Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm
The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 12; H. 7; S. 1331 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.04.2019
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the fossil energy consumption contribution in the terminal energy consumption. The development of renewable energy in the terminal energy and energy conversion links has significantly increased the proportion of clean low-carbon energy. In order to accurately get the proportion of renewable energy terminal power consumption, firstly, this paper selects a primary influencing-factors set including the gross GDP, fixed investment in renewable energy industry, total length of cross-provincial and cross-regional high-voltage transmission lines, etc. as influencing factors of China’s electricity consumption fraction produced by renewable energy based on a multitude of papers. Secondly, from the perspective of signal decomposition, the data inevitably has a lot of interference and noise. This paper uses the empirical mode decomposition (EMD) algorithm to reduce the degree of signal distortion and decomposes the signal into natural modes including several intrinsic mode functions (IMFs) and a residual term (Res); afterwards, a new extreme learning machine (ELM) forecasting model optimized by an Inverse Square Root Linear Units (ISRLU) activation function is proposed, and the ISRLU function is used to replace the implicit layer activation function in the original ELM algorithm. Then, a new bacterial foraging algorithm (BFOA) is applied to optimize the parameters of the optimized ELM forecasting model. After multiple learning and training operations, the optimal parameters are obtained. Finally, we superimpose the output of each IMF and Res training task to get the amount of China’s power consumption produced by renewable energy. Some statistical indicators including root mean squard error (RMSE) are applied to compare the accuracy of several intelligent machine forecasting algorithms. We prove that the proposed forecasting model has higher prediction accuracy and achieves faster training speed by an empirical analysis. Finally, the proposed combined forecasting algorithm is applied to predict China’s renewable energy terminal power consumption from 2018 to 2030. According to the forecasting results, it is found that China’s renewable energy terminal power consumption shows a gradual growth trend, and will exceeded 3300 billion kWh in 2030, which will represent a renewable energy terminal power ratio of about 38% in 2030. |
|---|---|
| AbstractList | The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the fossil energy consumption contribution in the terminal energy consumption. The development of renewable energy in the terminal energy and energy conversion links has significantly increased the proportion of clean low-carbon energy. In order to accurately get the proportion of renewable energy terminal power consumption, firstly, this paper selects a primary influencing-factors set including the gross GDP, fixed investment in renewable energy industry, total length of cross-provincial and cross-regional high-voltage transmission lines, etc. as influencing factors of China’s electricity consumption fraction produced by renewable energy based on a multitude of papers. Secondly, from the perspective of signal decomposition, the data inevitably has a lot of interference and noise. This paper uses the empirical mode decomposition (EMD) algorithm to reduce the degree of signal distortion and decomposes the signal into natural modes including several intrinsic mode functions (IMFs) and a residual term (Res); afterwards, a new extreme learning machine (ELM) forecasting model optimized by an Inverse Square Root Linear Units (ISRLU) activation function is proposed, and the ISRLU function is used to replace the implicit layer activation function in the original ELM algorithm. Then, a new bacterial foraging algorithm (BFOA) is applied to optimize the parameters of the optimized ELM forecasting model. After multiple learning and training operations, the optimal parameters are obtained. Finally, we superimpose the output of each IMF and Res training task to get the amount of China’s power consumption produced by renewable energy. Some statistical indicators including root mean squard error (RMSE) are applied to compare the accuracy of several intelligent machine forecasting algorithms. We prove that the proposed forecasting model has higher prediction accuracy and achieves faster training speed by an empirical analysis. Finally, the proposed combined forecasting algorithm is applied to predict China’s renewable energy terminal power consumption from 2018 to 2030. According to the forecasting results, it is found that China’s renewable energy terminal power consumption shows a gradual growth trend, and will exceeded 3300 billion kWh in 2030, which will represent a renewable energy terminal power ratio of about 38% in 2030. |
| Author | Jiang, Peng Dong, Jun Huang, Hui |
| Author_xml | – sequence: 1 givenname: Peng surname: Jiang fullname: Jiang, Peng – sequence: 2 givenname: Jun surname: Dong fullname: Dong, Jun – sequence: 3 givenname: Hui surname: Huang fullname: Huang, Hui |
| BookMark | eNptkdFqFDEUhoNUsNbe-AQB74TVZJLJzFzWdasLWypSr4czyZlplplkTLLW9crX8F18Gp_EbFdUxEDIIfnO_4f_PCYnzjsk5ClnL4Ro2Et0vGAVF4I_IKe8adSCs0qc_FU_IucxblleGRJCnJLvlz6ghpisG-jy1jr48fVbpO_R4R10I9KVwzDs6Q2GKT-O9J2_w0CX3sXdNCfrHX0FEQ3NxWqabbA6Q1feIH2N2k-zj_aeAmfyputpDv5T5lefU8AJ6QYhuIP5Fehsj_Q6q072S0a6PYWsrhMGm0XzT2E4kBfj4INNt9MT8rCHMeL5r_OMfLhc3SzfLjbXb9bLi81CC8XTosDCFGXF6rpTRclND1AbVVZcyaZTChqsuQReCEQJaLrGVFiwsgPEWjclijOyPuoaD9t2DnaCsG892Pb-woehhZCsHrFFLmVpalZVKKXpRYO6Ai11bxre90ZlrWdHrZzDxx3G1G79LuRkY1sIrirFykJm6vmR0sHHGLD_7cpZexh2-2fYGWb_wNomOKSeAtjxfy0_AVYMsj4 |
| CitedBy_id | crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_1016_j_jclepro_2020_123292 crossref_primary_10_3390_en13082111 crossref_primary_10_1016_j_jclepro_2020_120107 |
| Cites_doi | 10.3390/en5114430 10.1016/j.energy.2018.09.090 10.3390/en4101495 10.3390/en4081246 10.3390/app6010020 10.3390/ma10070715 10.1016/j.energy.2004.08.012 10.3390/socsci6040144 10.3390/en10111918 10.3390/e20120932 10.1016/j.jclepro.2014.12.020 10.1016/j.enpol.2015.11.028 10.1016/j.renene.2018.06.079 10.1049/iet-rpg.2018.5175 10.1016/j.neucom.2018.08.028 10.3390/en11123433 10.1016/j.renene.2018.06.113 10.3390/e19010006 10.1016/j.energy.2009.12.021 10.1007/s00521-006-0031-4 10.3390/e19010014 10.1016/j.scitotenv.2018.10.193 10.1016/j.energy.2006.11.014 10.1016/j.apenergy.2012.01.010 10.3390/ijgi6010005 10.1007/s00170-010-2862-5 10.3390/su9112109 10.1080/02533839.2011.576502 10.1016/j.ijpe.2014.09.027 10.1016/j.neucom.2018.09.005 10.1016/j.ijepes.2018.08.001 10.1016/j.neucom.2018.08.062 10.1016/j.jclepro.2014.08.054 10.1016/j.energy.2018.08.196 10.1016/j.apenergy.2018.08.058 10.1016/j.asoc.2018.07.022 10.3390/en11092475 10.3390/molecules22010013 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/en12071331 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_e1445d8077e44df39ec7ac4cfd91ffd6 10_3390_en12071331 |
| GeographicLocations | New Zealand Beijing China Iran China |
| GeographicLocations_xml | – name: China – name: Iran – name: New Zealand – name: Beijing China |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-2e2d257088b6251dfaa8d6571649b66a9e814a123ee4aedb9d7e205baee8c95e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465561400148&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 18:55:12 EDT 2025 Mon Jun 30 11:23:34 EDT 2025 Tue Nov 18 19:47:52 EST 2025 Sat Nov 29 07:12:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-2e2d257088b6251dfaa8d6571649b66a9e814a123ee4aedb9d7e205baee8c95e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/e1445d8077e44df39ec7ac4cfd91ffd6 |
| PQID | 2316760524 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e1445d8077e44df39ec7ac4cfd91ffd6 proquest_journals_2316760524 crossref_primary_10_3390_en12071331 crossref_citationtrail_10_3390_en12071331 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yuan (ref_46) 2015; 7 Hashemi (ref_44) 2015; 159 ref_35 ref_34 ref_33 ref_10 ref_32 Liu (ref_41) 2018; 8 Meng (ref_3) 2018; 165 Kumar (ref_14) 2010; 35 ref_31 Bornapour (ref_26) 2019; 130 ref_30 An (ref_29) 2012; 17 Denholm (ref_25) 2019; 130 Azadeh (ref_13) 2011; 34 ref_19 Eissa (ref_23) 2018; 12 Zhou (ref_8) 2018; 72 Kandananond (ref_18) 2011; 4 Ma (ref_20) 2003; 5 Du (ref_37) 2018; 322 Shang (ref_38) 2019; 651 Que (ref_47) 2018; 11 Mohamed (ref_12) 2005; 30 Li (ref_36) 2018; 321 ref_21 ref_42 Akay (ref_4) 2007; 32 ref_40 ref_1 Chiang (ref_9) 2006; 15 ref_2 Azadeh (ref_11) 2011; 53 Li (ref_16) 2012; 5 Rajesh (ref_43) 2015; 86 Hussain (ref_15) 2016; 90 Wang (ref_22) 2012; 94 Navarro (ref_24) 2019; 105 Angenendt (ref_28) 2018; 229 Ming (ref_39) 2018; 320 ref_5 Meng (ref_17) 2011; 4 (ref_45) 2015; 91 Taibi (ref_27) 2018; 164 ref_7 ref_6 |
| References_xml | – volume: 5 start-page: 4430 year: 2012 ident: ref_16 article-title: Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm publication-title: Energies doi: 10.3390/en5114430 – volume: 5 start-page: 29 year: 2003 ident: ref_20 article-title: Short term load forecasting using artificial neuron network and fuzzy inference publication-title: Power Syst. Technol. – volume: 165 start-page: 143 year: 2018 ident: ref_3 article-title: Decomposition and forecasting analysis of China’s household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models publication-title: Energy doi: 10.1016/j.energy.2018.09.090 – volume: 4 start-page: 1495 year: 2011 ident: ref_17 article-title: Forecasting Monthly Electric Energy Consumption Using Feature Extraction publication-title: Energies doi: 10.3390/en4101495 – volume: 4 start-page: 1246 year: 2011 ident: ref_18 article-title: Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach publication-title: Energies doi: 10.3390/en4081246 – ident: ref_19 doi: 10.3390/app6010020 – volume: 11 start-page: 21 year: 2018 ident: ref_47 article-title: Research on the trend of Power demand growth in the medium and long term in China publication-title: Energy China – volume: 17 start-page: 1036 year: 2012 ident: ref_29 article-title: Short-term prediction of wind power using EMD and chaotic theory Communications in Nonlinear publication-title: Sci. Numer. Simul. – ident: ref_7 doi: 10.3390/ma10070715 – volume: 30 start-page: 1833 year: 2005 ident: ref_12 article-title: Forecasting electricity consumption in New Zealand using economic and demographic variables publication-title: Energy doi: 10.1016/j.energy.2004.08.012 – ident: ref_5 doi: 10.3390/socsci6040144 – ident: ref_10 doi: 10.3390/en10111918 – ident: ref_40 – ident: ref_31 doi: 10.3390/e20120932 – volume: 91 start-page: 347 year: 2015 ident: ref_45 article-title: Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.12.020 – volume: 90 start-page: 73 year: 2016 ident: ref_15 article-title: Forecasting electricity consumption in Pakistan: The way forward publication-title: Energy Policy doi: 10.1016/j.enpol.2015.11.028 – ident: ref_1 – volume: 130 start-page: 388 year: 2019 ident: ref_25 article-title: Timescales of energy storage needed for reducing renewable energy curtailment publication-title: Renew. Energy doi: 10.1016/j.renene.2018.06.079 – ident: ref_21 – volume: 12 start-page: 1843 year: 2018 ident: ref_23 article-title: Challenges and novel solution for wide-area protection due to renewable sources integration into smart grid: An extensive review publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2018.5175 – volume: 321 start-page: 17 year: 2018 ident: ref_36 article-title: Laplacian twin extreme learning machine for semi-supervised classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.028 – volume: 7 start-page: 21 year: 2015 ident: ref_46 article-title: Prospect of China electricity demand and Analysis of Coal and Power demand in the new normal economy publication-title: Energy China – ident: ref_30 doi: 10.3390/en11123433 – volume: 130 start-page: 1049 year: 2019 ident: ref_26 article-title: An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids publication-title: Renew. Energy doi: 10.1016/j.renene.2018.06.113 – ident: ref_33 doi: 10.3390/e19010006 – volume: 35 start-page: 1709 year: 2010 ident: ref_14 article-title: Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India publication-title: Energy doi: 10.1016/j.energy.2009.12.021 – volume: 15 start-page: 328 year: 2006 ident: ref_9 article-title: A hybrid approach of neural networks and grey modeling for adaptive electricity load forecasting publication-title: Neural Comput. Appl. doi: 10.1007/s00521-006-0031-4 – volume: 8 start-page: 7 year: 2018 ident: ref_41 article-title: Optimization of Processing Parameters for a Reverse Drawing–Flanging Combined Process for a B550CL High-Strength Steel Spoke Based on Grey Relational Analysis publication-title: Matels – ident: ref_34 doi: 10.3390/e19010014 – volume: 651 start-page: 3043 year: 2019 ident: ref_38 article-title: A novel model for hourly PM2.5 concentration prediction based on CART and EELM publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.193 – ident: ref_2 – volume: 32 start-page: 1670 year: 2007 ident: ref_4 article-title: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey publication-title: Energy doi: 10.1016/j.energy.2006.11.014 – volume: 94 start-page: 65 year: 2012 ident: ref_22 article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.010 – ident: ref_32 doi: 10.3390/ijgi6010005 – volume: 53 start-page: 645 year: 2011 ident: ref_11 article-title: An integrated fuzzy regression-analysis of variance algorithm for improvement of electricity consumption estimation in uncertain environments publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2862-5 – ident: ref_6 doi: 10.3390/su9112109 – volume: 34 start-page: 1047 year: 2011 ident: ref_13 article-title: An integrated simulation-based fuzzy regression-time series algorithm for electricity consumption estimation with non-stationary data publication-title: J. Chin. Inst. Eng. doi: 10.1080/02533839.2011.576502 – volume: 159 start-page: 178 year: 2015 ident: ref_44 article-title: An integrated green supplier selection approach with analytic network process and improved Grey relational analysis publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.09.027 – volume: 322 start-page: 141 year: 2018 ident: ref_37 article-title: An effective hierarchical extreme learning machine based multimodal fusion framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.005 – volume: 105 start-page: 46 year: 2019 ident: ref_24 article-title: Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems International publication-title: J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.08.001 – volume: 320 start-page: 85 year: 2018 ident: ref_39 article-title: DMP-ELMs: Data and model parallel extreme learning machines for large-scale learning tasks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.062 – volume: 86 start-page: 343 year: 2015 ident: ref_43 article-title: Supplier selection in resilient supply chains: A grey relational analysis approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.08.054 – volume: 164 start-page: 65 year: 2018 ident: ref_27 article-title: Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study publication-title: Energy doi: 10.1016/j.energy.2018.08.196 – volume: 229 start-page: 884 year: 2018 ident: ref_28 article-title: Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.08.058 – volume: 72 start-page: 321 year: 2018 ident: ref_8 article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.022 – ident: ref_35 doi: 10.3390/en11092475 – ident: ref_42 doi: 10.3390/molecules22010013 |
| SSID | ssj0000331333 |
| Score | 2.209349 |
| Snippet | The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1331 |
| SubjectTerms | Accuracy Algorithms Alternative energy sources bacterial foraging algorithm Coal Electricity Electricity distribution empirical mode decomposition Energy consumption energy forecasting extreme learning machine algorithm Fault diagnosis grey theory Income distribution Neural networks Optimization Pollutants Regression analysis renewable energy terminal power consumption Time series |
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BywEO5V-kFDQSXDhYjb3-2xNqiisuhKgqUm_WenccIiVOiA20nHgN3oWn4UmYWW9SEIgLB0uWPV6tteOZnfHM9wnxXOcSa4MqSGwqg7jCLFA6lkGS6jizyiib145sIhuP8_NzNfEJt9aXVW5sojPUdmk4R34Yccs27b2j-OXqQ8CsUfx31VNoXBe7jFRGer47KsaT022WZSglBWGyxyWVFN8fYhNGLjILf_NEDrD_D3vsnMzJ7f-d3h2x57eXcNTrw11xDZt74tYvoIP3xXdm4zS65XpncPTZP75-a-GUjN5n7qOCwrUDwllfJjOHCROpwbHr1XQGBkbk-izQSbFYzRzGCDCnGrxCrlD3ZWCgG0sH9GkLki8uOk5Ggod0ncIbV8iJ8JZGXcy-kEh1CZpGdwDSNCjN1JEowdF8Si_bvV88EO9OirPj14HncAiMTMMuiDCyTJSX5xVFWqGttc5tmnCUpqo01QrzMNbkPhFjjbZSNsNomFQaMTcqQflQ7DTLBh8J0CnyX0NDARZztqdVnZBslNATQ42RHogXm_UsjQc4Z56NeUmBDq99ebX2A_FsK7vqYT3-KjVitdhKMBS3u7BcT0v_ZZdIIWli82GWYRzbWio0mTaxqa0K69qmA3Gw0ZjS24e2vFKX_X_ffixu0hZN9bVCB2KnW3_EJ-KG-dTN2vVTr-4_Aep4D9I priority: 102 providerName: ProQuest |
| Title | Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm |
| URI | https://www.proquest.com/docview/2316760524 https://doaj.org/article/e1445d8077e44df39ec7ac4cfd91ffd6 |
| Volume | 12 |
| WOSCitedRecordID | wos000465561400148&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ4QAHxK9YWqqR4MIh6iZ2EvvYLangsEtUFamcIseelJV202o3UOCAeA3ehafhSZhx0rIIJC4cEkXWxLEyE9ufM_4-IZ5ZLbFxaKLUZzJSNeaRsUpGaWZV7o0zXjdBbCKfzfTJiSk3pL44J6ynB-5f3B7SjD_1epznqJRvpEGXW6dc403cND6QbY9zswGmQh8sJYEv2fORSsL1e9jGSUBk8W8jUCDq_6MfDoPL4R1xe5gVwn7fmrviGrb3xK0NrsD74juLaDq75jRlCKrXP75-W8MR9VUXvP0JirCLD4777JYFlKx_Bgdhi2XoF2BCI5YHuiiW5_NADQIshQYvkBPLh-wtsK2nA_rVBrIvPna8hggDE-spTEP-JcJrqnU5_0wm9SewVHvgfaZKqaVB-wj2F6dnq3n3bvlAvDksjg9eRoP0QuRkFndRgolnfTutawJIsW-s1T5LGVyZOsusQR0rS6MeorLoa-NzTMZpbRG1MynKh2KrPWvxkQCbIf_sc4SLWGo9q5uUbJOU7hhbTOxIPL90R-UGXnKWx1hUhE_YddUv143E0yvb856N469WE_bqlQUzaIcCiqtqiKvqX3E1EjuXMVENn_W6Spg3gABgoh7_j2dsi5s0_zJ9ItCO2OpW7_GJuOE-dPP1aldcnxSz8mg3RDadp18KKitfTcu3PwHKOQZe |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAk48I8aKLAScOBg1fb6bw8I9SdVozYhQkEqJ7PeHaeR8kdsKOXEa_ASPAFPw5Mws7ZTEIhbDxwsWfZ4ZK0_z-7MzszH2FOVCMg1SCc0kXCCDGJHqkA4YaSC2EgtTZJbsom430-Oj-VgjX1ramEorbKxidZQm7mmGPmWTyXbuPb2g5eL9w6xRtHuakOhUcHiEM5O0WUrXnT38Ps-8_39znD3wKlZBRwtIq90fPANUbclSYZrf8_kSiUmCslvkFkUKQmJFyg06ACBApNJE4PvhpkCSLQMQaDeS2w9ILC32Pqg2xu8XUV1XCHQ6RNVH1QhpLsFM8-3nqD328xnCQL-sP92Utu_8b8Nx012vV4-8-0K77fYGsxus2u_NFW8w74T26hWBeVzc0sP_uPL14K_RqN-SnVivGPLHfmwSgOa8AERxfFdW4tqDSjfwandcDzpTBdj20OFE2cc3wPKwK_T3LiaGTx4FZZB-c6nkoKtvG5ZO-I9m6gK_BVqnY4_o0h2xhVqtw2yUSm-qSWJ4tuTEQ5ueTK9y95cyPDdY63ZfAYbjKsIaFdUowNJnPRRloco64f4hKvAV232vMFPqusG7sQjMknRkSOspedYa7MnK9lF1bbkr1I7BMOVBLUatxfmy1FaW64U0OUOTeLGMQSByYUEHSsd6NxIL89N1GabDULT2v4V6Tk87__79mN25WDYO0qPuv3DB-wqLkdllRe1yVrl8gM8ZJf1x3JcLB_Vvxpn7y4azj8B4aht2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFCE48I8IFFgJOHCwYu_6bw8ItU0iotJgoSKVk1nvjkOkxAmxoZQTr8GroD5Nn4TZtZ2CQNx64GDJsscja_15dmZ3Zj5CnsiYQ65AOIEOueNnEDlC-twJQulHWiih49ySTUTjcXx4KJIN8qOthTFpla1NtIZaL5RZI-8xU7KNvjfze3mTFpH0hy-WHx3DIGV2Wls6jRoie3B8hOFb-XzUx2_9lLHh4GD3pdMwDDiKh17lMGDa0LjFcYZxgKdzKWMdBiaGEFkYSgGx50s07gC-BJ0JHQFzg0wCxEoEwFHvBbKJLrnPOmQzGe0n79YrPC7nGADyuicq58LtQeExGxV6v82Clizgj7nATnDDa__z0FwnVxu3mm7X_8ENsgHFTXLll2aLt8iJYSFVsjR53tTShp9--17SN2jsj0z9GB3YMkh6UKcHzWhiCOTorq1RtYaV7uCUrymeDObLqe2tQg2XHO2Dycxv0t-oLDQetF6uQfnBl8oswtKmle2E7tsEVqCvUet8-hVFsmMqUbttnI1K8U0teRTdnk1wcKsP89vk7bkM3x3SKRYF3CVUhmB2SxUGloarPszyAGVZgE-4EpjskmctllLVNHY3_CKzFAM8g7v0DHdd8ngtu6zbmfxVasdAci1hWpDbC4vVJG0sWgoYigc6dqMIfF_nXICKpPJVroWX5zrskq0WrWljF8v0DKr3_n37EbmEGE5fjcZ798ll9FJFnS61RTrV6hM8IBfV52parh42fx0l788bzT8BDMx2mQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+China%E2%80%99s+Renewable+Energy+Terminal+Power+Consumption+Based+on+Empirical+Mode+Decomposition+and+an+Improved+Extreme+Learning+Machine+Optimized+by+a+Bacterial+Foraging+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Peng+Jiang&rft.au=Jun+Dong&rft.au=Hui+Huang&rft.date=2019-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=12&rft.issue=7&rft.spage=1331&rft_id=info:doi/10.3390%2Fen12071331&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1445d8077e44df39ec7ac4cfd91ffd6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |