GRL-ITransformer: An Intelligent Method for Multi-Wind-Turbine Wake Analysis Based on Graph Representation Learning With Improved Transformer

The importance of examining the wake effect of wind farms for optimizing their layout and augmenting their power generation efficiency is immense. Considering that the establishment of extensive wind farms often leads to a significant number of turbines being positioned downstream of preceding ones,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 43572 - 43592
Hlavní autori: Han, Kang, Xu, Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The importance of examining the wake effect of wind farms for optimizing their layout and augmenting their power generation efficiency is immense. Considering that the establishment of extensive wind farms often leads to a significant number of turbines being positioned downstream of preceding ones, it significantly diminishes their power generation efficiency. In our study, we propose a graph representation learning model with improved Transformer (GRL-ITransformer) to better integrate feature information, so that the model can capture the dynamic time relationship of different variables and establish its spatial relationship, striving to enhance the precision in predicting wind turbine wake field. Different from the previous way involving handling reduced-order and separating prediction process, we combine the reduced-order technique with the proposed model to make the model more efficiently and intelligently determine the number of modes required for model prediction. After that, the data driven method is employed to update the parameters, and the superiority of GRL-ITransformer is highlighted by analyzing and comparing with the existing five classical intelligent algorithms (belongs to four categories). The comprehensive results show that GRL-ITransformer has excellent performance in wind turbine wake field prediction and reconstruction, and always possesses the lowest error for a series of error evaluation indexes among all models.
AbstractList The importance of examining the wake effect of wind farms for optimizing their layout and augmenting their power generation efficiency is immense. Considering that the establishment of extensive wind farms often leads to a significant number of turbines being positioned downstream of preceding ones, it significantly diminishes their power generation efficiency. In our study, we propose a graph representation learning model with improved Transformer (GRL-ITransformer) to better integrate feature information, so that the model can capture the dynamic time relationship of different variables and establish its spatial relationship, striving to enhance the precision in predicting wind turbine wake field. Different from the previous way involving handling reduced-order and separating prediction process, we combine the reduced-order technique with the proposed model to make the model more efficiently and intelligently determine the number of modes required for model prediction. After that, the data driven method is employed to update the parameters, and the superiority of GRL-ITransformer is highlighted by analyzing and comparing with the existing five classical intelligent algorithms (belongs to four categories). The comprehensive results show that GRL-ITransformer has excellent performance in wind turbine wake field prediction and reconstruction, and always possesses the lowest error for a series of error evaluation indexes among all models.
Author Xu, Li
Han, Kang
Author_xml – sequence: 1
  givenname: Kang
  orcidid: 0009-0004-8344-7007
  surname: Han
  fullname: Han, Kang
  organization: College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0002-9468-7629
  surname: Xu
  fullname: Xu, Li
  email: xulimaths@163.com
  organization: College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
BookMark eNpNUctu2zAQFIoUSJrmC9IDgZ7l8iGKUm-ukboCHBRIXPhIrKSlTVcmXVIukI_IP4epgsJ7IBfDmVks50N24bzDLLtldMYYrb_MF4u7x8cZp1zOhCxqKuS77Iqzss6FFOXFWX-Z3cS4p6mqBEl1lT0vH1Z5sw7govHhgOErmTvSuBGHwW7RjeQex53vSXol96dhtPnGuj5fn0JrHZIN_MakgOEp2ki-QcSeeEeWAY478oDHgDGZwGgTuEIIzrot2dhxR5rDMfi_iX42_GP23sAQ8ebtvs5-fb9bL37kq5_LZjFf5Z0o2ZiLWkLX0VJRxWQ6ecU7BT2TwLu2NaZQXAqhih6RQlXUIFjR0wRh2rkUIK6zZvLtPez1MdgDhCftwep_gA9bDWG03YC6qjsoC9NRo0zBVfKqZY0tq2hlhGlZ8vo8eaV1_pwwjnrvTyH9SNSCKcUZrSqeWGJidcHHGND8n8qofo1RTzHq1xj1W4xJ9WlSWUQ8U9SsTCVeAHTOmxA
CODEN IAECCG
Cites_doi 10.1016/j.renene.2014.02.015
10.1063/5.0036281
10.1115/1.4046232
10.1109/CVPR.2016.90
10.1063/5.0030867
10.1016/j.energy.2021.121747
10.1063/5.0123185
10.1016/j.apenergy.2022.119599
10.1063/5.0188998
10.1016/j.mineng.2018.12.011
10.1016/j.neucom.2018.05.081
10.1117/12.381681
10.48550/ARXIV.1706.03762
10.1016/j.eswa.2022.117921
10.1016/j.apenergy.2010.10.031
10.2514/1.J057309
10.1063/1.5024595
10.1016/j.apenergy.2018.05.085
10.1063/5.0159271
10.1016/j.ymssp.2020.106779
10.1002/we.348
10.1016/j.energy.2024.130403
10.1016/j.renene.2017.08.072
10.1016/j.apenergy.2023.120928
10.1016/j.ijepes.2014.05.052
10.1016/j.renene.2023.119465
10.1145/3308558.3313488
10.1016/j.rser.2020.110047
10.2514/6.2020-1563
10.1016/j.rser.2018.02.039
10.1109/TII.2022.3176821
10.1038/323533a0
10.1016/j.enconman.2013.02.007
10.1007/s10489-023-05230-y
10.1017/S0022112088001818
10.1007/s00348-003-0656-3
10.1007/s10489-022-03361-2
10.1016/j.renene.2015.07.100
10.1016/j.renene.2022.01.026
10.1016/j.renene.2015.01.005
10.1002/we.1822
10.1016/j.engappai.2020.103573
10.1063/5.0157897
10.1016/j.oceaneng.2022.113307
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3549035
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 43592
ExternalDocumentID oai_doaj_org_article_89ca64fc0f7f4279a3959eb1808f3fb1
10_1109_ACCESS_2025_3549035
10916666
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-395acc0670715670282c7ad15a2cbbff47253374dee0a849a314d0533e95763a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445059300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:09 EDT 2025
Mon Jun 30 12:10:08 EDT 2025
Sat Nov 29 08:05:21 EST 2025
Wed Aug 27 01:42:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-395acc0670715670282c7ad15a2cbbff47253374dee0a849a314d0533e95763a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9468-7629
0009-0004-8344-7007
OpenAccessLink https://ieeexplore.ieee.org/document/10916666
PQID 3177210882
PQPubID 4845423
PageCount 21
ParticipantIDs ieee_primary_10916666
crossref_primary_10_1109_ACCESS_2025_3549035
doaj_primary_oai_doaj_org_article_89ca64fc0f7f4279a3959eb1808f3fb1
proquest_journals_3177210882
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Katic (ref4); 1
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
ref40
References_xml – ident: ref45
  doi: 10.1016/j.renene.2014.02.015
– volume: 1
  start-page: 407
  volume-title: Proc. Eur. Wind Energy Assoc. Conf. Exhib.
  ident: ref4
  article-title: A simple model for cluster efficiency
– ident: ref30
  doi: 10.1063/5.0036281
– ident: ref22
  doi: 10.1115/1.4046232
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– ident: ref29
  doi: 10.1063/5.0030867
– ident: ref31
  doi: 10.1016/j.energy.2021.121747
– ident: ref39
  doi: 10.1063/5.0123185
– ident: ref10
  doi: 10.1016/j.apenergy.2022.119599
– ident: ref38
  doi: 10.1063/5.0188998
– ident: ref26
  doi: 10.1016/j.mineng.2018.12.011
– ident: ref27
  doi: 10.1016/j.neucom.2018.05.081
– ident: ref41
  doi: 10.1117/12.381681
– ident: ref43
  doi: 10.48550/ARXIV.1706.03762
– ident: ref35
  doi: 10.1016/j.eswa.2022.117921
– ident: ref20
  doi: 10.1016/j.apenergy.2010.10.031
– ident: ref23
  doi: 10.2514/1.J057309
– ident: ref28
  doi: 10.1063/1.5024595
– ident: ref5
  doi: 10.1016/j.apenergy.2018.05.085
– ident: ref12
  doi: 10.1063/5.0159271
– ident: ref19
  doi: 10.1016/j.ymssp.2020.106779
– ident: ref7
  doi: 10.1002/we.348
– ident: ref32
  doi: 10.1016/j.energy.2024.130403
– ident: ref15
  doi: 10.1016/j.renene.2017.08.072
– ident: ref37
  doi: 10.1016/j.apenergy.2023.120928
– ident: ref9
  doi: 10.1016/j.ijepes.2014.05.052
– ident: ref8
  doi: 10.1016/j.renene.2023.119465
– ident: ref34
  doi: 10.1145/3308558.3313488
– ident: ref6
  doi: 10.1016/j.rser.2020.110047
– ident: ref24
  doi: 10.2514/6.2020-1563
– ident: ref1
  doi: 10.1016/j.rser.2018.02.039
– ident: ref36
  doi: 10.1109/TII.2022.3176821
– ident: ref42
  doi: 10.1038/323533a0
– ident: ref13
  doi: 10.1016/j.enconman.2013.02.007
– ident: ref21
  doi: 10.1007/s10489-023-05230-y
– ident: ref17
  doi: 10.1017/S0022112088001818
– ident: ref18
  doi: 10.1007/s00348-003-0656-3
– ident: ref25
  doi: 10.1007/s10489-022-03361-2
– ident: ref11
  doi: 10.1016/j.renene.2015.07.100
– ident: ref2
  doi: 10.1016/j.renene.2022.01.026
– ident: ref14
  doi: 10.1016/j.renene.2015.01.005
– ident: ref16
  doi: 10.1002/we.1822
– ident: ref33
  doi: 10.1016/j.engappai.2020.103573
– ident: ref40
  doi: 10.1063/5.0157897
– ident: ref3
  doi: 10.1016/j.oceaneng.2022.113307
SSID ssj0000816957
Score 2.3412516
Snippet The importance of examining the wake effect of wind farms for optimizing their layout and augmenting their power generation efficiency is immense. Considering...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 43572
SubjectTerms Accuracy
Algorithms
attention mechanism
Data models
graph representation learning
Graph representations
Graphical representations
improved transformer
Learning
Model reduction
Neural networks
Prediction algorithms
Predictive models
reduced-order model
Representation learning
series forecasting algorithm
Transformers
Wakes
Wind effects
Wind farms
Wind power generation
Wind speed
Wind turbine wakes
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6oEeKl5Vl5d84IiLkzix3duyKg8JEEJbLTfLzxYhBbQE_gX_uWPHC5E4cOGaWHI838Sez_Z8g9B-yYNxtvLEaWYIE6YmhhWMFLWmhnqmhU46s-f88lLc3MirQamveCeslwfuDXcopNUNC5YGHljJpa5kLWGCEVSEKphEfCDqGZCpNAeLopE1zzJDBZWH48kERgSEsKx_VkCKaCrw9rYUJcX-XGLl3bycFpvjVfQtR4l43H_dGlry7Tr6OtAO3EAvJ9fn5Gy6iDv9_Bcet_jsVWGzwxepODSGtzil2ZIZ8G8yfZoDGfZ4pu88XkiS4CNYzBy-b_FJFLDG1-l-bE5LanEWYf2LZ7fdP9zvQ0DzQeeb6M_x7-nklOTaCsRWTdERsKK2NibpcGBwPDIvy7UDiEprTAiMlxAIcua8p1owMHvBXMzb9WDWptLVd7Tc3rf-B8KyNI6GYD2zlllX6aA1D4KZ4MtCN26EDhZmVg-9hIZK1INK1aOiIioqozJCRxGK16ZR_zo9AK9Q2SvUR14xQpsRyEF_Mp6PNiO0s0BW5Z_1UUEIBTw4co2tz-h7G63E8fT7NDtouZs_-V30xT53t4_zveSn_wEZi-zC
  priority: 102
  providerName: Directory of Open Access Journals
Title GRL-ITransformer: An Intelligent Method for Multi-Wind-Turbine Wake Analysis Based on Graph Representation Learning With Improved Transformer
URI https://ieeexplore.ieee.org/document/10916666
https://www.proquest.com/docview/3177210882
https://doaj.org/article/89ca64fc0f7f4279a3959eb1808f3fb1
Volume 13
WOSCitedRecordID wos001445059300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxQEOtEARC23lA0fcJrETx9y2q7ZUaitULdreLH-MS4WURdssR_4B_5mx492uhDhwiaLEkR09OzNv4nlDyIdKBusdB-aNsEy0tmZWlIKVtSlsAcK0JunMXsrr6_b2Vn3JyeopFwYA0uYzOIqn6V--n7tlDJUdRxFLdLebLbIlpRyStdYBlVhBQtUyKwth0-PxZIIvgRywqo848qAi1XR7tD5JpD9XVfnrU5zsy9nOf45sl7zIjiQdD8i_JE-ge0Web8gLvia_z28u2cV05ZrC4hMdd_RiLcLZ06tUP5riXZoycdkMKTqbLhfIl4HOzHegK9USeoL2ztN5R8-jxjW9SVtoc-ZSR7NO6x2d3fff6BCqwOYbne-Rr2en08lnlssvMMebsmdc1ca5mMcjkeTJSM6cNB5RrJy1IQhZoa8ohQcoTCuU4aXwMbUXEIaGG_6GbHfzDt4SqirrixAcCOeE89wEY2RohQ1QlabxI_JxBYv-Mahs6MROCqUHFHVEUWcUR-QkQrduGiWy0wXEROcVp1vlTCOCK4IMopI4PFUrtExt0QYebDkiexHHjf4GCEdkfzUTdF7PDxq9LKTKkY68-8dj78mzOMQhOrNPtvvFEg7IU_ezv39YHCaqj8erX6eHadr-AYEx7GE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BQYIeeLZqoIAPHHG7D-96zS2NaBuRRqgKSm-Wn1BV2qB003_R_8zY64RIiAO31a5X9uqzd-Ybe74B-Fhwr60pHbWKacoaXVHNckbzSmU6c0w1KurMTvh02lxdiW8pWT3mwjjn4uEzdxQu416-XZhVCJUdBxFLdLfrh_CoYqzI-3StTUgl1JAQFU_aQtj4eDga4WcgCyyqoxKZUBaruv2xP1GmP9VV-etnHC3M6fP_HNsLeJZcSTLssX8JD1z7Cna3BAZfw_3Z5YSOZ2vn1C0_k2FLxhsZzo5cxArSBJ-SmItL50jS6Wy1RMbsyFzdOLLWLSEnaPEsWbTkLKhck8t4iDblLrUkKbX-IPPr7ifpgxXYfKvzPfh--mU2OqepAAM1ZZ13tBSVMiZk8nCkeTzQM8OVRRwLo7X3jBfoLXJmnctUw4Qqc2ZDcq9DGOpSlfuw0y5adwBEFNpm3hvHjGHGlsorxX3DtHdFrmo7gE9rWOSvXmdDRn6SCdmjKAOKMqE4gJMA3aZpEMmONxATmdacbIRRNfMm89yzguPwRCXQNjVZ40uv8wHsBRy3-ushHMDheibItKJvJfpZSJYDIXnzj9c-wJPz2cVETsbTr2_haRhuH6s5hJ1uuXLv4LG5665vl-_jtP0NySztgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRL-ITransformer%3A+An+Intelligent+Method+for+Multi-Wind-Turbine+Wake+Analysis+Based+on+Graph+Representation+Learning+With+Improved+Transformer&rft.jtitle=IEEE+access&rft.au=Han%2C+Kang&rft.au=Xu%2C+Li&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=43572&rft.epage=43592&rft_id=info:doi/10.1109%2FACCESS.2025.3549035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3549035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon