Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization
The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 17; číslo 4; s. 474 - 494 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.08.2013
Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population of candidate solutions is studied here and demonstrated to have promising performance characteristics for such problems. After introducing the concept of the preference-inspired coevolutionary algorithm (PICEA), a realization of this concept, PICEA-g, is systematically compared with four of the best-in-class evolutionary algorithms (EAs); random search is also studied as a baseline approach. The four EAs used in the comparison are a Pareto-dominance relation-based algorithm (NSGA-II), an ε-dominance relation-based algorithm [ ε-multiobjective evolutionary algorithm (MOEA)], a scalarizing function-based algorithm (MOEA/D), and an indicator-based algorithm [hypervolume-based algorithm (HypE)]. It is demonstrated that, for bi-objective problems, all of the multi-objective evolutionary algorithms perform competitively. As the number of objectives increases, PICEA-g and HypE, which have comparable performance, tend to outperform NSGA-II, ε-MOEA, and MOEA/D. All the algorithms outperformed random search. |
|---|---|
| AbstractList | The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population of candidate solutions is studied here and demonstrated to have promising performance characteristics for such problems. After introducing the concept of the preference-inspired coevolutionary algorithm (PICEA), a realization of this concept, PICEA-g, is systematically compared with four of the best-in-class evolutionary algorithms (EAs); random search is also studied as a baseline approach. The four EAs used in the comparison are a Pareto-dominance relation-based algorithm (NSGA-II), an ε-dominance relation-based algorithm [ ε-multiobjective evolutionary algorithm (MOEA)], a scalarizing function-based algorithm (MOEA/D), and an indicator-based algorithm [hypervolume-based algorithm (HypE)]. It is demonstrated that, for bi-objective problems, all of the multi-objective evolutionary algorithms perform competitively. As the number of objectives increases, PICEA-g and HypE, which have comparable performance, tend to outperform NSGA-II, ε-MOEA, and MOEA/D. All the algorithms outperformed random search. |
| Author | Fleming, Peter J. Purshouse, Robin C. Rui Wang |
| Author_xml | – sequence: 1 surname: Rui Wang fullname: Rui Wang email: cop10rw@sheffield.ac.uk organization: Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK – sequence: 2 givenname: Robin C. surname: Purshouse fullname: Purshouse, Robin C. email: r.purshouse@sheffield.ac.uk organization: Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK – sequence: 3 givenname: Peter J. surname: Fleming fullname: Fleming, Peter J. email: p.fleming@shef.ac.uk organization: Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27634249$$DView record in Pascal Francis |
| BookMark | eNp9kE9PAjEQxRuDiYB-AONlLx4X-2_b7pEQVBIMHtB4a0qZasmyu2lXEvz07gJ68OBpJpnfe3nzBqhXViUgdE3wiBCc3y2nr5MRxYSOKMWcCn6G-iTnJMWYil67Y5WnUqq3CzSIcYMx4RnJ--jpOYCDAKWFdFbG2gdYJ5MKdlXx2fiqNGGfjIv3KvjmYxsTV4XkyZT7dLHagG38DpJF3fit_zIdfYnOnSkiXJ3mEL3cT5eTx3S-eJhNxvPUMkGalElgkgMDscLY5Gu5ziwDohTjThDOaE4UE45JiyXkbiVMpozlJFNOtfecDdHt0bc20ZrCBVNaH3Ud_LYNrKkUjNMDJ4-cDVWM7afa-uaQtAnGF5pg3bWnu_Z0154-tdcqyR_lj_l_mpujxgPALy8oyTDj7Bt42nzf |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2013_08_049 crossref_primary_10_1109_TEVC_2018_2874465 crossref_primary_10_1016_j_swevo_2019_06_009 crossref_primary_10_1109_TEVC_2018_2875430 crossref_primary_10_1109_ACCESS_2018_2877735 crossref_primary_10_1016_j_future_2020_11_002 crossref_primary_10_3390_en11061554 crossref_primary_10_1109_TCYB_2019_2894664 crossref_primary_10_1007_s12293_019_00283_4 crossref_primary_10_1016_j_swevo_2025_101916 crossref_primary_10_1109_TEVC_2020_2978158 crossref_primary_10_1016_j_conengprac_2023_105709 crossref_primary_10_1109_TSMC_2019_2930737 crossref_primary_10_1088_1742_6596_1479_1_012014 crossref_primary_10_1007_s11573_015_0797_x crossref_primary_10_1016_j_ins_2020_03_007 crossref_primary_10_3390_su15032525 crossref_primary_10_1016_j_sorms_2015_08_001 crossref_primary_10_1109_TCYB_2017_2737554 crossref_primary_10_1007_s00500_015_1830_2 crossref_primary_10_1016_j_swevo_2023_101250 crossref_primary_10_1016_j_simpat_2024_102917 crossref_primary_10_1109_TEVC_2016_2598687 crossref_primary_10_1109_MCI_2017_2742868 crossref_primary_10_1007_s11831_020_09415_3 crossref_primary_10_3390_en11102744 crossref_primary_10_1016_j_ins_2016_09_026 crossref_primary_10_1109_ACCESS_2020_3027008 crossref_primary_10_1155_abb_6125695 crossref_primary_10_1016_j_asoc_2016_11_009 crossref_primary_10_1016_j_rcim_2022_102414 crossref_primary_10_1016_j_ins_2018_10_007 crossref_primary_10_1016_j_ins_2018_10_005 crossref_primary_10_1080_0952813X_2016_1270358 crossref_primary_10_3390_app12199627 crossref_primary_10_1016_j_apsusc_2023_159129 crossref_primary_10_3233_IDA_150797 crossref_primary_10_1002_cpe_5861 crossref_primary_10_1109_TCYB_2019_2949204 crossref_primary_10_1016_j_ins_2018_03_047 crossref_primary_10_3390_math12101431 crossref_primary_10_3390_app14073015 crossref_primary_10_1016_j_swevo_2017_11_004 crossref_primary_10_1109_TEVC_2016_2600642 crossref_primary_10_1016_j_future_2018_07_062 crossref_primary_10_1145_2792984 crossref_primary_10_1016_j_asoc_2018_12_011 crossref_primary_10_1109_ACCESS_2023_3294095 crossref_primary_10_1016_j_eswa_2019_05_032 crossref_primary_10_1016_j_cor_2016_05_014 crossref_primary_10_1016_j_swevo_2020_100644 crossref_primary_10_1109_TCYB_2017_2737519 crossref_primary_10_1016_j_ins_2018_06_055 crossref_primary_10_1155_2021_6614283 crossref_primary_10_1109_TEVC_2016_2521175 crossref_primary_10_1016_j_solener_2015_03_052 crossref_primary_10_1007_s10489_022_03325_6 crossref_primary_10_1002_cpe_7474 crossref_primary_10_1007_s12065_025_01081_3 crossref_primary_10_1109_TCYB_2018_2872803 crossref_primary_10_1109_TEVC_2022_3144675 crossref_primary_10_1109_TEVC_2016_2611642 crossref_primary_10_1007_s11771_020_4307_0 crossref_primary_10_1007_s00500_015_1648_y crossref_primary_10_1088_1757_899X_370_1_012038 crossref_primary_10_1016_j_epsr_2018_09_010 crossref_primary_10_1007_s11831_023_09914_z crossref_primary_10_3390_aerospace11030214 crossref_primary_10_1016_j_ins_2020_09_075 crossref_primary_10_1007_s40747_021_00363_4 crossref_primary_10_1016_j_cor_2023_106345 crossref_primary_10_3390_ijerph20031765 crossref_primary_10_1016_j_ins_2022_12_076 crossref_primary_10_1016_j_ins_2018_06_063 crossref_primary_10_1007_s00500_016_2099_9 crossref_primary_10_1016_j_ejor_2022_07_002 crossref_primary_10_1016_j_rcim_2019_101850 crossref_primary_10_1109_TEVC_2013_2262178 crossref_primary_10_1007_s00500_016_2286_8 crossref_primary_10_1109_TEVC_2015_2420112 crossref_primary_10_1155_2020_8882528 crossref_primary_10_1016_j_swevo_2019_100570 crossref_primary_10_1109_TEVC_2019_2909636 crossref_primary_10_1007_s10278_018_0138_z crossref_primary_10_1007_s10489_019_01569_3 crossref_primary_10_1109_TEVC_2017_2767023 crossref_primary_10_1016_j_ins_2015_09_051 crossref_primary_10_1109_TEVC_2017_2656922 crossref_primary_10_1109_ACCESS_2020_2981373 crossref_primary_10_1155_2021_8822765 crossref_primary_10_1109_MCI_2021_3129961 crossref_primary_10_1016_j_swevo_2021_100866 crossref_primary_10_1007_s00500_020_05369_7 crossref_primary_10_1007_s40747_017_0058_4 crossref_primary_10_1109_TEVC_2019_2915767 crossref_primary_10_1007_s00500_021_05591_x crossref_primary_10_1016_j_cor_2022_106052 crossref_primary_10_1016_j_asoc_2017_03_041 crossref_primary_10_1016_j_asoc_2017_08_024 crossref_primary_10_1007_s41965_024_00170_z crossref_primary_10_1007_s10664_015_9414_4 crossref_primary_10_1016_j_ins_2018_09_069 crossref_primary_10_1155_2014_189679 crossref_primary_10_1016_j_ins_2018_03_012 crossref_primary_10_1109_ACCESS_2018_2856832 crossref_primary_10_1007_s00500_021_05981_1 crossref_primary_10_1016_j_matcom_2020_05_025 crossref_primary_10_1016_j_renene_2019_11_015 crossref_primary_10_1016_j_eswa_2023_121768 crossref_primary_10_1016_j_ins_2018_12_078 crossref_primary_10_1109_ACCESS_2020_2990193 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_knosys_2022_110073 crossref_primary_10_1109_TEVC_2015_2459718 crossref_primary_10_1016_j_egyr_2023_04_014 crossref_primary_10_3390_en15051884 crossref_primary_10_1016_j_swevo_2019_100599 crossref_primary_10_1109_TSMC_2019_2954491 crossref_primary_10_1109_ACCESS_2021_3125746 crossref_primary_10_1016_j_ast_2019_105555 crossref_primary_10_1109_ACCESS_2019_2928619 crossref_primary_10_1016_j_eswa_2023_119895 crossref_primary_10_1109_ACCESS_2019_2954542 crossref_primary_10_1007_s10489_021_02494_0 crossref_primary_10_1007_s00500_023_08952_w crossref_primary_10_1109_ACCESS_2019_2937538 crossref_primary_10_1109_TFUZZ_2021_3089230 crossref_primary_10_1002_cpe_5948 crossref_primary_10_1109_ACCESS_2019_2920698 crossref_primary_10_3390_app10217710 crossref_primary_10_1109_TEVC_2018_2884133 crossref_primary_10_1016_j_asoc_2021_107299 crossref_primary_10_1007_s13369_020_05147_5 crossref_primary_10_1109_ACCESS_2018_2832181 crossref_primary_10_3390_math13111757 crossref_primary_10_1109_TEVC_2015_2443001 crossref_primary_10_1109_TCYB_2014_2334632 crossref_primary_10_1007_s00500_020_05249_0 crossref_primary_10_1016_j_enconman_2017_04_019 crossref_primary_10_1155_2020_8871086 crossref_primary_10_1007_s11432_018_9720_6 crossref_primary_10_1016_j_eswa_2019_06_033 crossref_primary_10_1016_j_swevo_2020_100674 crossref_primary_10_1016_j_swevo_2020_100795 crossref_primary_10_1016_j_asoc_2019_02_026 crossref_primary_10_1007_s10489_022_03920_7 crossref_primary_10_1007_s10586_017_1060_8 crossref_primary_10_1016_j_cor_2023_106388 crossref_primary_10_1109_TEVC_2016_2631279 crossref_primary_10_1007_s13593_015_0303_4 crossref_primary_10_1109_ACCESS_2023_3270806 crossref_primary_10_1109_TEVC_2014_2315442 crossref_primary_10_1016_j_ins_2017_08_076 crossref_primary_10_1007_s10489_020_01887_x crossref_primary_10_1016_j_knosys_2015_04_025 crossref_primary_10_1016_j_jpdc_2018_11_008 crossref_primary_10_1155_2018_1435463 crossref_primary_10_3390_math9040420 crossref_primary_10_1109_ACCESS_2019_2914115 crossref_primary_10_1016_j_rineng_2025_104372 crossref_primary_10_1038_s41598_024_80184_w crossref_primary_10_1016_j_aei_2023_102077 crossref_primary_10_1109_TCYB_2020_3042896 crossref_primary_10_1016_j_ins_2020_10_036 crossref_primary_10_1109_TEVC_2014_2339823 crossref_primary_10_1109_TEVC_2014_2378512 crossref_primary_10_1109_ACCESS_2019_2908227 crossref_primary_10_3389_fenrg_2022_928744 crossref_primary_10_1093_comjnl_bxx077 crossref_primary_10_1007_s00500_019_04258_y crossref_primary_10_1016_j_knosys_2018_12_001 crossref_primary_10_1109_TTE_2022_3185547 crossref_primary_10_1016_j_ejor_2014_10_056 crossref_primary_10_1109_TSMC_2023_3298690 crossref_primary_10_1109_TEVC_2014_2350987 crossref_primary_10_1155_2018_8302324 crossref_primary_10_1016_j_asoc_2019_106052 crossref_primary_10_1155_2020_8877008 crossref_primary_10_1109_TEVC_2015_2424921 crossref_primary_10_1016_j_swevo_2022_101108 crossref_primary_10_1371_journal_pone_0234625 crossref_primary_10_1515_geo_2019_0031 crossref_primary_10_1007_s00500_023_09050_7 crossref_primary_10_1016_j_ins_2015_09_009 crossref_primary_10_1016_j_cie_2022_108252 crossref_primary_10_1016_j_swevo_2022_101225 crossref_primary_10_1016_j_eswa_2014_01_020 crossref_primary_10_1109_TEVC_2017_2749619 crossref_primary_10_1016_j_ins_2017_05_012 crossref_primary_10_1007_s40747_021_00273_5 crossref_primary_10_1109_TEVC_2022_3212058 crossref_primary_10_1109_TEVC_2016_2519378 crossref_primary_10_1109_TEVC_2016_2574621 crossref_primary_10_1109_TEVC_2014_2353672 crossref_primary_10_1016_j_ins_2021_11_029 crossref_primary_10_1016_j_asoc_2017_07_030 crossref_primary_10_1007_s00500_021_05647_y crossref_primary_10_1109_ACCESS_2020_3034754 crossref_primary_10_1080_0305215X_2015_1012078 crossref_primary_10_1016_j_ejor_2023_01_062 crossref_primary_10_1007_s40747_021_00514_7 crossref_primary_10_1016_j_artint_2015_06_007 crossref_primary_10_1007_s10586_018_2316_7 crossref_primary_10_1016_j_ins_2021_08_054 crossref_primary_10_1155_2017_6043109 crossref_primary_10_1109_TCYB_2017_2679705 crossref_primary_10_1007_s10732_021_09470_4 crossref_primary_10_1155_2021_6676934 crossref_primary_10_1016_j_eswa_2024_124559 crossref_primary_10_1016_j_ins_2023_119115 crossref_primary_10_1016_j_powtec_2024_120233 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1109_TCYB_2014_2360923 crossref_primary_10_1007_s13042_020_01213_4 crossref_primary_10_1016_j_ins_2018_07_012 crossref_primary_10_1016_j_ins_2019_03_062 crossref_primary_10_1016_j_energy_2017_11_085 crossref_primary_10_1016_j_swevo_2018_11_003 crossref_primary_10_1109_TEVC_2023_3287399 crossref_primary_10_1016_j_asoc_2018_02_048 crossref_primary_10_1007_s00500_019_04333_4 crossref_primary_10_1109_JAS_2023_123609 crossref_primary_10_1007_s10489_022_04444_w crossref_primary_10_1007_s12293_023_00401_3 crossref_primary_10_1109_TCYB_2020_2971638 crossref_primary_10_1002_cpe_4248 crossref_primary_10_1016_j_ins_2024_120999 crossref_primary_10_1007_s13042_019_01036_y crossref_primary_10_1007_s40747_022_00670_4 crossref_primary_10_1002_int_22476 crossref_primary_10_1016_j_sysarc_2020_101739 crossref_primary_10_1109_TCYB_2014_2331994 crossref_primary_10_1016_j_eswa_2020_113844 crossref_primary_10_1109_ACCESS_2020_3034496 crossref_primary_10_1007_s10489_021_02707_6 crossref_primary_10_1016_j_asoc_2024_111960 crossref_primary_10_1016_j_ins_2022_10_077 crossref_primary_10_1109_TCYB_2018_2856208 crossref_primary_10_4018_ijsir_2014100104 crossref_primary_10_1109_TEVC_2015_2457245 crossref_primary_10_1016_j_future_2018_06_008 crossref_primary_10_1109_TEVC_2018_2848254 crossref_primary_10_1016_j_swevo_2019_100602 crossref_primary_10_1007_s10586_018_1725_y crossref_primary_10_3233_ICA_180594 crossref_primary_10_1016_j_asoc_2015_03_040 crossref_primary_10_1016_j_ins_2016_06_007 crossref_primary_10_1016_j_neucom_2016_09_081 crossref_primary_10_23919_JSEE_2022_000016 crossref_primary_10_3390_en11010215 crossref_primary_10_1016_j_asoc_2017_04_002 crossref_primary_10_1145_2729974 crossref_primary_10_1109_ACCESS_2017_2751071 crossref_primary_10_1002_cpe_6040 crossref_primary_10_1007_s10489_023_04484_w crossref_primary_10_3390_math11020413 crossref_primary_10_1080_00207721_2015_1008600 crossref_primary_10_1109_ACCESS_2018_2876273 crossref_primary_10_1007_s00500_022_07182_w crossref_primary_10_1109_TEVC_2015_2433266 crossref_primary_10_1007_s00521_020_04721_0 crossref_primary_10_1049_iet_gtd_2015_1127 crossref_primary_10_1016_j_solener_2017_10_051 crossref_primary_10_1016_j_ejor_2014_05_019 crossref_primary_10_1109_TEVC_2014_2336865 crossref_primary_10_1080_0951192X_2025_2544542 crossref_primary_10_1016_j_scs_2020_102373 crossref_primary_10_1109_TEVC_2017_2655451 crossref_primary_10_1109_TCYB_2016_2550502 crossref_primary_10_1109_ACCESS_2018_2870969 crossref_primary_10_1016_j_ins_2014_11_044 crossref_primary_10_1007_s00366_020_00951_x crossref_primary_10_1007_s11831_019_09353_9 crossref_primary_10_1016_j_cie_2023_109704 crossref_primary_10_3233_JIFS_17344 crossref_primary_10_1109_ACCESS_2024_3386584 crossref_primary_10_1371_journal_pone_0252293 crossref_primary_10_1007_s00500_014_1284_y crossref_primary_10_1007_s40747_017_0053_9 crossref_primary_10_1109_TEVC_2021_3122191 crossref_primary_10_1007_s10489_025_06647_3 crossref_primary_10_1109_ACCESS_2020_3034716 crossref_primary_10_1109_TEVC_2020_3016049 crossref_primary_10_1109_TSMC_2019_2956288 crossref_primary_10_1109_TSMC_2019_2898456 crossref_primary_10_1007_s40747_020_00263_z crossref_primary_10_3390_computation10030037 crossref_primary_10_1016_j_envsoft_2019_05_003 crossref_primary_10_1007_s00500_015_1955_3 crossref_primary_10_1109_TEVC_2016_2592479 crossref_primary_10_1016_j_engappai_2020_103905 crossref_primary_10_1016_j_cor_2015_09_002 crossref_primary_10_1109_ACCESS_2018_2857503 crossref_primary_10_1109_TCYB_2020_2966492 crossref_primary_10_1016_j_mechmachtheory_2017_12_024 crossref_primary_10_3390_en11040743 crossref_primary_10_1016_j_psep_2023_02_059 crossref_primary_10_1109_TSTE_2022_3198695 crossref_primary_10_3390_en10050674 crossref_primary_10_1016_j_swevo_2018_08_002 crossref_primary_10_1016_j_asoc_2019_105588 |
| Cites_doi | 10.1007/978-3-540-31880-4_5 10.1109/CEC.2003.1299427 10.1109/CEC.2006.1688516 10.1162/106365602760234108 10.1007/978-3-540-70928-2_56 10.1007/978-3-642-19893-9_10 10.1109/TEVC.2010.2064321 10.1007/978-3-642-19893-9_12 10.1109/CEC.2007.4424990 10.1109/CEC.2006.1688440 10.1109/TEVC.2007.892759 10.1145/1389095.1389225 10.1109/CEC.2002.1004406 10.1109/CEC.2005.1554688 10.1109/CEC.2007.4424985 10.1109/4235.797969 10.1109/TEVC.2005.861417 10.1162/106365605774666895 10.1109/TEVC.2002.802873 10.1109/TEVC.2003.810761 10.1007/3-540-36970-8_16 10.1109/CEC.2009.4982949 10.1162/evco.2009.17.3.411 10.1109/CEC.2009.4983256 10.1007/978-3-540-70928-2_8 10.1109/TEVC.2003.810758 10.1162/EVCO_a_00009 10.1109/TEVC.2006.872133 10.1007/s00500-006-0124-0 10.1145/1276958.1277115 10.1016/j.cagd.2008.07.007 10.1109/4235.996017 10.1109/MCI.2006.1597059 10.1162/106365604773955139 10.7326/0003-4819-110-11-916 10.1007/978-3-540-70928-2_55 10.1016/S0965-9978(00)00110-1 10.1109/TEVC.2007.910138 10.1109/ICSMC.2009.5346628 10.1145/1830483.1830577 10.1109/TEVC.2009.2015575 10.1109/TEVC.2005.850293 10.1109/CEC.2000.870296 10.1007/978-3-540-70928-2_5 10.1109/3468.650319 10.1109/4235.771166 10.1109/TEVC.2008.925798 10.1109/CEC.2003.1299927 10.1007/3-540-44719-9_7 10.1016/j.ejor.2006.08.008 10.1109/CEC.2011.5949788 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS |
| Copyright_xml | – notice: 2014 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW |
| DOI | 10.1109/TEVC.2012.2204264 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1941-0026 |
| EndPage | 494 |
| ExternalDocumentID | 27634249 10_1109_TEVC_2012_2204264 6215034 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION IQODW RIG |
| ID | FETCH-LOGICAL-c361t-37e374e3e6b00a9d7d5c3e18834f6143291836f37c07e9fb6a58ac4158f861493 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 359 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322833800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jul 21 09:16:17 EDT 2025 Tue Nov 18 22:35:25 EST 2025 Sat Nov 29 03:13:46 EST 2025 Tue Aug 26 16:43:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Dominating set Pareto optimum Decision support system Decision making Evolutionary algorithm Performance characteristic Multiobjective programming evolutionary algorithms Dominance many-objective optimization Randomized algorithm Coevolution Optimization Search algorithm Genetic algorithm Preference |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-37e374e3e6b00a9d7d5c3e18834f6143291836f37c07e9fb6a58ac4158f861493 |
| PageCount | 21 |
| ParticipantIDs | ieee_primary_6215034 crossref_citationtrail_10_1109_TEVC_2012_2204264 pascalfrancis_primary_27634249 crossref_primary_10_1109_TEVC_2012_2204264 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-01 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref57 ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref17 ref16 ref19 ref18 jin (ref37) 2001 ref51 ref50 ishibuchi (ref10) 2008 l pez-ib nez (ref59) 2011 ref45 ref47 ref42 ref41 ref44 ref43 purshouse (ref33) 2011 miettinen (ref35) 1999; 12 ref8 ref9 ref3 hollander (ref48) 1999 ref6 ref5 deb (ref34) 2003 ref40 hadka (ref58) 2011 ref36 ref31 ref30 ref32 ref1 ref39 ref38 bader (ref26) 2010; 638 zitzler (ref4) 2002; 3242 zitzler (ref21) 2004 fonseca (ref46) 1996; 1141 tee (ref63) 2005 ref24 ishibuchi (ref54) 2011 emmerich (ref23) 2005 ref25 ref64 ref20 ref22 goldberg (ref7) 1999 ref28 abdi (ref49) 2007 ref27 ref29 deb (ref2) 2001; 16 ref60 ref62 ref61 |
| References_xml | – start-page: 62 year: 2005 ident: ref23 publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/978-3-540-31880-4_5 – ident: ref38 doi: 10.1109/CEC.2003.1299427 – ident: ref41 doi: 10.1109/CEC.2006.1688516 – volume: 3242 start-page: 95 year: 2002 ident: ref4 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Proc Evol Methods Des Optimiz Contr Applicat Indust Problems EUROGEN – ident: ref20 doi: 10.1162/106365602760234108 – volume: 12 year: 1999 ident: ref35 publication-title: Nonlinear Multiobjective Optimization – volume: 638 start-page: 35 year: 2010 ident: ref26 article-title: A hypervolume-based optimizer for high-dimensional objective spaces publication-title: Proc Conf MOPGP – ident: ref12 doi: 10.1007/978-3-540-70928-2_56 – start-page: 136 year: 2011 ident: ref33 publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/978-3-642-19893-9_10 – ident: ref52 doi: 10.1109/TEVC.2010.2064321 – start-page: 166 year: 2011 ident: ref54 publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/978-3-642-19893-9_12 – ident: ref15 doi: 10.1109/CEC.2007.4424990 – volume: 16 year: 2001 ident: ref2 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – volume: 1141 start-page: 584 year: 1996 ident: ref46 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers publication-title: Proc PPSN VI – year: 1999 ident: ref48 publication-title: Nonparametric Statistical Methods – ident: ref47 doi: 10.1109/CEC.2006.1688440 – ident: ref28 doi: 10.1109/TEVC.2007.892759 – ident: ref11 doi: 10.1145/1389095.1389225 – ident: ref42 doi: 10.1109/CEC.2002.1004406 – start-page: 2424 year: 2008 ident: ref10 article-title: Evolutionary many-objective optimization: A short review publication-title: Proc IEEE Congr Evol Computat – ident: ref8 doi: 10.1109/CEC.2005.1554688 – year: 1999 ident: ref7 publication-title: The Race the Hurdle and the Sweet Spot – ident: ref39 doi: 10.1109/CEC.2007.4424985 – ident: ref22 doi: 10.1109/4235.797969 – ident: ref45 doi: 10.1109/TEVC.2005.861417 – ident: ref43 doi: 10.1162/106365605774666895 – year: 2011 ident: ref59 publication-title: The automatic design of multi-objective ant colony optimization algorithms – ident: ref19 doi: 10.1109/TEVC.2002.802873 – ident: ref36 doi: 10.1109/TEVC.2003.810761 – start-page: 222 year: 2003 ident: ref34 publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/3-540-36970-8_16 – ident: ref29 doi: 10.1109/CEC.2009.4982949 – ident: ref32 doi: 10.1162/evco.2009.17.3.411 – ident: ref55 doi: 10.1109/CEC.2009.4983256 – ident: ref18 doi: 10.1007/978-3-540-70928-2_8 – ident: ref44 doi: 10.1109/TEVC.2003.810758 – ident: ref27 doi: 10.1162/EVCO_a_00009 – year: 2005 ident: ref63 publication-title: Surface area of ellipsoid segment – ident: ref62 doi: 10.1109/TEVC.2006.872133 – ident: ref61 doi: 10.1007/s00500-006-0124-0 – ident: ref14 doi: 10.1145/1276958.1277115 – ident: ref64 doi: 10.1016/j.cagd.2008.07.007 – ident: ref3 doi: 10.1109/4235.996017 – ident: ref1 doi: 10.1109/MCI.2006.1597059 – ident: ref57 doi: 10.1162/106365604773955139 – ident: ref50 doi: 10.7326/0003-4819-110-11-916 – ident: ref13 doi: 10.1007/978-3-540-70928-2_55 – ident: ref17 doi: 10.1016/S0965-9978(00)00110-1 – ident: ref6 doi: 10.1109/TEVC.2007.910138 – ident: ref9 doi: 10.1109/ICSMC.2009.5346628 – ident: ref56 doi: 10.1145/1830483.1830577 – ident: ref25 doi: 10.1109/TEVC.2009.2015575 – ident: ref40 doi: 10.1109/TEVC.2005.850293 – ident: ref51 doi: 10.1109/CEC.2000.870296 – ident: ref16 doi: 10.1007/978-3-540-70928-2_5 – ident: ref31 doi: 10.1109/3468.650319 – ident: ref60 doi: 10.1109/4235.771166 – start-page: 832 year: 2004 ident: ref21 article-title: Indicator-based selection in multiobjective search publication-title: Proc PPSN VIII – ident: ref30 doi: 10.1109/TEVC.2008.925798 – ident: ref5 doi: 10.1109/CEC.2003.1299927 – year: 2007 ident: ref49 publication-title: Encyclopedia of Measurement and Statistics – start-page: 96 year: 2001 ident: ref37 publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/3-540-44719-9_7 – ident: ref24 doi: 10.1016/j.ejor.2006.08.008 – year: 2011 ident: ref58 article-title: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization publication-title: Evol Computat – ident: ref53 doi: 10.1109/CEC.2011.5949788 |
| SSID | ssj0014519 |
| Score | 2.5663955 |
| Snippet | The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori... |
| SourceID | pascalfrancis crossref ieee |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 474 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation algorithms Coevolution Computer science; control theory; systems evolutionary algorithms Evolutionary computation Exact sciences and technology many-objective optimization Monte Carlo methods Optimization Search problems Theoretical computing Vectors |
| Title | Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization |
| URI | https://ieeexplore.ieee.org/document/6215034 |
| Volume | 17 |
| WOSCitedRecordID | wos000322833800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5s4oM-eNkU52X0wSexW9q0Sfo4xoaCuzxM2Vtp01Od7CLbFPz3Jm1WNhDBt0ISKPmS7yQ5lw_g1s-e7xmxOaJva5a0YxZzO_IUFQrkEcnrzD7xfl-Mx8GwBPdFLgwiZsFn2NCfmS8_WchP_VTWZMo-EeqVocw5y3O1Co-BLpOSB9MH6sQoxsaD6ZCgOeq8tHUQl9twXX1l8HZsUCaqokMio5WalTSXs9iyMd3j__3dCRyZs6TVysE_hRLOK3C80WmwzLatwOFW0cEq9IaFtIj9ONeOdkys9gK_zCKMlt9Wa_q6WE7Wb7OVpQ61Vk8xhj2I33NytAaKZmYmf_MMnrudUfvBNqIKtqTMWStCQco9pMjUhouChCe-pOgIQb1UmWrqBmqTs5RySTgGacwiX0RSmXmRCtUe0HPYmy_meAGWjGLJSJy6fup4UlfBEb5kkjoJETrltQZkM82hNBXHtfDFNMxuHiQINTKhRiY0yNTgrhjykZfb-KtzVaNQdDQA1KC-g2XR7iou9dR18_L3cVdw4GZaFzq67xr21stPvIF9-bWerJb1bLX9ACTp0JU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHb1Oc1z74JHZLmzRNH2VsKO72MGVvpU1PveBW2Q389yZtLAoi-FZIAiVf8p0k5_IBXHr58z0nto_o2Zol7ZjHvh0xRYUC_YgUdWY7fq8nRqNgsALXZS4MIubBZ1jXn7kvP8nkQj-VNbiyT4SyVVjzGHNJka1V-gx0oZQinD5QZ0YxMj5MhwSNYeuxqcO43Lrr6ksD-2GFclkVHRQZzdS8pIWgxTcr09753__twrY5TVo3Bfx7sIKTfdj5UmqwzMbdh61vZQer0B2U4iL23US72jGxmhkuzTKMph_WzdtTNn2ZP49nljrWWl3FGXY_fi3o0eorohmbDM4DeGi3hs1b28gq2JJyZ64oBanPkCJXWy4KEj_xJEVHCMpSZaypG6htzlPqS-JjkMY88kQklaEXqVDtAT2EyiSb4BFYMoolJ3HqeqnDpK6DIzzJJXUSInTSaw3I1zSH0tQc19IXb2F-9yBBqJEJNTKhQaYGV-WQ96Lgxl-dqxqFsqMBoAbnP7As213FpkxdOI9_H3cBG7fDbifs3PXuT2DTzZUvdKzfKVTm0wWewbpczl9m0_N85X0CJqTT3A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preference-Inspired+Coevolutionary+Algorithms+for+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Rui&rft.au=Purshouse%2C+Robin+C.&rft.au=Fleming%2C+Peter+J.&rft.date=2013-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=17&rft.issue=4&rft.spage=474&rft.epage=494&rft_id=info:doi/10.1109%2FTEVC.2012.2204264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2012_2204264 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |