Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization

The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 17; číslo 4; s. 474 - 494
Hlavní autori: Rui Wang, Purshouse, Robin C., Fleming, Peter J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.08.2013
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population of candidate solutions is studied here and demonstrated to have promising performance characteristics for such problems. After introducing the concept of the preference-inspired coevolutionary algorithm (PICEA), a realization of this concept, PICEA-g, is systematically compared with four of the best-in-class evolutionary algorithms (EAs); random search is also studied as a baseline approach. The four EAs used in the comparison are a Pareto-dominance relation-based algorithm (NSGA-II), an ε-dominance relation-based algorithm [ ε-multiobjective evolutionary algorithm (MOEA)], a scalarizing function-based algorithm (MOEA/D), and an indicator-based algorithm [hypervolume-based algorithm (HypE)]. It is demonstrated that, for bi-objective problems, all of the multi-objective evolutionary algorithms perform competitively. As the number of objectives increases, PICEA-g and HypE, which have comparable performance, tend to outperform NSGA-II, ε-MOEA, and MOEA/D. All the algorithms outperformed random search.
AbstractList The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population of candidate solutions is studied here and demonstrated to have promising performance characteristics for such problems. After introducing the concept of the preference-inspired coevolutionary algorithm (PICEA), a realization of this concept, PICEA-g, is systematically compared with four of the best-in-class evolutionary algorithms (EAs); random search is also studied as a baseline approach. The four EAs used in the comparison are a Pareto-dominance relation-based algorithm (NSGA-II), an ε-dominance relation-based algorithm [ ε-multiobjective evolutionary algorithm (MOEA)], a scalarizing function-based algorithm (MOEA/D), and an indicator-based algorithm [hypervolume-based algorithm (HypE)]. It is demonstrated that, for bi-objective problems, all of the multi-objective evolutionary algorithms perform competitively. As the number of objectives increases, PICEA-g and HypE, which have comparable performance, tend to outperform NSGA-II, ε-MOEA, and MOEA/D. All the algorithms outperformed random search.
Author Fleming, Peter J.
Purshouse, Robin C.
Rui Wang
Author_xml – sequence: 1
  surname: Rui Wang
  fullname: Rui Wang
  email: cop10rw@sheffield.ac.uk
  organization: Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 2
  givenname: Robin C.
  surname: Purshouse
  fullname: Purshouse, Robin C.
  email: r.purshouse@sheffield.ac.uk
  organization: Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 3
  givenname: Peter J.
  surname: Fleming
  fullname: Fleming, Peter J.
  email: p.fleming@shef.ac.uk
  organization: Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27634249$$DView record in Pascal Francis
BookMark eNp9kE9PAjEQxRuDiYB-AONlLx4X-2_b7pEQVBIMHtB4a0qZasmyu2lXEvz07gJ68OBpJpnfe3nzBqhXViUgdE3wiBCc3y2nr5MRxYSOKMWcCn6G-iTnJMWYil67Y5WnUqq3CzSIcYMx4RnJ--jpOYCDAKWFdFbG2gdYJ5MKdlXx2fiqNGGfjIv3KvjmYxsTV4XkyZT7dLHagG38DpJF3fit_zIdfYnOnSkiXJ3mEL3cT5eTx3S-eJhNxvPUMkGalElgkgMDscLY5Gu5ziwDohTjThDOaE4UE45JiyXkbiVMpozlJFNOtfecDdHt0bc20ZrCBVNaH3Ud_LYNrKkUjNMDJ4-cDVWM7afa-uaQtAnGF5pg3bWnu_Z0154-tdcqyR_lj_l_mpujxgPALy8oyTDj7Bt42nzf
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2013_08_049
crossref_primary_10_1109_TEVC_2018_2874465
crossref_primary_10_1016_j_swevo_2019_06_009
crossref_primary_10_1109_TEVC_2018_2875430
crossref_primary_10_1109_ACCESS_2018_2877735
crossref_primary_10_1016_j_future_2020_11_002
crossref_primary_10_3390_en11061554
crossref_primary_10_1109_TCYB_2019_2894664
crossref_primary_10_1007_s12293_019_00283_4
crossref_primary_10_1016_j_swevo_2025_101916
crossref_primary_10_1109_TEVC_2020_2978158
crossref_primary_10_1016_j_conengprac_2023_105709
crossref_primary_10_1109_TSMC_2019_2930737
crossref_primary_10_1088_1742_6596_1479_1_012014
crossref_primary_10_1007_s11573_015_0797_x
crossref_primary_10_1016_j_ins_2020_03_007
crossref_primary_10_3390_su15032525
crossref_primary_10_1016_j_sorms_2015_08_001
crossref_primary_10_1109_TCYB_2017_2737554
crossref_primary_10_1007_s00500_015_1830_2
crossref_primary_10_1016_j_swevo_2023_101250
crossref_primary_10_1016_j_simpat_2024_102917
crossref_primary_10_1109_TEVC_2016_2598687
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1007_s11831_020_09415_3
crossref_primary_10_3390_en11102744
crossref_primary_10_1016_j_ins_2016_09_026
crossref_primary_10_1109_ACCESS_2020_3027008
crossref_primary_10_1155_abb_6125695
crossref_primary_10_1016_j_asoc_2016_11_009
crossref_primary_10_1016_j_rcim_2022_102414
crossref_primary_10_1016_j_ins_2018_10_007
crossref_primary_10_1016_j_ins_2018_10_005
crossref_primary_10_1080_0952813X_2016_1270358
crossref_primary_10_3390_app12199627
crossref_primary_10_1016_j_apsusc_2023_159129
crossref_primary_10_3233_IDA_150797
crossref_primary_10_1002_cpe_5861
crossref_primary_10_1109_TCYB_2019_2949204
crossref_primary_10_1016_j_ins_2018_03_047
crossref_primary_10_3390_math12101431
crossref_primary_10_3390_app14073015
crossref_primary_10_1016_j_swevo_2017_11_004
crossref_primary_10_1109_TEVC_2016_2600642
crossref_primary_10_1016_j_future_2018_07_062
crossref_primary_10_1145_2792984
crossref_primary_10_1016_j_asoc_2018_12_011
crossref_primary_10_1109_ACCESS_2023_3294095
crossref_primary_10_1016_j_eswa_2019_05_032
crossref_primary_10_1016_j_cor_2016_05_014
crossref_primary_10_1016_j_swevo_2020_100644
crossref_primary_10_1109_TCYB_2017_2737519
crossref_primary_10_1016_j_ins_2018_06_055
crossref_primary_10_1155_2021_6614283
crossref_primary_10_1109_TEVC_2016_2521175
crossref_primary_10_1016_j_solener_2015_03_052
crossref_primary_10_1007_s10489_022_03325_6
crossref_primary_10_1002_cpe_7474
crossref_primary_10_1007_s12065_025_01081_3
crossref_primary_10_1109_TCYB_2018_2872803
crossref_primary_10_1109_TEVC_2022_3144675
crossref_primary_10_1109_TEVC_2016_2611642
crossref_primary_10_1007_s11771_020_4307_0
crossref_primary_10_1007_s00500_015_1648_y
crossref_primary_10_1088_1757_899X_370_1_012038
crossref_primary_10_1016_j_epsr_2018_09_010
crossref_primary_10_1007_s11831_023_09914_z
crossref_primary_10_3390_aerospace11030214
crossref_primary_10_1016_j_ins_2020_09_075
crossref_primary_10_1007_s40747_021_00363_4
crossref_primary_10_1016_j_cor_2023_106345
crossref_primary_10_3390_ijerph20031765
crossref_primary_10_1016_j_ins_2022_12_076
crossref_primary_10_1016_j_ins_2018_06_063
crossref_primary_10_1007_s00500_016_2099_9
crossref_primary_10_1016_j_ejor_2022_07_002
crossref_primary_10_1016_j_rcim_2019_101850
crossref_primary_10_1109_TEVC_2013_2262178
crossref_primary_10_1007_s00500_016_2286_8
crossref_primary_10_1109_TEVC_2015_2420112
crossref_primary_10_1155_2020_8882528
crossref_primary_10_1016_j_swevo_2019_100570
crossref_primary_10_1109_TEVC_2019_2909636
crossref_primary_10_1007_s10278_018_0138_z
crossref_primary_10_1007_s10489_019_01569_3
crossref_primary_10_1109_TEVC_2017_2767023
crossref_primary_10_1016_j_ins_2015_09_051
crossref_primary_10_1109_TEVC_2017_2656922
crossref_primary_10_1109_ACCESS_2020_2981373
crossref_primary_10_1155_2021_8822765
crossref_primary_10_1109_MCI_2021_3129961
crossref_primary_10_1016_j_swevo_2021_100866
crossref_primary_10_1007_s00500_020_05369_7
crossref_primary_10_1007_s40747_017_0058_4
crossref_primary_10_1109_TEVC_2019_2915767
crossref_primary_10_1007_s00500_021_05591_x
crossref_primary_10_1016_j_cor_2022_106052
crossref_primary_10_1016_j_asoc_2017_03_041
crossref_primary_10_1016_j_asoc_2017_08_024
crossref_primary_10_1007_s41965_024_00170_z
crossref_primary_10_1007_s10664_015_9414_4
crossref_primary_10_1016_j_ins_2018_09_069
crossref_primary_10_1155_2014_189679
crossref_primary_10_1016_j_ins_2018_03_012
crossref_primary_10_1109_ACCESS_2018_2856832
crossref_primary_10_1007_s00500_021_05981_1
crossref_primary_10_1016_j_matcom_2020_05_025
crossref_primary_10_1016_j_renene_2019_11_015
crossref_primary_10_1016_j_eswa_2023_121768
crossref_primary_10_1016_j_ins_2018_12_078
crossref_primary_10_1109_ACCESS_2020_2990193
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_knosys_2022_110073
crossref_primary_10_1109_TEVC_2015_2459718
crossref_primary_10_1016_j_egyr_2023_04_014
crossref_primary_10_3390_en15051884
crossref_primary_10_1016_j_swevo_2019_100599
crossref_primary_10_1109_TSMC_2019_2954491
crossref_primary_10_1109_ACCESS_2021_3125746
crossref_primary_10_1016_j_ast_2019_105555
crossref_primary_10_1109_ACCESS_2019_2928619
crossref_primary_10_1016_j_eswa_2023_119895
crossref_primary_10_1109_ACCESS_2019_2954542
crossref_primary_10_1007_s10489_021_02494_0
crossref_primary_10_1007_s00500_023_08952_w
crossref_primary_10_1109_ACCESS_2019_2937538
crossref_primary_10_1109_TFUZZ_2021_3089230
crossref_primary_10_1002_cpe_5948
crossref_primary_10_1109_ACCESS_2019_2920698
crossref_primary_10_3390_app10217710
crossref_primary_10_1109_TEVC_2018_2884133
crossref_primary_10_1016_j_asoc_2021_107299
crossref_primary_10_1007_s13369_020_05147_5
crossref_primary_10_1109_ACCESS_2018_2832181
crossref_primary_10_3390_math13111757
crossref_primary_10_1109_TEVC_2015_2443001
crossref_primary_10_1109_TCYB_2014_2334632
crossref_primary_10_1007_s00500_020_05249_0
crossref_primary_10_1016_j_enconman_2017_04_019
crossref_primary_10_1155_2020_8871086
crossref_primary_10_1007_s11432_018_9720_6
crossref_primary_10_1016_j_eswa_2019_06_033
crossref_primary_10_1016_j_swevo_2020_100674
crossref_primary_10_1016_j_swevo_2020_100795
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1007_s10489_022_03920_7
crossref_primary_10_1007_s10586_017_1060_8
crossref_primary_10_1016_j_cor_2023_106388
crossref_primary_10_1109_TEVC_2016_2631279
crossref_primary_10_1007_s13593_015_0303_4
crossref_primary_10_1109_ACCESS_2023_3270806
crossref_primary_10_1109_TEVC_2014_2315442
crossref_primary_10_1016_j_ins_2017_08_076
crossref_primary_10_1007_s10489_020_01887_x
crossref_primary_10_1016_j_knosys_2015_04_025
crossref_primary_10_1016_j_jpdc_2018_11_008
crossref_primary_10_1155_2018_1435463
crossref_primary_10_3390_math9040420
crossref_primary_10_1109_ACCESS_2019_2914115
crossref_primary_10_1016_j_rineng_2025_104372
crossref_primary_10_1038_s41598_024_80184_w
crossref_primary_10_1016_j_aei_2023_102077
crossref_primary_10_1109_TCYB_2020_3042896
crossref_primary_10_1016_j_ins_2020_10_036
crossref_primary_10_1109_TEVC_2014_2339823
crossref_primary_10_1109_TEVC_2014_2378512
crossref_primary_10_1109_ACCESS_2019_2908227
crossref_primary_10_3389_fenrg_2022_928744
crossref_primary_10_1093_comjnl_bxx077
crossref_primary_10_1007_s00500_019_04258_y
crossref_primary_10_1016_j_knosys_2018_12_001
crossref_primary_10_1109_TTE_2022_3185547
crossref_primary_10_1016_j_ejor_2014_10_056
crossref_primary_10_1109_TSMC_2023_3298690
crossref_primary_10_1109_TEVC_2014_2350987
crossref_primary_10_1155_2018_8302324
crossref_primary_10_1016_j_asoc_2019_106052
crossref_primary_10_1155_2020_8877008
crossref_primary_10_1109_TEVC_2015_2424921
crossref_primary_10_1016_j_swevo_2022_101108
crossref_primary_10_1371_journal_pone_0234625
crossref_primary_10_1515_geo_2019_0031
crossref_primary_10_1007_s00500_023_09050_7
crossref_primary_10_1016_j_ins_2015_09_009
crossref_primary_10_1016_j_cie_2022_108252
crossref_primary_10_1016_j_swevo_2022_101225
crossref_primary_10_1016_j_eswa_2014_01_020
crossref_primary_10_1109_TEVC_2017_2749619
crossref_primary_10_1016_j_ins_2017_05_012
crossref_primary_10_1007_s40747_021_00273_5
crossref_primary_10_1109_TEVC_2022_3212058
crossref_primary_10_1109_TEVC_2016_2519378
crossref_primary_10_1109_TEVC_2016_2574621
crossref_primary_10_1109_TEVC_2014_2353672
crossref_primary_10_1016_j_ins_2021_11_029
crossref_primary_10_1016_j_asoc_2017_07_030
crossref_primary_10_1007_s00500_021_05647_y
crossref_primary_10_1109_ACCESS_2020_3034754
crossref_primary_10_1080_0305215X_2015_1012078
crossref_primary_10_1016_j_ejor_2023_01_062
crossref_primary_10_1007_s40747_021_00514_7
crossref_primary_10_1016_j_artint_2015_06_007
crossref_primary_10_1007_s10586_018_2316_7
crossref_primary_10_1016_j_ins_2021_08_054
crossref_primary_10_1155_2017_6043109
crossref_primary_10_1109_TCYB_2017_2679705
crossref_primary_10_1007_s10732_021_09470_4
crossref_primary_10_1155_2021_6676934
crossref_primary_10_1016_j_eswa_2024_124559
crossref_primary_10_1016_j_ins_2023_119115
crossref_primary_10_1016_j_powtec_2024_120233
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1109_TCYB_2014_2360923
crossref_primary_10_1007_s13042_020_01213_4
crossref_primary_10_1016_j_ins_2018_07_012
crossref_primary_10_1016_j_ins_2019_03_062
crossref_primary_10_1016_j_energy_2017_11_085
crossref_primary_10_1016_j_swevo_2018_11_003
crossref_primary_10_1109_TEVC_2023_3287399
crossref_primary_10_1016_j_asoc_2018_02_048
crossref_primary_10_1007_s00500_019_04333_4
crossref_primary_10_1109_JAS_2023_123609
crossref_primary_10_1007_s10489_022_04444_w
crossref_primary_10_1007_s12293_023_00401_3
crossref_primary_10_1109_TCYB_2020_2971638
crossref_primary_10_1002_cpe_4248
crossref_primary_10_1016_j_ins_2024_120999
crossref_primary_10_1007_s13042_019_01036_y
crossref_primary_10_1007_s40747_022_00670_4
crossref_primary_10_1002_int_22476
crossref_primary_10_1016_j_sysarc_2020_101739
crossref_primary_10_1109_TCYB_2014_2331994
crossref_primary_10_1016_j_eswa_2020_113844
crossref_primary_10_1109_ACCESS_2020_3034496
crossref_primary_10_1007_s10489_021_02707_6
crossref_primary_10_1016_j_asoc_2024_111960
crossref_primary_10_1016_j_ins_2022_10_077
crossref_primary_10_1109_TCYB_2018_2856208
crossref_primary_10_4018_ijsir_2014100104
crossref_primary_10_1109_TEVC_2015_2457245
crossref_primary_10_1016_j_future_2018_06_008
crossref_primary_10_1109_TEVC_2018_2848254
crossref_primary_10_1016_j_swevo_2019_100602
crossref_primary_10_1007_s10586_018_1725_y
crossref_primary_10_3233_ICA_180594
crossref_primary_10_1016_j_asoc_2015_03_040
crossref_primary_10_1016_j_ins_2016_06_007
crossref_primary_10_1016_j_neucom_2016_09_081
crossref_primary_10_23919_JSEE_2022_000016
crossref_primary_10_3390_en11010215
crossref_primary_10_1016_j_asoc_2017_04_002
crossref_primary_10_1145_2729974
crossref_primary_10_1109_ACCESS_2017_2751071
crossref_primary_10_1002_cpe_6040
crossref_primary_10_1007_s10489_023_04484_w
crossref_primary_10_3390_math11020413
crossref_primary_10_1080_00207721_2015_1008600
crossref_primary_10_1109_ACCESS_2018_2876273
crossref_primary_10_1007_s00500_022_07182_w
crossref_primary_10_1109_TEVC_2015_2433266
crossref_primary_10_1007_s00521_020_04721_0
crossref_primary_10_1049_iet_gtd_2015_1127
crossref_primary_10_1016_j_solener_2017_10_051
crossref_primary_10_1016_j_ejor_2014_05_019
crossref_primary_10_1109_TEVC_2014_2336865
crossref_primary_10_1080_0951192X_2025_2544542
crossref_primary_10_1016_j_scs_2020_102373
crossref_primary_10_1109_TEVC_2017_2655451
crossref_primary_10_1109_TCYB_2016_2550502
crossref_primary_10_1109_ACCESS_2018_2870969
crossref_primary_10_1016_j_ins_2014_11_044
crossref_primary_10_1007_s00366_020_00951_x
crossref_primary_10_1007_s11831_019_09353_9
crossref_primary_10_1016_j_cie_2023_109704
crossref_primary_10_3233_JIFS_17344
crossref_primary_10_1109_ACCESS_2024_3386584
crossref_primary_10_1371_journal_pone_0252293
crossref_primary_10_1007_s00500_014_1284_y
crossref_primary_10_1007_s40747_017_0053_9
crossref_primary_10_1109_TEVC_2021_3122191
crossref_primary_10_1007_s10489_025_06647_3
crossref_primary_10_1109_ACCESS_2020_3034716
crossref_primary_10_1109_TEVC_2020_3016049
crossref_primary_10_1109_TSMC_2019_2956288
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1007_s40747_020_00263_z
crossref_primary_10_3390_computation10030037
crossref_primary_10_1016_j_envsoft_2019_05_003
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1109_TEVC_2016_2592479
crossref_primary_10_1016_j_engappai_2020_103905
crossref_primary_10_1016_j_cor_2015_09_002
crossref_primary_10_1109_ACCESS_2018_2857503
crossref_primary_10_1109_TCYB_2020_2966492
crossref_primary_10_1016_j_mechmachtheory_2017_12_024
crossref_primary_10_3390_en11040743
crossref_primary_10_1016_j_psep_2023_02_059
crossref_primary_10_1109_TSTE_2022_3198695
crossref_primary_10_3390_en10050674
crossref_primary_10_1016_j_swevo_2018_08_002
crossref_primary_10_1016_j_asoc_2019_105588
Cites_doi 10.1007/978-3-540-31880-4_5
10.1109/CEC.2003.1299427
10.1109/CEC.2006.1688516
10.1162/106365602760234108
10.1007/978-3-540-70928-2_56
10.1007/978-3-642-19893-9_10
10.1109/TEVC.2010.2064321
10.1007/978-3-642-19893-9_12
10.1109/CEC.2007.4424990
10.1109/CEC.2006.1688440
10.1109/TEVC.2007.892759
10.1145/1389095.1389225
10.1109/CEC.2002.1004406
10.1109/CEC.2005.1554688
10.1109/CEC.2007.4424985
10.1109/4235.797969
10.1109/TEVC.2005.861417
10.1162/106365605774666895
10.1109/TEVC.2002.802873
10.1109/TEVC.2003.810761
10.1007/3-540-36970-8_16
10.1109/CEC.2009.4982949
10.1162/evco.2009.17.3.411
10.1109/CEC.2009.4983256
10.1007/978-3-540-70928-2_8
10.1109/TEVC.2003.810758
10.1162/EVCO_a_00009
10.1109/TEVC.2006.872133
10.1007/s00500-006-0124-0
10.1145/1276958.1277115
10.1016/j.cagd.2008.07.007
10.1109/4235.996017
10.1109/MCI.2006.1597059
10.1162/106365604773955139
10.7326/0003-4819-110-11-916
10.1007/978-3-540-70928-2_55
10.1016/S0965-9978(00)00110-1
10.1109/TEVC.2007.910138
10.1109/ICSMC.2009.5346628
10.1145/1830483.1830577
10.1109/TEVC.2009.2015575
10.1109/TEVC.2005.850293
10.1109/CEC.2000.870296
10.1007/978-3-540-70928-2_5
10.1109/3468.650319
10.1109/4235.771166
10.1109/TEVC.2008.925798
10.1109/CEC.2003.1299927
10.1007/3-540-44719-9_7
10.1016/j.ejor.2006.08.008
10.1109/CEC.2011.5949788
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TEVC.2012.2204264
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 494
ExternalDocumentID 27634249
10_1109_TEVC_2012_2204264
6215034
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
ID FETCH-LOGICAL-c361t-37e374e3e6b00a9d7d5c3e18834f6143291836f37c07e9fb6a58ac4158f861493
IEDL.DBID RIE
ISICitedReferencesCount 359
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322833800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jul 21 09:16:17 EDT 2025
Tue Nov 18 22:35:25 EST 2025
Sat Nov 29 03:13:46 EST 2025
Tue Aug 26 16:43:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dominating set
Pareto optimum
Decision support system
Decision making
Evolutionary algorithm
Performance characteristic
Multiobjective programming
evolutionary algorithms
Dominance
many-objective optimization
Randomized algorithm
Coevolution
Optimization
Search algorithm
Genetic algorithm
Preference
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-37e374e3e6b00a9d7d5c3e18834f6143291836f37c07e9fb6a58ac4158f861493
PageCount 21
ParticipantIDs ieee_primary_6215034
crossref_citationtrail_10_1109_TEVC_2012_2204264
pascalfrancis_primary_27634249
crossref_primary_10_1109_TEVC_2012_2204264
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref57
ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref17
ref16
ref19
ref18
jin (ref37) 2001
ref51
ref50
ishibuchi (ref10) 2008
l pez-ib nez (ref59) 2011
ref45
ref47
ref42
ref41
ref44
ref43
purshouse (ref33) 2011
miettinen (ref35) 1999; 12
ref8
ref9
ref3
hollander (ref48) 1999
ref6
ref5
deb (ref34) 2003
ref40
hadka (ref58) 2011
ref36
ref31
ref30
ref32
ref1
ref39
ref38
bader (ref26) 2010; 638
zitzler (ref4) 2002; 3242
zitzler (ref21) 2004
fonseca (ref46) 1996; 1141
tee (ref63) 2005
ref24
ishibuchi (ref54) 2011
emmerich (ref23) 2005
ref25
ref64
ref20
ref22
goldberg (ref7) 1999
ref28
abdi (ref49) 2007
ref27
ref29
deb (ref2) 2001; 16
ref60
ref62
ref61
References_xml – start-page: 62
  year: 2005
  ident: ref23
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/978-3-540-31880-4_5
– ident: ref38
  doi: 10.1109/CEC.2003.1299427
– ident: ref41
  doi: 10.1109/CEC.2006.1688516
– volume: 3242
  start-page: 95
  year: 2002
  ident: ref4
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc Evol Methods Des Optimiz Contr Applicat Indust Problems EUROGEN
– ident: ref20
  doi: 10.1162/106365602760234108
– volume: 12
  year: 1999
  ident: ref35
  publication-title: Nonlinear Multiobjective Optimization
– volume: 638
  start-page: 35
  year: 2010
  ident: ref26
  article-title: A hypervolume-based optimizer for high-dimensional objective spaces
  publication-title: Proc Conf MOPGP
– ident: ref12
  doi: 10.1007/978-3-540-70928-2_56
– start-page: 136
  year: 2011
  ident: ref33
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/978-3-642-19893-9_10
– ident: ref52
  doi: 10.1109/TEVC.2010.2064321
– start-page: 166
  year: 2011
  ident: ref54
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/978-3-642-19893-9_12
– ident: ref15
  doi: 10.1109/CEC.2007.4424990
– volume: 16
  year: 2001
  ident: ref2
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 1141
  start-page: 584
  year: 1996
  ident: ref46
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
  publication-title: Proc PPSN VI
– year: 1999
  ident: ref48
  publication-title: Nonparametric Statistical Methods
– ident: ref47
  doi: 10.1109/CEC.2006.1688440
– ident: ref28
  doi: 10.1109/TEVC.2007.892759
– ident: ref11
  doi: 10.1145/1389095.1389225
– ident: ref42
  doi: 10.1109/CEC.2002.1004406
– start-page: 2424
  year: 2008
  ident: ref10
  article-title: Evolutionary many-objective optimization: A short review
  publication-title: Proc IEEE Congr Evol Computat
– ident: ref8
  doi: 10.1109/CEC.2005.1554688
– year: 1999
  ident: ref7
  publication-title: The Race the Hurdle and the Sweet Spot
– ident: ref39
  doi: 10.1109/CEC.2007.4424985
– ident: ref22
  doi: 10.1109/4235.797969
– ident: ref45
  doi: 10.1109/TEVC.2005.861417
– ident: ref43
  doi: 10.1162/106365605774666895
– year: 2011
  ident: ref59
  publication-title: The automatic design of multi-objective ant colony optimization algorithms
– ident: ref19
  doi: 10.1109/TEVC.2002.802873
– ident: ref36
  doi: 10.1109/TEVC.2003.810761
– start-page: 222
  year: 2003
  ident: ref34
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/3-540-36970-8_16
– ident: ref29
  doi: 10.1109/CEC.2009.4982949
– ident: ref32
  doi: 10.1162/evco.2009.17.3.411
– ident: ref55
  doi: 10.1109/CEC.2009.4983256
– ident: ref18
  doi: 10.1007/978-3-540-70928-2_8
– ident: ref44
  doi: 10.1109/TEVC.2003.810758
– ident: ref27
  doi: 10.1162/EVCO_a_00009
– year: 2005
  ident: ref63
  publication-title: Surface area of ellipsoid segment
– ident: ref62
  doi: 10.1109/TEVC.2006.872133
– ident: ref61
  doi: 10.1007/s00500-006-0124-0
– ident: ref14
  doi: 10.1145/1276958.1277115
– ident: ref64
  doi: 10.1016/j.cagd.2008.07.007
– ident: ref3
  doi: 10.1109/4235.996017
– ident: ref1
  doi: 10.1109/MCI.2006.1597059
– ident: ref57
  doi: 10.1162/106365604773955139
– ident: ref50
  doi: 10.7326/0003-4819-110-11-916
– ident: ref13
  doi: 10.1007/978-3-540-70928-2_55
– ident: ref17
  doi: 10.1016/S0965-9978(00)00110-1
– ident: ref6
  doi: 10.1109/TEVC.2007.910138
– ident: ref9
  doi: 10.1109/ICSMC.2009.5346628
– ident: ref56
  doi: 10.1145/1830483.1830577
– ident: ref25
  doi: 10.1109/TEVC.2009.2015575
– ident: ref40
  doi: 10.1109/TEVC.2005.850293
– ident: ref51
  doi: 10.1109/CEC.2000.870296
– ident: ref16
  doi: 10.1007/978-3-540-70928-2_5
– ident: ref31
  doi: 10.1109/3468.650319
– ident: ref60
  doi: 10.1109/4235.771166
– start-page: 832
  year: 2004
  ident: ref21
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc PPSN VIII
– ident: ref30
  doi: 10.1109/TEVC.2008.925798
– ident: ref5
  doi: 10.1109/CEC.2003.1299927
– year: 2007
  ident: ref49
  publication-title: Encyclopedia of Measurement and Statistics
– start-page: 96
  year: 2001
  ident: ref37
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/3-540-44719-9_7
– ident: ref24
  doi: 10.1016/j.ejor.2006.08.008
– year: 2011
  ident: ref58
  article-title: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization
  publication-title: Evol Computat
– ident: ref53
  doi: 10.1109/CEC.2011.5949788
SSID ssj0014519
Score 2.5663955
Snippet The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 474
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation algorithms
Coevolution
Computer science; control theory; systems
evolutionary algorithms
Evolutionary computation
Exact sciences and technology
many-objective optimization
Monte Carlo methods
Optimization
Search problems
Theoretical computing
Vectors
Title Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/6215034
Volume 17
WOSCitedRecordID wos000322833800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5s4oM-eNkU52X0wSexW9q0Sfo4xoaCuzxM2Vtp01Od7CLbFPz3Jm1WNhDBt0ISKPmS7yQ5lw_g1s-e7xmxOaJva5a0YxZzO_IUFQrkEcnrzD7xfl-Mx8GwBPdFLgwiZsFn2NCfmS8_WchP_VTWZMo-EeqVocw5y3O1Co-BLpOSB9MH6sQoxsaD6ZCgOeq8tHUQl9twXX1l8HZsUCaqokMio5WalTSXs9iyMd3j__3dCRyZs6TVysE_hRLOK3C80WmwzLatwOFW0cEq9IaFtIj9ONeOdkys9gK_zCKMlt9Wa_q6WE7Wb7OVpQ61Vk8xhj2I33NytAaKZmYmf_MMnrudUfvBNqIKtqTMWStCQco9pMjUhouChCe-pOgIQb1UmWrqBmqTs5RySTgGacwiX0RSmXmRCtUe0HPYmy_meAGWjGLJSJy6fup4UlfBEb5kkjoJETrltQZkM82hNBXHtfDFNMxuHiQINTKhRiY0yNTgrhjykZfb-KtzVaNQdDQA1KC-g2XR7iou9dR18_L3cVdw4GZaFzq67xr21stPvIF9-bWerJb1bLX9ACTp0JU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHb1Oc1z74JHZLmzRNH2VsKO72MGVvpU1PveBW2Q389yZtLAoi-FZIAiVf8p0k5_IBXHr58z0nto_o2Zol7ZjHvh0xRYUC_YgUdWY7fq8nRqNgsALXZS4MIubBZ1jXn7kvP8nkQj-VNbiyT4SyVVjzGHNJka1V-gx0oZQinD5QZ0YxMj5MhwSNYeuxqcO43Lrr6ksD-2GFclkVHRQZzdS8pIWgxTcr09753__twrY5TVo3Bfx7sIKTfdj5UmqwzMbdh61vZQer0B2U4iL23US72jGxmhkuzTKMph_WzdtTNn2ZP49nljrWWl3FGXY_fi3o0eorohmbDM4DeGi3hs1b28gq2JJyZ64oBanPkCJXWy4KEj_xJEVHCMpSZaypG6htzlPqS-JjkMY88kQklaEXqVDtAT2EyiSb4BFYMoolJ3HqeqnDpK6DIzzJJXUSInTSaw3I1zSH0tQc19IXb2F-9yBBqJEJNTKhQaYGV-WQ96Lgxl-dqxqFsqMBoAbnP7As213FpkxdOI9_H3cBG7fDbifs3PXuT2DTzZUvdKzfKVTm0wWewbpczl9m0_N85X0CJqTT3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preference-Inspired+Coevolutionary+Algorithms+for+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Rui&rft.au=Purshouse%2C+Robin+C.&rft.au=Fleming%2C+Peter+J.&rft.date=2013-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=17&rft.issue=4&rft.spage=474&rft.epage=494&rft_id=info:doi/10.1109%2FTEVC.2012.2204264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2012_2204264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon