Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm

The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 12; H. 7; S. 1331
Hauptverfasser: Jiang, Peng, Dong, Jun, Huang, Hui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.04.2019
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the fossil energy consumption contribution in the terminal energy consumption. The development of renewable energy in the terminal energy and energy conversion links has significantly increased the proportion of clean low-carbon energy. In order to accurately get the proportion of renewable energy terminal power consumption, firstly, this paper selects a primary influencing-factors set including the gross GDP, fixed investment in renewable energy industry, total length of cross-provincial and cross-regional high-voltage transmission lines, etc. as influencing factors of China’s electricity consumption fraction produced by renewable energy based on a multitude of papers. Secondly, from the perspective of signal decomposition, the data inevitably has a lot of interference and noise. This paper uses the empirical mode decomposition (EMD) algorithm to reduce the degree of signal distortion and decomposes the signal into natural modes including several intrinsic mode functions (IMFs) and a residual term (Res); afterwards, a new extreme learning machine (ELM) forecasting model optimized by an Inverse Square Root Linear Units (ISRLU) activation function is proposed, and the ISRLU function is used to replace the implicit layer activation function in the original ELM algorithm. Then, a new bacterial foraging algorithm (BFOA) is applied to optimize the parameters of the optimized ELM forecasting model. After multiple learning and training operations, the optimal parameters are obtained. Finally, we superimpose the output of each IMF and Res training task to get the amount of China’s power consumption produced by renewable energy. Some statistical indicators including root mean squard error (RMSE) are applied to compare the accuracy of several intelligent machine forecasting algorithms. We prove that the proposed forecasting model has higher prediction accuracy and achieves faster training speed by an empirical analysis. Finally, the proposed combined forecasting algorithm is applied to predict China’s renewable energy terminal power consumption from 2018 to 2030. According to the forecasting results, it is found that China’s renewable energy terminal power consumption shows a gradual growth trend, and will exceeded 3300 billion kWh in 2030, which will represent a renewable energy terminal power ratio of about 38% in 2030.
AbstractList The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the fossil energy consumption contribution in the terminal energy consumption. The development of renewable energy in the terminal energy and energy conversion links has significantly increased the proportion of clean low-carbon energy. In order to accurately get the proportion of renewable energy terminal power consumption, firstly, this paper selects a primary influencing-factors set including the gross GDP, fixed investment in renewable energy industry, total length of cross-provincial and cross-regional high-voltage transmission lines, etc. as influencing factors of China’s electricity consumption fraction produced by renewable energy based on a multitude of papers. Secondly, from the perspective of signal decomposition, the data inevitably has a lot of interference and noise. This paper uses the empirical mode decomposition (EMD) algorithm to reduce the degree of signal distortion and decomposes the signal into natural modes including several intrinsic mode functions (IMFs) and a residual term (Res); afterwards, a new extreme learning machine (ELM) forecasting model optimized by an Inverse Square Root Linear Units (ISRLU) activation function is proposed, and the ISRLU function is used to replace the implicit layer activation function in the original ELM algorithm. Then, a new bacterial foraging algorithm (BFOA) is applied to optimize the parameters of the optimized ELM forecasting model. After multiple learning and training operations, the optimal parameters are obtained. Finally, we superimpose the output of each IMF and Res training task to get the amount of China’s power consumption produced by renewable energy. Some statistical indicators including root mean squard error (RMSE) are applied to compare the accuracy of several intelligent machine forecasting algorithms. We prove that the proposed forecasting model has higher prediction accuracy and achieves faster training speed by an empirical analysis. Finally, the proposed combined forecasting algorithm is applied to predict China’s renewable energy terminal power consumption from 2018 to 2030. According to the forecasting results, it is found that China’s renewable energy terminal power consumption shows a gradual growth trend, and will exceeded 3300 billion kWh in 2030, which will represent a renewable energy terminal power ratio of about 38% in 2030.
Author Jiang, Peng
Dong, Jun
Huang, Hui
Author_xml – sequence: 1
  givenname: Peng
  surname: Jiang
  fullname: Jiang, Peng
– sequence: 2
  givenname: Jun
  surname: Dong
  fullname: Dong, Jun
– sequence: 3
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
BookMark eNptkdFqFDEUhoNUsNbe-AQB74TVZJLJzFzWdasLWypSr4czyZlplplkTLLW9crX8F18Gp_EbFdUxEDIIfnO_4f_PCYnzjsk5ClnL4Ro2Et0vGAVF4I_IKe8adSCs0qc_FU_IucxblleGRJCnJLvlz6ghpisG-jy1jr48fVbpO_R4R10I9KVwzDs6Q2GKT-O9J2_w0CX3sXdNCfrHX0FEQ3NxWqabbA6Q1feIH2N2k-zj_aeAmfyputpDv5T5lefU8AJ6QYhuIP5Fehsj_Q6q072S0a6PYWsrhMGm0XzT2E4kBfj4INNt9MT8rCHMeL5r_OMfLhc3SzfLjbXb9bLi81CC8XTosDCFGXF6rpTRclND1AbVVZcyaZTChqsuQReCEQJaLrGVFiwsgPEWjclijOyPuoaD9t2DnaCsG892Pb-woehhZCsHrFFLmVpalZVKKXpRYO6Ai11bxre90ZlrWdHrZzDxx3G1G79LuRkY1sIrirFykJm6vmR0sHHGLD_7cpZexh2-2fYGWb_wNomOKSeAtjxfy0_AVYMsj4
CitedBy_id crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_1016_j_jclepro_2020_123292
crossref_primary_10_3390_en13082111
crossref_primary_10_1016_j_jclepro_2020_120107
Cites_doi 10.3390/en5114430
10.1016/j.energy.2018.09.090
10.3390/en4101495
10.3390/en4081246
10.3390/app6010020
10.3390/ma10070715
10.1016/j.energy.2004.08.012
10.3390/socsci6040144
10.3390/en10111918
10.3390/e20120932
10.1016/j.jclepro.2014.12.020
10.1016/j.enpol.2015.11.028
10.1016/j.renene.2018.06.079
10.1049/iet-rpg.2018.5175
10.1016/j.neucom.2018.08.028
10.3390/en11123433
10.1016/j.renene.2018.06.113
10.3390/e19010006
10.1016/j.energy.2009.12.021
10.1007/s00521-006-0031-4
10.3390/e19010014
10.1016/j.scitotenv.2018.10.193
10.1016/j.energy.2006.11.014
10.1016/j.apenergy.2012.01.010
10.3390/ijgi6010005
10.1007/s00170-010-2862-5
10.3390/su9112109
10.1080/02533839.2011.576502
10.1016/j.ijpe.2014.09.027
10.1016/j.neucom.2018.09.005
10.1016/j.ijepes.2018.08.001
10.1016/j.neucom.2018.08.062
10.1016/j.jclepro.2014.08.054
10.1016/j.energy.2018.08.196
10.1016/j.apenergy.2018.08.058
10.1016/j.asoc.2018.07.022
10.3390/en11092475
10.3390/molecules22010013
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en12071331
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_e1445d8077e44df39ec7ac4cfd91ffd6
10_3390_en12071331
GeographicLocations New Zealand
Beijing China
Iran
China
GeographicLocations_xml – name: China
– name: Iran
– name: New Zealand
– name: Beijing China
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-2e2d257088b6251dfaa8d6571649b66a9e814a123ee4aedb9d7e205baee8c95e3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465561400148&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 18:55:12 EDT 2025
Mon Jun 30 11:23:34 EDT 2025
Tue Nov 18 19:47:52 EST 2025
Sat Nov 29 07:12:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-2e2d257088b6251dfaa8d6571649b66a9e814a123ee4aedb9d7e205baee8c95e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/e1445d8077e44df39ec7ac4cfd91ffd6
PQID 2316760524
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_e1445d8077e44df39ec7ac4cfd91ffd6
proquest_journals_2316760524
crossref_primary_10_3390_en12071331
crossref_citationtrail_10_3390_en12071331
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yuan (ref_46) 2015; 7
Hashemi (ref_44) 2015; 159
ref_35
ref_34
ref_33
ref_10
ref_32
Liu (ref_41) 2018; 8
Meng (ref_3) 2018; 165
Kumar (ref_14) 2010; 35
ref_31
Bornapour (ref_26) 2019; 130
ref_30
An (ref_29) 2012; 17
Denholm (ref_25) 2019; 130
Azadeh (ref_13) 2011; 34
ref_19
Eissa (ref_23) 2018; 12
Zhou (ref_8) 2018; 72
Kandananond (ref_18) 2011; 4
Ma (ref_20) 2003; 5
Du (ref_37) 2018; 322
Shang (ref_38) 2019; 651
Que (ref_47) 2018; 11
Mohamed (ref_12) 2005; 30
Li (ref_36) 2018; 321
ref_21
ref_42
Akay (ref_4) 2007; 32
ref_40
ref_1
Chiang (ref_9) 2006; 15
ref_2
Azadeh (ref_11) 2011; 53
Li (ref_16) 2012; 5
Rajesh (ref_43) 2015; 86
Hussain (ref_15) 2016; 90
Wang (ref_22) 2012; 94
Navarro (ref_24) 2019; 105
Angenendt (ref_28) 2018; 229
Ming (ref_39) 2018; 320
ref_5
Meng (ref_17) 2011; 4
(ref_45) 2015; 91
Taibi (ref_27) 2018; 164
ref_7
ref_6
References_xml – volume: 5
  start-page: 4430
  year: 2012
  ident: ref_16
  article-title: Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm
  publication-title: Energies
  doi: 10.3390/en5114430
– volume: 5
  start-page: 29
  year: 2003
  ident: ref_20
  article-title: Short term load forecasting using artificial neuron network and fuzzy inference
  publication-title: Power Syst. Technol.
– volume: 165
  start-page: 143
  year: 2018
  ident: ref_3
  article-title: Decomposition and forecasting analysis of China’s household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.090
– volume: 4
  start-page: 1495
  year: 2011
  ident: ref_17
  article-title: Forecasting Monthly Electric Energy Consumption Using Feature Extraction
  publication-title: Energies
  doi: 10.3390/en4101495
– volume: 4
  start-page: 1246
  year: 2011
  ident: ref_18
  article-title: Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach
  publication-title: Energies
  doi: 10.3390/en4081246
– ident: ref_19
  doi: 10.3390/app6010020
– volume: 11
  start-page: 21
  year: 2018
  ident: ref_47
  article-title: Research on the trend of Power demand growth in the medium and long term in China
  publication-title: Energy China
– volume: 17
  start-page: 1036
  year: 2012
  ident: ref_29
  article-title: Short-term prediction of wind power using EMD and chaotic theory Communications in Nonlinear
  publication-title: Sci. Numer. Simul.
– ident: ref_7
  doi: 10.3390/ma10070715
– volume: 30
  start-page: 1833
  year: 2005
  ident: ref_12
  article-title: Forecasting electricity consumption in New Zealand using economic and demographic variables
  publication-title: Energy
  doi: 10.1016/j.energy.2004.08.012
– ident: ref_5
  doi: 10.3390/socsci6040144
– ident: ref_10
  doi: 10.3390/en10111918
– ident: ref_40
– ident: ref_31
  doi: 10.3390/e20120932
– volume: 91
  start-page: 347
  year: 2015
  ident: ref_45
  article-title: Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.12.020
– volume: 90
  start-page: 73
  year: 2016
  ident: ref_15
  article-title: Forecasting electricity consumption in Pakistan: The way forward
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.11.028
– ident: ref_1
– volume: 130
  start-page: 388
  year: 2019
  ident: ref_25
  article-title: Timescales of energy storage needed for reducing renewable energy curtailment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.079
– ident: ref_21
– volume: 12
  start-page: 1843
  year: 2018
  ident: ref_23
  article-title: Challenges and novel solution for wide-area protection due to renewable sources integration into smart grid: An extensive review
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5175
– volume: 321
  start-page: 17
  year: 2018
  ident: ref_36
  article-title: Laplacian twin extreme learning machine for semi-supervised classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.028
– volume: 7
  start-page: 21
  year: 2015
  ident: ref_46
  article-title: Prospect of China electricity demand and Analysis of Coal and Power demand in the new normal economy
  publication-title: Energy China
– ident: ref_30
  doi: 10.3390/en11123433
– volume: 130
  start-page: 1049
  year: 2019
  ident: ref_26
  article-title: An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.113
– ident: ref_33
  doi: 10.3390/e19010006
– volume: 35
  start-page: 1709
  year: 2010
  ident: ref_14
  article-title: Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.021
– volume: 15
  start-page: 328
  year: 2006
  ident: ref_9
  article-title: A hybrid approach of neural networks and grey modeling for adaptive electricity load forecasting
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-006-0031-4
– volume: 8
  start-page: 7
  year: 2018
  ident: ref_41
  article-title: Optimization of Processing Parameters for a Reverse Drawing–Flanging Combined Process for a B550CL High-Strength Steel Spoke Based on Grey Relational Analysis
  publication-title: Matels
– ident: ref_34
  doi: 10.3390/e19010014
– volume: 651
  start-page: 3043
  year: 2019
  ident: ref_38
  article-title: A novel model for hourly PM2.5 concentration prediction based on CART and EELM
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.193
– ident: ref_2
– volume: 32
  start-page: 1670
  year: 2007
  ident: ref_4
  article-title: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2006.11.014
– volume: 94
  start-page: 65
  year: 2012
  ident: ref_22
  article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.01.010
– ident: ref_32
  doi: 10.3390/ijgi6010005
– volume: 53
  start-page: 645
  year: 2011
  ident: ref_11
  article-title: An integrated fuzzy regression-analysis of variance algorithm for improvement of electricity consumption estimation in uncertain environments
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2862-5
– ident: ref_6
  doi: 10.3390/su9112109
– volume: 34
  start-page: 1047
  year: 2011
  ident: ref_13
  article-title: An integrated simulation-based fuzzy regression-time series algorithm for electricity consumption estimation with non-stationary data
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2011.576502
– volume: 159
  start-page: 178
  year: 2015
  ident: ref_44
  article-title: An integrated green supplier selection approach with analytic network process and improved Grey relational analysis
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2014.09.027
– volume: 322
  start-page: 141
  year: 2018
  ident: ref_37
  article-title: An effective hierarchical extreme learning machine based multimodal fusion framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.005
– volume: 105
  start-page: 46
  year: 2019
  ident: ref_24
  article-title: Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems International
  publication-title: J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.08.001
– volume: 320
  start-page: 85
  year: 2018
  ident: ref_39
  article-title: DMP-ELMs: Data and model parallel extreme learning machines for large-scale learning tasks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.062
– volume: 86
  start-page: 343
  year: 2015
  ident: ref_43
  article-title: Supplier selection in resilient supply chains: A grey relational analysis approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.08.054
– volume: 164
  start-page: 65
  year: 2018
  ident: ref_27
  article-title: Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.196
– volume: 229
  start-page: 884
  year: 2018
  ident: ref_28
  article-title: Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.08.058
– volume: 72
  start-page: 321
  year: 2018
  ident: ref_8
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.022
– ident: ref_35
  doi: 10.3390/en11092475
– ident: ref_42
  doi: 10.3390/molecules22010013
SSID ssj0000331333
Score 2.209349
Snippet The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1331
SubjectTerms Accuracy
Algorithms
Alternative energy sources
bacterial foraging algorithm
Coal
Electricity
Electricity distribution
empirical mode decomposition
Energy consumption
energy forecasting
extreme learning machine algorithm
Fault diagnosis
grey theory
Income distribution
Neural networks
Optimization
Pollutants
Regression analysis
renewable energy terminal power consumption
Time series
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BywEO5V-kFDQSXDhYjb3-2xNqiisuhKgqUm_WenccIiVOiA20nHgN3oWn4UmYWW9SEIgLB0uWPV6tteOZnfHM9wnxXOcSa4MqSGwqg7jCLFA6lkGS6jizyiib145sIhuP8_NzNfEJt9aXVW5sojPUdmk4R34Yccs27b2j-OXqQ8CsUfx31VNoXBe7jFRGer47KsaT022WZSglBWGyxyWVFN8fYhNGLjILf_NEDrD_D3vsnMzJ7f-d3h2x57eXcNTrw11xDZt74tYvoIP3xXdm4zS65XpncPTZP75-a-GUjN5n7qOCwrUDwllfJjOHCROpwbHr1XQGBkbk-izQSbFYzRzGCDCnGrxCrlD3ZWCgG0sH9GkLki8uOk5Ggod0ncIbV8iJ8JZGXcy-kEh1CZpGdwDSNCjN1JEowdF8Si_bvV88EO9OirPj14HncAiMTMMuiDCyTJSX5xVFWqGttc5tmnCUpqo01QrzMNbkPhFjjbZSNsNomFQaMTcqQflQ7DTLBh8J0CnyX0NDARZztqdVnZBslNATQ42RHogXm_UsjQc4Z56NeUmBDq99ebX2A_FsK7vqYT3-KjVitdhKMBS3u7BcT0v_ZZdIIWli82GWYRzbWio0mTaxqa0K69qmA3Gw0ZjS24e2vFKX_X_ffixu0hZN9bVCB2KnW3_EJ-KG-dTN2vVTr-4_Aep4D9I
  priority: 102
  providerName: ProQuest
Title Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm
URI https://www.proquest.com/docview/2316760524
https://doaj.org/article/e1445d8077e44df39ec7ac4cfd91ffd6
Volume 12
WOSCitedRecordID wos000465561400148&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ4QAHxK9YWqqR4MIh6iZ2EvvYLangsEtUFamcIseelJV202o3UOCAeA3ehafhSZhx0rIIJC4cEkXWxLEyE9ufM_4-IZ5ZLbFxaKLUZzJSNeaRsUpGaWZV7o0zXjdBbCKfzfTJiSk3pL44J6ynB-5f3B7SjD_1epznqJRvpEGXW6dc403cND6QbY9zswGmQh8sJYEv2fORSsL1e9jGSUBk8W8jUCDq_6MfDoPL4R1xe5gVwn7fmrviGrb3xK0NrsD74juLaDq75jRlCKrXP75-W8MR9VUXvP0JirCLD4777JYFlKx_Bgdhi2XoF2BCI5YHuiiW5_NADQIshQYvkBPLh-wtsK2nA_rVBrIvPna8hggDE-spTEP-JcJrqnU5_0wm9SewVHvgfaZKqaVB-wj2F6dnq3n3bvlAvDksjg9eRoP0QuRkFndRgolnfTutawJIsW-s1T5LGVyZOsusQR0rS6MeorLoa-NzTMZpbRG1MynKh2KrPWvxkQCbIf_sc4SLWGo9q5uUbJOU7hhbTOxIPL90R-UGXnKWx1hUhE_YddUv143E0yvb856N469WE_bqlQUzaIcCiqtqiKvqX3E1EjuXMVENn_W6Spg3gABgoh7_j2dsi5s0_zJ9ItCO2OpW7_GJuOE-dPP1aldcnxSz8mg3RDadp18KKitfTcu3PwHKOQZe
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAk48I8aKLAScOBg1fb6bw8I9SdVozYhQkEqJ7PeHaeR8kdsKOXEa_ASPAFPw5Mws7ZTEIhbDxwsWfZ4ZK0_z-7MzszH2FOVCMg1SCc0kXCCDGJHqkA4YaSC2EgtTZJbsom430-Oj-VgjX1ramEorbKxidZQm7mmGPmWTyXbuPb2g5eL9w6xRtHuakOhUcHiEM5O0WUrXnT38Ps-8_39znD3wKlZBRwtIq90fPANUbclSYZrf8_kSiUmCslvkFkUKQmJFyg06ACBApNJE4PvhpkCSLQMQaDeS2w9ILC32Pqg2xu8XUV1XCHQ6RNVH1QhpLsFM8-3nqD328xnCQL-sP92Utu_8b8Nx012vV4-8-0K77fYGsxus2u_NFW8w74T26hWBeVzc0sP_uPL14K_RqN-SnVivGPLHfmwSgOa8AERxfFdW4tqDSjfwandcDzpTBdj20OFE2cc3wPKwK_T3LiaGTx4FZZB-c6nkoKtvG5ZO-I9m6gK_BVqnY4_o0h2xhVqtw2yUSm-qSWJ4tuTEQ5ueTK9y95cyPDdY63ZfAYbjKsIaFdUowNJnPRRloco64f4hKvAV232vMFPqusG7sQjMknRkSOspedYa7MnK9lF1bbkr1I7BMOVBLUatxfmy1FaW64U0OUOTeLGMQSByYUEHSsd6NxIL89N1GabDULT2v4V6Tk87__79mN25WDYO0qPuv3DB-wqLkdllRe1yVrl8gM8ZJf1x3JcLB_Vvxpn7y4azj8B4aht2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFCE48I8IFFgJOHCwYu_6bw8ItU0iotJgoSKVk1nvjkOkxAmxoZQTr8GroD5Nn4TZtZ2CQNx64GDJsscja_15dmZ3Zj5CnsiYQ65AOIEOueNnEDlC-twJQulHWiih49ySTUTjcXx4KJIN8qOthTFpla1NtIZaL5RZI-8xU7KNvjfze3mTFpH0hy-WHx3DIGV2Wls6jRoie3B8hOFb-XzUx2_9lLHh4GD3pdMwDDiKh17lMGDa0LjFcYZxgKdzKWMdBiaGEFkYSgGx50s07gC-BJ0JHQFzg0wCxEoEwFHvBbKJLrnPOmQzGe0n79YrPC7nGADyuicq58LtQeExGxV6v82Clizgj7nATnDDa__z0FwnVxu3mm7X_8ENsgHFTXLll2aLt8iJYSFVsjR53tTShp9--17SN2jsj0z9GB3YMkh6UKcHzWhiCOTorq1RtYaV7uCUrymeDObLqe2tQg2XHO2Dycxv0t-oLDQetF6uQfnBl8oswtKmle2E7tsEVqCvUet8-hVFsmMqUbttnI1K8U0teRTdnk1wcKsP89vk7bkM3x3SKRYF3CVUhmB2SxUGloarPszyAGVZgE-4EpjskmctllLVNHY3_CKzFAM8g7v0DHdd8ngtu6zbmfxVasdAci1hWpDbC4vVJG0sWgoYigc6dqMIfF_nXICKpPJVroWX5zrskq0WrWljF8v0DKr3_n37EbmEGE5fjcZ798ll9FJFnS61RTrV6hM8IBfV52parh42fx0l788bzT8BDMx2mQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+China%E2%80%99s+Renewable+Energy+Terminal+Power+Consumption+Based+on+Empirical+Mode+Decomposition+and+an+Improved+Extreme+Learning+Machine+Optimized+by+a+Bacterial+Foraging+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Peng+Jiang&rft.au=Jun+Dong&rft.au=Hui+Huang&rft.date=2019-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=12&rft.issue=7&rft.spage=1331&rft_id=info:doi/10.3390%2Fen12071331&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1445d8077e44df39ec7ac4cfd91ffd6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon