Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning
Privacy protection has been an important concern with the great success of machine learning. In this paper, it proposes a multi-party privacy preserving machine learning framework, named PFMLP, based on partially homomorphic encryption and federated learning. The core idea is all learning parties ju...
Uloženo v:
| Vydáno v: | Future internet Ročník 13; číslo 4; s. 94 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.04.2021
|
| Témata: | |
| ISSN: | 1999-5903, 1999-5903 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!