Integrated OVMD-BiGRU-SMAC Framework for Forecasting Construction Accidents in the Kingdom of Saudi Arabia
Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding construction sector in the Kingdom of Saudi Arabia (KSA). This research introduces an innovative prediction framework that combines signal dec...
Uložené v:
| Vydané v: | IEEE access Ročník 13; s. 124543 - 124555 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding construction sector in the Kingdom of Saudi Arabia (KSA). This research introduces an innovative prediction framework that combines signal decomposition with advanced deep learning methods to estimate CA trends. Initially, the framework applies Optimized Variational Mode Decomposition (OVMD) to break down historical CA time series into distinct temporal components known as Intrinsic Mode Functions (IMFs). These IMFs are individually forecasted using Bidirectional Gated Recurrent Unit (BiGRU) models, which are capable of learning sequential patterns in both temporal directions. To enhance the predictive accuracy, the hyperparameters of each BiGRU model are optimized using the Sequential Model-based Algorithm Configuration (SMAC) technique. The proposed framework is trained on monthly CA data in the KSA from June 2010 to March 2023. Among the tested configurations, the proposed OVMD-BiGRU-SMAC model produced the most reliable and better results and achieves RMSE value of 17.26, MAE of 14.02, and R2 of 0.874. In comparison, the OVMD-TCN-SMAC model showed the weakest performance, with an RMSE of 23.93, MAE of 19.11, and R2 of 0.742. These results demonstrate the effectiveness of combining signal decomposition with deep learning techniques in order to caputer the irregular and nonstationary patterns of CA data and provide more reliable forecasts to support safety management and proactive planning efforts. |
|---|---|
| AbstractList | Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding construction sector in the Kingdom of Saudi Arabia (KSA). This research introduces an innovative prediction framework that combines signal decomposition with advanced deep learning methods to estimate CA trends. Initially, the framework applies Optimized Variational Mode Decomposition (OVMD) to break down historical CA time series into distinct temporal components known as Intrinsic Mode Functions (IMFs). These IMFs are individually forecasted using Bidirectional Gated Recurrent Unit (BiGRU) models, which are capable of learning sequential patterns in both temporal directions. To enhance the predictive accuracy, the hyperparameters of each BiGRU model are optimized using the Sequential Model-based Algorithm Configuration (SMAC) technique. The proposed framework is trained on monthly CA data in the KSA from June 2010 to March 2023. Among the tested configurations, the proposed OVMD–BiGRU–SMAC model produced the most reliable and better results and achieves RMSE value of 17.26, MAE of 14.02, and R2 of 0.874. In comparison, the OVMD–TCN–SMAC model showed the weakest performance, with an RMSE of 23.93, MAE of 19.11, and R2 of 0.742. These results demonstrate the effectiveness of combining signal decomposition with deep learning techniques in order to caputer the irregular and nonstationary patterns of CA data and provide more reliable forecasts to support safety management and proactive planning efforts. |
| Author | Khattak, Afaq Alsulami, Badr T. |
| Author_xml | – sequence: 1 givenname: Badr T. orcidid: 0000-0001-8682-8447 surname: Alsulami fullname: Alsulami, Badr T. organization: Civil Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah, Saudi Arabia – sequence: 2 givenname: Afaq orcidid: 0000-0002-5623-7897 surname: Khattak fullname: Khattak, Afaq email: akhattak@tcd.ie organization: Department of Civil, Structural, and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland |
| BookMark | eNpNUctuFDEQtFCQCCFfAAdLnGfxe8bHYciGFYkisYSr5djtxUvWDh6vEH-Pw0RAX7pVqqouqV6ik5QTIPSakhWlRL8bp-liu10xwuSKy0ETJp6hU0aV7rjk6uS_-wU6n-c9aTM0SPanaL9JFXbFVvD45uv1h-59vPx8222vxwmviz3Az1y-45ALXucCzs41ph2ecpprOboac8Kjc9FDqjOOCddvgD81is8HnAPe2qOPeCz2LtpX6Hmw9zOcP-0zdLu--DJ97K5uLjfTeNU5rmjtGPMMHHgie9BCaea1dUqp3kutBYTgeW_VHaPBA9FUako9G4BKLrwfrOdnaLP4-mz35qHEgy2_TLbR_AFy2RlbanT3YBzzgRIRlAq9kM2XaUEVBUVZzxljzevt4vVQ8o8jzNXs87GkFt9wJlooIRVpLL6wXMnzXCD8_UqJeezILB2Zx47MU0dN9WZRRQD4p6BkIIQT_hvwLo0L |
| CODEN | IAECCG |
| Cites_doi | 10.4197/Met.28-1.9 10.1016/j.ssci.2014.04.005 10.1109/ICIINFS.2014.7036515 10.2486/indhealth.42.424 10.1016/j.aap.2008.04.008 10.1016/j.future.2022.12.004 10.1061/(ASCE)CO.1943-7862.0001332 10.1016/j.ssci.2017.01.003 10.2147/MDER.S73079 10.1109/ACCESS.2020.3022246 10.1080/10803548.2020.1838774 10.1016/0925-7535(95)00043-7 10.1016/j.eswa.2024.124399 10.1088/1757-899X/972/1/012060 10.1016/j.aap.2010.12.019 10.1002/ajim.20880 10.18869/acadpub.cjhr.2.1.37 10.1016/j.ymssp.2018.05.052 10.5539/jsd.v8n2p57 10.1109/CISAT62382.2024.10695218 10.1177/0020881713504673 10.3390/pr9101759 10.1108/BEPAM-05-2022-0065 10.1016/j.scitotenv.2020.143716 10.1007/978-3-030-15577-3_24 10.1145/3377929.3389999 10.1088/1742-6596/1776/1/012057 10.1016/j.hrmr.2016.04.005 10.1016/j.seares.2025.102577 10.1080/00423114.2024.2323600 10.1016/j.sjbs.2020.06.033 10.1016/j.apergo.2004.12.002 10.22531/muglajsci.660022 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3589024 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 124555 |
| ExternalDocumentID | oai_doaj_org_article_c2df104f66f74537a294161e61273222 10_1109_ACCESS_2025_3589024 11080030 |
| Genre | orig-research |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-22d2eced057e94692d9ac6667d5994effd37a6b21fde0915911d28e1534dd8ad3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534551100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:46 EDT 2025 Sat Nov 01 15:52:53 EDT 2025 Sat Nov 29 07:44:20 EST 2025 Wed Aug 27 02:13:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-22d2eced057e94692d9ac6667d5994effd37a6b21fde0915911d28e1534dd8ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5623-7897 0000-0001-8682-8447 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11080030 |
| PQID | 3246674560 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_11080030 doaj_primary_oai_doaj_org_article_c2df104f66f74537a294161e61273222 proquest_journals_3246674560 crossref_primary_10_1109_ACCESS_2025_3589024 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 Kapiszewski (ref26) 2017 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 Zhao (ref35) 2024; 51 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Mancini (ref5) 2015; 45 Arquillos (ref18) 2008; 43 |
| References_xml | – ident: ref8 doi: 10.4197/Met.28-1.9 – ident: ref23 doi: 10.1016/j.ssci.2014.04.005 – volume: 45 start-page: 313 year: 2015 ident: ref5 article-title: Not by benevolence alone: The use of project sukuk to finance public-private partnerships in Saudi Arabia publication-title: Pub. Cont. Law J. – ident: ref29 doi: 10.1109/ICIINFS.2014.7036515 – ident: ref24 doi: 10.2486/indhealth.42.424 – ident: ref20 doi: 10.1016/j.aap.2008.04.008 – ident: ref31 doi: 10.1016/j.future.2022.12.004 – volume: 51 start-page: 86 issue: 5 year: 2024 ident: ref35 article-title: Short-term urban rail passenger flow prediction using temporal convolutional network-long short-term memory (TCN-LSTM) based on multidimensional predictable features publication-title: J. Beijing Univ. Chem. Technol. – ident: ref2 doi: 10.1061/(ASCE)CO.1943-7862.0001332 – ident: ref4 doi: 10.1016/j.ssci.2017.01.003 – ident: ref6 doi: 10.2147/MDER.S73079 – volume: 43 start-page: 381 issue: 5 year: 2008 ident: ref18 article-title: Analysis of construction accidents in spain, 2003– publication-title: J. Saf. Res. – ident: ref30 doi: 10.1109/ACCESS.2020.3022246 – ident: ref9 doi: 10.1080/10803548.2020.1838774 – ident: ref22 doi: 10.1016/0925-7535(95)00043-7 – ident: ref37 doi: 10.1016/j.eswa.2024.124399 – ident: ref17 doi: 10.1088/1757-899X/972/1/012060 – ident: ref21 doi: 10.1016/j.aap.2010.12.019 – ident: ref25 doi: 10.1002/ajim.20880 – ident: ref10 doi: 10.18869/acadpub.cjhr.2.1.37 – ident: ref12 doi: 10.1016/j.ymssp.2018.05.052 – ident: ref3 doi: 10.5539/jsd.v8n2p57 – ident: ref13 doi: 10.1109/CISAT62382.2024.10695218 – ident: ref27 doi: 10.1177/0020881713504673 – ident: ref34 doi: 10.3390/pr9101759 – start-page: 66 volume-title: Arab versus Asian migrant workers in the GCC countries year: 2017 ident: ref26 – ident: ref7 doi: 10.1108/BEPAM-05-2022-0065 – ident: ref28 doi: 10.1016/j.scitotenv.2020.143716 – ident: ref1 doi: 10.1007/978-3-030-15577-3_24 – ident: ref14 doi: 10.1145/3377929.3389999 – ident: ref36 doi: 10.1088/1742-6596/1776/1/012057 – ident: ref16 doi: 10.1016/j.hrmr.2016.04.005 – ident: ref32 doi: 10.1016/j.seares.2025.102577 – ident: ref33 doi: 10.1080/00423114.2024.2323600 – ident: ref11 doi: 10.1016/j.sjbs.2020.06.033 – ident: ref19 doi: 10.1016/j.apergo.2004.12.002 – ident: ref15 doi: 10.22531/muglajsci.660022 |
| SSID | ssj0000816957 |
| Score | 2.333967 |
| Snippet | Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 124543 |
| SubjectTerms | Accidents Configurations Construction accidents Construction accidents & safety Construction industry Construction site accidents Decomposition Deep learning Forecasting Image reconstruction Injuries Noise Occupational safety Optimization Predictive models Safety management signal processing time series Time series analysis Time-frequency analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqxKEcENBUpITKhx5r2PWu7fUxBFJ6IEV8VNws22NLi9QEkcDvZ7wfJagHLr2uVrL9Zj1-sx69R8g3Bz6TUZYscOdYKYRjroCCaVFJqaUqcEs1ZhNqNqvu7vTlmtVX6glr5YFb4I49h4glQ5QyqlIUynKdOHnAk1mlW4KUfTOl14qpJgdXudRCdTJDeaaPx5MJrggLQi6OCpFu18o3R1Gj2N9ZrPyTl5vDZrpDtjuWSMft7HbJhzDfI1tr2oGfyP3PXugB6K_fF6fspP5xdcuuL8YTOu07rihSUprcN71dpv5mmvw5e8VYOvY-WYqulrSeUySCNBmcwOIPXUR6bZ-gxglYV9sBuZ2e3UzOWWecwHwh8xXjHHjwAZCLBY31LwdtPdYpCoTWZYgREEfpeB4hIF8QmPCAVwGTXwlQWSg-k435Yh72CVVCeptrKJDIILMKNqjcyZA7LbnOqjgk33sMzUOrj2GauiLTpoXcJMhNB_mQnCSc_76axK2bBxhy04XcvBfyIRmkKL2Ol_okMVkNyagPm-l24tIgYcSFI03MvvyPsQ_Ix7Se9ifMiGxgyMIh2fTPq3r5-LX5CF8A7zrarA priority: 102 providerName: Directory of Open Access Journals |
| Title | Integrated OVMD-BiGRU-SMAC Framework for Forecasting Construction Accidents in the Kingdom of Saudi Arabia |
| URI | https://ieeexplore.ieee.org/document/11080030 https://www.proquest.com/docview/3246674560 https://doaj.org/article/c2df104f66f74537a294161e61273222 |
| Volume | 13 |
| WOSCitedRecordID | wos001534551100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOLY8iFtrKB464TZzYjo_bbRc4bEGUot4sP8ZSKrGL2G2P_HbGjlOoEAcuURQlytifH9_Y4_kIeeOCr2SULQPuHGuFcMw1oWFadFJqqRrsUllsQp2fd1dX-lM5rJ7PwgBADj6Do3Sb9_LDyt-kpbLjFLKeWuUW2VJKDoe17hZUkoKEFqpkFqorfTydzbAQ6ANycdSItKHW3pt9cpL-oqry11Cc55f57n9a9oTsFCJJpwPyT8kDWD4jj_9IL_icXH8Yc0EE-vHr4pSd9O8-X7KLxXRG52NQFkXWSpNAp7frFAJNk4TnmFSWTr1PqqObNe2XFLkiTRooYfWNriK9sDehRwOs6-0euZyffZm9Z0VbgflG1hvGeeDgISBdA40uMg_aenRlVBBatxBjaJSVjtcxAFIKgWNi4B3g-NiG0NnQvCDby9USXhKqhPS21qFBroPkCyyo2kmonZZcV12ckLdjnZvvQwoNk12PSpsBIpMgMgWiCTlJuNy9mvJf5wdY4aZ0J-N5iOhIRimjagWaynXy1AD5mkp7RxOyl0D6_b-Cz4TsjzCb0lnXBjklFhyZZPXqH5-9Jo-SicPSyz7ZRhTggDz0t5t-_eMw-_F4Xfw8O8xt8hft-dwU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagIAEHHiWIQAEfONbtrndtr49pILSiCYi2qDfLT2mRSBBJ-f3MON4CQhy4rVZr7difH9_Y4_kIee2Cr2SSLYvcOdYK4ZhrQsO06KTUUjUwpLLYhFosustL_bFcVs93YWKMOfgsHuBjPssPK3-FW2WHGLKOvfImuYXSWeW61vWWCmpIaKFKbqG60oeT6RSqAV4gFweNwCO19o_1J6fpL7oqf03GeYWZPfhP2x6S-4VK0skW-0fkRlzuknu_JRh8TL6cDNkgAv3wef6GHfXvPl2ws_lkSmdDWBYF3kpRotPbNQZBUxTxHNLK0on3qDu6WdN-SYEtUlRBCauvdJXomb0KPRhgXW9H5GL29nx6zIq6AvONrDeM88CjjwEIW9TgJPOgrQdnRgWhdRtTCo2y0vE6hQikQsCsGHgXYYZsQ-hsaJ6QneVqGZ8SqoT0ttahAbYD9CvaqGonY-205Lrq0pjsD21uvm2TaJjsfFTabCEyCJEpEI3JEeJy_SlmwM4voMFNGVDG85DAlUxSJtUKMJVr9NUiMDaFp0djMkKQfv2v4DMmewPMpgzXtQFWCRUHLlk9-0exV-TO8fn81JyeLN4_J3fR3O1GzB7ZAUTiC3Lb_9j06-8vc5_8CS3Z3Tc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+OVMD-BiGRU-SMAC+Framework+for+Forecasting+Construction+Accidents+in+the+Kingdom+of+Saudi+Arabia&rft.jtitle=IEEE+access&rft.au=Alsulami%2C+Badr+T.&rft.au=Khattak%2C+Afaq&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=124543&rft.epage=124555&rft_id=info:doi/10.1109%2FACCESS.2025.3589024&rft.externalDocID=11080030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |