331333
Score 2.4667568
Snippet With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6309
SubjectTerms Cloud computing
Datasets
edge computing
fog
Heuristic
intelligent transportation systems
Internet of Things
Machine learning
Open data
Optimization algorithms
Optimization techniques
Simulation
Smart cities
Traffic congestion
Traffic flow
Urban areas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDA96EH_idEpALx7KkiZpk-OUDXeZHibsIiVN0jHQKlv17_cl7epAwYuXHtKUlveS1--jr5-H0LXlOch2QyKuUzgkDOIg5EERs1QmIi0MYSY0m0gnEzmbqceNVl--JqzGA9eG62sXq1xxaqmDTEIKXaQONrCKjQNtUgR6KaiejWQqxGDGIPliNY-UQV7fdyXlfrX5ysONN1AA9f-Iw-HlMtpHe40qxIP6aQ7QlisP0e4GK_AIPQ_t3OG6CQMMYF1aPH6b4kAV8axlDPITD-awy_EDxIHX5gdLvCjxuOVuVrilmddnG2L5MXoaDad391HTGyEyLKFVxHIlKc0NEbYo_KdGQpyM0xh8IvMkzblTTBKhLXeSmFwrRqxVxIjU0sJqy05Qp3wr3SnCyijuQAgauABMzDUtjJWJltQIESe2i27W9spMAw73_SteMkggvG2zb9t20VU7973GZfw669abvZ3hEddhAByfNY7P_nJ8F_XWTsuafbfKYiEJKFrJ1dl_3OMc7cS-hiUU7_VQp1p-uAu0bT6rxWp5GZbcF3402uU
  priority: 102
  providerName: Directory of Open Access Journals
Title Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems
URI https://www.proquest.com/docview/2580977849
https://doaj.org/article/ae29b941d1e44885af7e76292ce923f5
Volume 14
WOSCitedRecordID wos000707231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH5i7Q7bgbFfWhmrLMFlh6h2bCf2CcFURA-UagKJHabIsZ0KiaXQlh33t_OcuAFp005cfLAdycpnf37Pfv4ewIETJZrtlibC5FhkHHkQ_aCEO6YymVeWctskm8inU3V1pWfxefQqhlVuOLEh6lbtOcRtIwmP3MKGE_NRKhVFy0UJfXh7l4QcUuGuNSbUeAH9ILyletCfTc5mP7ozF8o5umS8VSnl6O2PfM1EmIMhHvHJvtTI9__Fzs2Wc_LmeQe7A9vR9CRH7Vx5C1u-fgevnwgSvoefYzf3pM30gBXE1I5MFhekkS4Jgs4EbVxyNEcqIedINr_iK05yXZNJJ-65Jp1ketsaZdE_wOXJ-OLbaRITMCSWZ2yd8FIrxkpLpauqcJ9JqVdpniLwqszyUnjNFZXGCa-oLY3m1DlNrcwdq5xx_CP06kXtPwHRVguP1qbFDxAaYVhlncqMYlbKNHMD-Lr5_YWN6uQhScZNgV5KgKp4hGoA-13f21aT45-9jgOKXY-go91ULJbzIi7LwvhUl1owxzyOSklT5R63B51aj5ZvJQewtwG4iIt7VTziufv_5s_wKg0hME3s3x701st7_wVe2t_r69VyCP3j8XT2fdgcA2B59mc8jDP2AXm3-gQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKGAJOHCI6mdiHxAq0KpR22UPi1QOKDi2s6oE2bK7gPhT_EbGebUSiFsPXHKwnSiOv3yescffADzzskSz3dFE2gwvqUAeRD8oEZ7pVGWVo8I1ySayyUQfH5vpBvzqz8LEsMqeExui9gsX18i3udIUbRUtzavTr0nMGhV3V_sUGi0sDsLPH-iyrV7mb3F8n3O-tzt7s590WQUSJ1K2TkRpNGOlo8pXVdykozRonnHsjS7TrJTBCE2V9TJo6kprBPXeUKcyzypvvcDnXoJNiWDXI9ic5kfTD8OqDhUCnT7R6qAKYeh2qJmMKI8Rj-dmviZBwB_830xqezf-t89xE6535jPZafF-CzZCfRuunRNVvAMfd_08kDZbBRYQW3uSL2akkV-JotQE7XSyM0c6JO-QML90J1HJSU3yQaB0TQbZ97a2k3a_C-8vpH_3YFQv6nAfiHFGBrSYHd6AXq20rHJep1YzpxRP_Rhe9ANcuE5hPSb6-FygpxXBUJyBYQxPh7anra7IX1u9jjgZWkQt8KZgsZwXHbUUNnBTGsk8C_hWWtkqCzjFGe4CWu-VGsNWD6GiI6hVcYafB_-ufgJX9mdHh8VhPjl4CFd5DOlpYhm3YLRefguP4LL7vj5ZLR93_wKBTxeNt98isEkf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKGAJOHCI1s_EPiBUaFdEhWUPRSoHFBLbWVWCbNldQPw1fh3jxEkrgbj1wCUH24li-_M87PE3AE-crNBstzSRZYaPVKAcRD8oEY7pVGW1pcK2ySay2UwfHZn5Fvzq78KEsMpeJraC2i1t2COfcKUp2ipamkkdwyLme9MXJ1-TkEEqnLT26TQ6iBz4nz_QfVs_z_dwrp9yPt0_fPU6iRkGEitStklEZTRjlaXK1XU4sKPUa55x7Jmu0qyS3ghNVemk19RWpRHUOUOtyhyrXekEfvcCbKNJLuUItuf52_mHYYeHCoEOoOg4UYUwdOIbJgPiQ_TjGS3YJgv4Qxe0Cm567X8emutwNZrVZLdbBzdgyzc34coZssVb8HHfLTzpslhgASkbR_LlIWlpWQJZNUH7newuUEySdyhIv8QbquS4IflAXLohAx18Vxsp32_D-3Pp3x0YNcvG3wVirJEeLWmLL6C3K0tWW6fTUjOrFE_dGJ71k13YyLweEoB8LtADC8AoToExhsdD25OOb-SvrV4GzAwtAkd4W7BcLYoocorSc1MZyRzz-FdalXXmUfUZbj1a9bUaw04PpyIKrnVxiqV7_65-BJcQZMWbfHZwHy7zEOnThjjuwGiz-uYfwEX7fXO8Xj2My4LAp_OG22_761Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Computing+and+IoT+Analytics+for+Agile+Optimization+in+Intelligent+Transportation+Systems&rft.jtitle=Energies+%28Basel%29&rft.au=Peyman%2C+Mohammad&rft.au=Copado%2C+Pedro+J.&rft.au=Tordecilla%2C+Rafael+D.&rft.au=Martins%2C+Leandro+do+C.&rft.date=2021-10-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=19&rft.spage=6309&rft_id=info:doi/10.3390%2Fen14196309&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14196309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon