Unsupervised Multiview Fuzzy C-Means Clustering Algorithm

The rapid development in information technology makes it easier to collect vast numbers of data through the cloud, internet and other sources of information. Multiview clustering is a significant way for clustering multiview data that may come from multiple ways. The fuzzy c-means (FCM) algorithm fo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 12; číslo 21; s. 4467
Hlavní autori: Hussain, Ishtiaq, Sinaga, Kristina P., Yang, Miin-Shen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2023
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The rapid development in information technology makes it easier to collect vast numbers of data through the cloud, internet and other sources of information. Multiview clustering is a significant way for clustering multiview data that may come from multiple ways. The fuzzy c-means (FCM) algorithm for clustering (single-view) datasets was extended to process multiview datasets in the literature, called the multiview FCM (MV-FCM). However, most of the MV-FCM clustering algorithms and their extensions in the literature need prior information about the number of clusters and are also highly influenced by initializations. In this paper, we propose a novel MV-FCM clustering algorithm with an unsupervised learning framework, called the unsupervised MV-FCM (U-MV-FCM), such that it can search an optimal number of clusters during the iteration process of the algorithm without giving the number of clusters a priori. It is also free of initializations and parameter selection. We then use three synthetic and six benchmark datasets to make comparisons between the proposed U-MV-FCM and other existing algorithms and to highlight its practical implications. The experimental results show that our proposed U-MV-FCM algorithm is superior and more useful for clustering multiview datasets.
AbstractList The rapid development in information technology makes it easier to collect vast numbers of data through the cloud, internet and other sources of information. Multiview clustering is a significant way for clustering multiview data that may come from multiple ways. The fuzzy c-means (FCM) algorithm for clustering (single-view) datasets was extended to process multiview datasets in the literature, called the multiview FCM (MV-FCM). However, most of the MV-FCM clustering algorithms and their extensions in the literature need prior information about the number of clusters and are also highly influenced by initializations. In this paper, we propose a novel MV-FCM clustering algorithm with an unsupervised learning framework, called the unsupervised MV-FCM (U-MV-FCM), such that it can search an optimal number of clusters during the iteration process of the algorithm without giving the number of clusters a priori. It is also free of initializations and parameter selection. We then use three synthetic and six benchmark datasets to make comparisons between the proposed U-MV-FCM and other existing algorithms and to highlight its practical implications. The experimental results show that our proposed U-MV-FCM algorithm is superior and more useful for clustering multiview datasets.
Audience Academic
Author Hussain, Ishtiaq
Sinaga, Kristina P.
Yang, Miin-Shen
Author_xml – sequence: 1
  givenname: Ishtiaq
  orcidid: 0000-0003-2816-2397
  surname: Hussain
  fullname: Hussain, Ishtiaq
– sequence: 2
  givenname: Kristina P.
  surname: Sinaga
  fullname: Sinaga, Kristina P.
– sequence: 3
  givenname: Miin-Shen
  orcidid: 0000-0002-4907-3548
  surname: Yang
  fullname: Yang, Miin-Shen
BookMark eNp9kN9LwzAQx4NMcM79Bb4UfO7Mj7ZpHkdxKmz44p5LTK81o0tmkk62v96M-SAi3sHdcdznvvC9RiNjDSB0S_CMMYHvoQcVnDVaeUIpybKCX6AxxVykggo6-jFfoan3GxxDEFYyPEZibfywA7fXHppkNfRB7zV8JovheDwkVboCaXxS9YMP4LTpknnfWafD-_YGXbay9zD97hO0Xjy8Vk_p8uXxuZovU8UKElKqMtKCpFLmLS_zBjPGM3Yqkog3gTOsBMtJGxe5yoBwXALOClmUkPOikWyC7s5_d85-DOBDvbGDM1GypmVZEiJwkcer2fmqkz3U2rQ2OKliNrDVKhrW6rifc05zFj0qIsDOgHLWewdtvXN6K92hJrg--Vr_4WukxC9K6SCDtibK6f5f9gsRzIIm
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3562531
crossref_primary_10_3390_biomimetics10050331
crossref_primary_10_1155_mse_3092633
crossref_primary_10_1109_ACCESS_2025_3553252
crossref_primary_10_3390_bioengineering11121190
crossref_primary_10_3390_sym16121646
crossref_primary_10_1109_ACCESS_2024_3374208
crossref_primary_10_3390_app132212531
crossref_primary_10_1016_j_jclepro_2025_145054
crossref_primary_10_1088_1742_6596_2849_1_012120
crossref_primary_10_3390_fi17040150
crossref_primary_10_1016_j_neucom_2024_128884
crossref_primary_10_1016_j_ijtst_2024_10_001
crossref_primary_10_3390_electronics14142845
Cites_doi 10.1016/j.patcog.2017.12.014
10.1080/01969727308546047
10.1016/j.knosys.2020.105482
10.1016/0165-0114(78)90016-7
10.1109/TFUZZ.2020.3044253
10.1145/502512.502550
10.1109/ACCESS.2023.3243133
10.3390/electronics12010168
10.1109/TMM.2020.3019683
10.1109/TFUZZ.2017.2743679
10.2298/CSIS230130043P
10.1109/TFUZZ.2015.2421071
10.2307/2532201
10.1109/TCYB.2014.2334595
10.1109/ICDM.2009.138
10.1109/34.192473
10.1016/j.patcog.2017.05.017
10.1007/978-3-642-04180-8_45
10.1002/widm.1298
10.1007/s00500-012-0802-z
10.3390/s22187059
10.1016/S0167-8655(02)00130-7
10.3390/electronics9010188
10.1016/j.eswa.2016.10.006
10.1080/01621459.1983.10478008
10.1109/TFUZZ.2021.3058572
10.1007/BF02339490
10.18576/amis/100428
10.1016/j.patcog.2021.108064
10.1016/j.patcog.2009.02.010
10.1016/j.ins.2020.07.059
10.1080/01621459.1971.10482356
10.1016/S0019-9958(69)90591-9
10.1109/34.85677
10.1002/ece3.5774
10.1109/TPAMI.2013.142
10.3390/electronics9040554
10.1016/j.patcog.2019.107015
10.1109/34.927464
10.1080/01969727308546046
10.1109/TSMCB.2008.2004818
10.1109/ICDM.2016.0167
10.7554/eLife.12215
10.1016/S0019-9958(65)90241-X
10.1016/j.ins.2017.07.005
10.1109/TKDE.2019.2903810
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics12214467
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A772532146
10_3390_electronics12214467
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-2c41fea2aa5f785d0337433374a19b9040c9351f3745c4e1708e046a68e576da3
IEDL.DBID BENPR
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001170579300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Jul 25 07:04:50 EDT 2025
Tue Nov 04 18:30:44 EST 2025
Tue Nov 18 21:55:29 EST 2025
Sat Nov 29 07:16:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-2c41fea2aa5f785d0337433374a19b9040c9351f3745c4e1708e046a68e576da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2816-2397
0000-0002-4907-3548
OpenAccessLink https://www.proquest.com/docview/2888119065?pq-origsite=%requestingapplication%
PQID 2888119065
PQPubID 2032404
ParticipantIDs proquest_journals_2888119065
gale_infotracacademiconefile_A772532146
crossref_primary_10_3390_electronics12214467
crossref_citationtrail_10_3390_electronics12214467
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jaccard (ref_56) 1901; 37
Dunn (ref_12) 1975; 3
Jiang (ref_21) 2014; 45
Zeng (ref_23) 2017; 26
ref_55
ref_19
ref_18
ref_17
Chen (ref_26) 2020; 194
Wu (ref_42) 2009; 42
ref_15
Zadeh (ref_10) 1965; 8
Yang (ref_28) 2021; 119
Xu (ref_34) 2016; 10
Vidulin (ref_46) 2016; 44
Ruspini (ref_11) 1969; 15
Kumar (ref_16) 2020; 30
Rong (ref_52) 2021; 547
ref_20
Banfield (ref_4) 1993; 1
Lengyel (ref_32) 2019; 9
Yang (ref_29) 2023; 11
Tan (ref_27) 2020; 23
Chamroukhi (ref_7) 2019; 9
Yang (ref_33) 2016; 5
Wang (ref_48) 2019; 32
Huang (ref_25) 2020; 97
Zhong (ref_5) 2003; 4
Bezdek (ref_38) 1974; 1
ref_30
Roubens (ref_43) 1978; 1
Bezdek (ref_39) 1973; 3
Fowlkes (ref_54) 1983; 78
Chaomurilige (ref_13) 2015; 23
Gath (ref_40) 1989; 11
Yang (ref_35) 2017; 71
Zhu (ref_37) 2009; 39
Papakostas (ref_31) 2023; 20
Pereira (ref_44) 2013; 36
Benjamin (ref_24) 2022; 30
Hung (ref_2) 2012; 16
Lewis (ref_50) 2004; 5
ref_47
ref_45
Georghiades (ref_51) 2001; 23
Yu (ref_6) 2018; 77
Wang (ref_22) 2017; 72
Rand (ref_53) 1971; 66
ref_1
Xie (ref_41) 1991; 13
ref_3
ref_49
ref_9
ref_8
Chaomurilige (ref_14) 2017; 417
Pedrycz (ref_36) 2002; 23
References_xml – volume: 77
  start-page: 188
  year: 2018
  ident: ref_6
  article-title: On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.12.014
– volume: 3
  start-page: 58
  year: 1973
  ident: ref_39
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546047
– volume: 194
  start-page: 105482
  year: 2020
  ident: ref_26
  article-title: Graph-regularized least squares regression for multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105482
– volume: 1
  start-page: 239
  year: 1978
  ident: ref_43
  article-title: Pattern classification problems and fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(78)90016-7
– ident: ref_55
– volume: 4
  start-page: 1001
  year: 2003
  ident: ref_5
  article-title: A unified framework for model-based clustering
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 687
  year: 2020
  ident: ref_16
  article-title: Bias-corrected intuitionistic fuzzy c-means with spatial neighborhood information approach for human brain MRI image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.3044253
– ident: ref_18
  doi: 10.1145/502512.502550
– volume: 11
  start-page: 13574
  year: 2023
  ident: ref_29
  article-title: Unsupervised multi-view K-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3243133
– ident: ref_17
  doi: 10.3390/electronics12010168
– volume: 23
  start-page: 2943
  year: 2020
  ident: ref_27
  article-title: Unsupervised multi-view clustering by squeezing hybrid knowledge from cross view and each view
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3019683
– volume: 26
  start-page: 1671
  year: 2017
  ident: ref_23
  article-title: A unified collaborative multikernel fuzzy clustering for multiview data
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2743679
– volume: 20
  start-page: 1389
  year: 2023
  ident: ref_31
  article-title: PARSAT: Fuzzy logic for adaptive spatial ability training in an augmented reality system
  publication-title: Comput. Sci. Inf. Syst.
  doi: 10.2298/CSIS230130043P
– ident: ref_1
– volume: 23
  start-page: 2329
  year: 2015
  ident: ref_13
  article-title: Analysis of parameter selection for Gustafson–Kessel fuzzy clustering using Jacobian matrix
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2421071
– volume: 1
  start-page: 803
  year: 1993
  ident: ref_4
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
  doi: 10.2307/2532201
– ident: ref_8
– volume: 45
  start-page: 688
  year: 2014
  ident: ref_21
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2334595
– volume: 44
  start-page: gkw964
  year: 2016
  ident: ref_46
  article-title: The landscape of microbial phenotypic traits and associated genes
  publication-title: Nucleic Acids Res.
– ident: ref_20
  doi: 10.1109/ICDM.2009.138
– volume: 11
  start-page: 773
  year: 1989
  ident: ref_40
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192473
– volume: 71
  start-page: 45
  year: 2017
  ident: ref_35
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.017
– ident: ref_49
  doi: 10.1007/978-3-642-04180-8_45
– volume: 9
  start-page: e1298
  year: 2019
  ident: ref_7
  article-title: Model-based clustering and classification of functional data
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1298
– volume: 16
  start-page: 1043
  year: 2012
  ident: ref_2
  article-title: On mean shift-based clustering for circular data
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0802-z
– ident: ref_30
  doi: 10.3390/s22187059
– volume: 23
  start-page: 1675
  year: 2002
  ident: ref_36
  article-title: Collaborative fuzzy clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(02)00130-7
– ident: ref_9
  doi: 10.3390/electronics9010188
– volume: 72
  start-page: 457
  year: 2017
  ident: ref_22
  article-title: Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.006
– volume: 78
  start-page: 553
  year: 1983
  ident: ref_54
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10478008
– volume: 37
  start-page: 241
  year: 1901
  ident: ref_56
  article-title: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines
  publication-title: Bull. Soc. Vaudoise Sci. Nat.
– volume: 30
  start-page: 1357
  year: 2022
  ident: ref_24
  article-title: Weighted multiview possibilistic c-means clustering with L2 regularization
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2021.3058572
– ident: ref_3
– volume: 1
  start-page: 57
  year: 1974
  ident: ref_38
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: J. Math. Biol.
  doi: 10.1007/BF02339490
– volume: 10
  start-page: 1493
  year: 2016
  ident: ref_34
  article-title: Reviews on determining the number of clusters
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.18576/amis/100428
– ident: ref_47
– volume: 119
  start-page: 108064
  year: 2021
  ident: ref_28
  article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108064
– volume: 42
  start-page: 2541
  year: 2009
  ident: ref_42
  article-title: Robust cluster validity indexes
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.02.010
– volume: 547
  start-page: 68
  year: 2021
  ident: ref_52
  article-title: Learning a consensus affinity matrix for multi-view clustering via subspaces merging on Grassmann manifold
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.059
– volume: 66
  start-page: 846
  year: 1971
  ident: ref_53
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482356
– volume: 15
  start-page: 22
  year: 1969
  ident: ref_11
  article-title: A new approach to clustering
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(69)90591-9
– volume: 13
  start-page: 841
  year: 1991
  ident: ref_41
  article-title: validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.85677
– volume: 9
  start-page: 13231
  year: 2019
  ident: ref_32
  article-title: Silhouette width using generalized mean—A flexible method for assessing clustering efficiency
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.5774
– volume: 36
  start-page: 521
  year: 2013
  ident: ref_44
  article-title: On the role of correlation and abstraction in cross-modal multimedia retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.142
– ident: ref_15
  doi: 10.3390/electronics9040554
– volume: 97
  start-page: 107015
  year: 2020
  ident: ref_25
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107015
– volume: 23
  start-page: 643
  year: 2001
  ident: ref_51
  article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– volume: 3
  start-page: 32
  year: 1975
  ident: ref_12
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 39
  start-page: 578
  year: 2009
  ident: ref_37
  article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2008.2004818
– ident: ref_45
  doi: 10.1109/ICDM.2016.0167
– volume: 5
  start-page: e12215
  year: 2016
  ident: ref_33
  article-title: Active sensing in the categorization of visual patterns
  publication-title: eLife
  doi: 10.7554/eLife.12215
– volume: 8
  start-page: 338
  year: 1965
  ident: ref_10
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref_19
– volume: 5
  start-page: 361
  year: 2004
  ident: ref_50
  article-title: Rcv1: A new benchmark collection for text categorization research
  publication-title: J. Mach. Learn. Res.
– volume: 417
  start-page: 435
  year: 2017
  ident: ref_14
  article-title: Deterministic annealing Gustafson-Kessel fuzzy clustering algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.005
– volume: 32
  start-page: 1116
  year: 2019
  ident: ref_48
  article-title: GMC: Graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903810
SSID ssj0000913830
Score 2.4076884
Snippet The rapid development in information technology makes it easier to collect vast numbers of data through the cloud, internet and other sources of information....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4467
SubjectTerms Algorithms
Analysis
Augmented reality
Clustering
Clustering (Computers)
Collaboration
Datasets
Electronic data processing
Fuzzy sets
Machine learning
Memberships
Methods
Social networks
Unsupervised learning
Title Unsupervised Multiview Fuzzy C-Means Clustering Algorithm
URI https://www.proquest.com/docview/2888119065
Volume 12
WOSCitedRecordID wos001170579300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5B4bAcgH0gyks5IHFZi9iuHeeEStUKJFpFK0Cwl8hxHEAqbSEtEhz47YxTl4eEuHDxwYkdK-OZ8Uwy3wewK0JW8FDFRCqqCWqiIejXJeGZZTbkyoqKP-X8JOr11MVFnPiEW-l_q5zZxMpQ50PjcuT7DEM1it5LioPRHXGsUe7rqqfQmIcFh1TWqMHCYbuX_HvNsjjUS8XDKdwQx_h-_41dpqSswguLPrikzw1z5W06K99d5yos-3Nm0JxujJ8wZwe_YOkd-uBviM8G5WTkbEVp86CqxHVzB53J09Nj0CJdi24saPUnDksBRwTN_hU-aXx9-wfOOu3T1hHxTArEcEnHhJkGLaxmWosiUiIPOceTg2s0jbMYFdnEXNACO4RpWBqFymLgrCXKKpK55mtQGwwHdh0CWjDKZZ4VOQZXpsGzvBDKZNpIVrBMsTqw2ctMjYcZd2wX_RTDDSeB9BMJ1OHv66DRFGXj69v3nJRSp4M4t9G-lABX6NCs0iaGDMIxMMk6bM2klHrlLNM3EW18fXkTfjh2-Wnp4RbUxvcTuw2L5mF8U97v-L22A_Pd5za2ifiPfclxN7l8AQwF4uI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iBWnsMGAbovzMAbQLFrFdO84BTVW3ioq26gEQnDLHcQZSKR1pQfBH8TfuOT-ASYgbBy45JLFl5315z8_J-z6AbeGzlPsqJFJRTfBNNATjuiQ8tsz6XFmR66ecdIN-X52ehoMZeKhqYdxvlZVPzB11cmXcHvkew1SNYvSS4sf4L3GqUe7raiWhUcDi0N7dYsqW7Xd-on13GGv_OmodkFJVgBgu6YQw06Cp1UxrkQZKJD7nGEXdQdMwDhHUJuSCpnhCmIalga8sJpFa4rgDmWiO_X6A2QaCXdVgdtDpDc4ed3Ucy6bifkFvxHno7z2p2WSU5fxkwX8h8OVAkEe39sJ7ey6L8LlcR3vNAvhLMGNHX-DTM3bFrxAej7Lp2PnCzCZeXmns5uK1p_f3d16L9CyGaa81nDquCGzhNYd_cGaT88tvcPwmY1-G2uhqZFfAoymjXCZxmmDyaBo8TlKhTKyNZCmLFasDq4wXmZJG3al5DCNMp5zFoxcsXofdx0bjgkXk9du_O1REzsdg30aXpRI4QsfWFTUxJRJOYUrWYb1CRVQ6nyx6gsTq65e34OPBUa8bdTv9wzWYZ7h-K8os16E2uZ7aDZgzN5OL7HqzxLkHv98aQv8AkS44-A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xEqKHthQQaSndQ6teamVtx17voaqiQASCRjmUCvWyeL02IIUksEmr5Kf113W8DygS4saByx5215Zn5_OMx-v5BuCjCJnjoYqJVFQTnImGoF-XhKeW2ZArK4r6KT-Po15PnZ7G_QX4W-fC-GOVtU0sDHU2Mn6PvMkwVKPovaRouupYRH-v-218TXwFKf-ntS6nUULkyM7-YPiWfz3cQ11_Yqy7_6NzQKoKA8RwSSeEmRZ1VjOthYuUyELO0aP6i6ZxGiPATcwFdXhDmJalUagsBpRaogyRzDTHfhdhOcIY08-uvvh1u7_j-TYVD0uiI87jsHlX1yanrGAqi-45w4ddQuHnuq-e8xd6DS-r1XXQLqfDOizY4Rt48R_n4gbEJ8N8OvYWMrdZUOQfe7mC7nQ-nwUd8t2i8w46g6lnkMAWQXtwjpJNLq424eRJxr4FS8PR0G5DQB2jXGapyzCkNC2eZk4ok2ojmWOpYg1gtSITU5Gr-xofgwSDLK_95AHtN-DLbaNxyS3y-OufPUISb3mwb6OrBAocoefwStoYKAlfd0o2YKdGSFKZpDy5g8fbxx9_gFXETXJ82Dt6B2sMF3Vl7uUOLE1upvY9rJjfk8v8ZrcAfABnT42ff7t5QFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Multiview+Fuzzy+C-Means+Clustering+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Hussain%2C+Ishtiaq&rft.au=Sinaga%2C+Kristina+P.&rft.au=Yang%2C+Miin-Shen&rft.date=2023-11-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=21&rft.spage=4467&rft_id=info:doi/10.3390%2Felectronics12214467&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12214467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon