Integrated OVMD-BiGRU-SMAC Framework for Forecasting Construction Accidents in the Kingdom of Saudi Arabia

Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding construction sector in the Kingdom of Saudi Arabia (KSA). This research introduces an innovative prediction framework that combines signal dec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 124543 - 124555
Hlavní autori: Alsulami, Badr T., Khattak, Afaq
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding construction sector in the Kingdom of Saudi Arabia (KSA). This research introduces an innovative prediction framework that combines signal decomposition with advanced deep learning methods to estimate CA trends. Initially, the framework applies Optimized Variational Mode Decomposition (OVMD) to break down historical CA time series into distinct temporal components known as Intrinsic Mode Functions (IMFs). These IMFs are individually forecasted using Bidirectional Gated Recurrent Unit (BiGRU) models, which are capable of learning sequential patterns in both temporal directions. To enhance the predictive accuracy, the hyperparameters of each BiGRU model are optimized using the Sequential Model-based Algorithm Configuration (SMAC) technique. The proposed framework is trained on monthly CA data in the KSA from June 2010 to March 2023. Among the tested configurations, the proposed OVMD-BiGRU-SMAC model produced the most reliable and better results and achieves RMSE value of 17.26, MAE of 14.02, and R2 of 0.874. In comparison, the OVMD-TCN-SMAC model showed the weakest performance, with an RMSE of 23.93, MAE of 19.11, and R2 of 0.742. These results demonstrate the effectiveness of combining signal decomposition with deep learning techniques in order to caputer the irregular and nonstationary patterns of CA data and provide more reliable forecasts to support safety management and proactive planning efforts.
AbstractList Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding construction sector in the Kingdom of Saudi Arabia (KSA). This research introduces an innovative prediction framework that combines signal decomposition with advanced deep learning methods to estimate CA trends. Initially, the framework applies Optimized Variational Mode Decomposition (OVMD) to break down historical CA time series into distinct temporal components known as Intrinsic Mode Functions (IMFs). These IMFs are individually forecasted using Bidirectional Gated Recurrent Unit (BiGRU) models, which are capable of learning sequential patterns in both temporal directions. To enhance the predictive accuracy, the hyperparameters of each BiGRU model are optimized using the Sequential Model-based Algorithm Configuration (SMAC) technique. The proposed framework is trained on monthly CA data in the KSA from June 2010 to March 2023. Among the tested configurations, the proposed OVMD–BiGRU–SMAC model produced the most reliable and better results and achieves RMSE value of 17.26, MAE of 14.02, and R2 of 0.874. In comparison, the OVMD–TCN–SMAC model showed the weakest performance, with an RMSE of 23.93, MAE of 19.11, and R2 of 0.742. These results demonstrate the effectiveness of combining signal decomposition with deep learning techniques in order to caputer the irregular and nonstationary patterns of CA data and provide more reliable forecasts to support safety management and proactive planning efforts.
Author Khattak, Afaq
Alsulami, Badr T.
Author_xml – sequence: 1
  givenname: Badr T.
  orcidid: 0000-0001-8682-8447
  surname: Alsulami
  fullname: Alsulami, Badr T.
  organization: Civil Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
– sequence: 2
  givenname: Afaq
  orcidid: 0000-0002-5623-7897
  surname: Khattak
  fullname: Khattak, Afaq
  email: akhattak@tcd.ie
  organization: Department of Civil, Structural, and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
BookMark eNpNUctuFDEQtFCQCCFfAAdLnGfxe8bHYciGFYkisYSr5djtxUvWDh6vEH-Pw0RAX7pVqqouqV6ik5QTIPSakhWlRL8bp-liu10xwuSKy0ETJp6hU0aV7rjk6uS_-wU6n-c9aTM0SPanaL9JFXbFVvD45uv1h-59vPx8222vxwmviz3Az1y-45ALXucCzs41ph2ecpprOboac8Kjc9FDqjOOCddvgD81is8HnAPe2qOPeCz2LtpX6Hmw9zOcP-0zdLu--DJ97K5uLjfTeNU5rmjtGPMMHHgie9BCaea1dUqp3kutBYTgeW_VHaPBA9FUako9G4BKLrwfrOdnaLP4-mz35qHEgy2_TLbR_AFy2RlbanT3YBzzgRIRlAq9kM2XaUEVBUVZzxljzevt4vVQ8o8jzNXs87GkFt9wJlooIRVpLL6wXMnzXCD8_UqJeezILB2Zx47MU0dN9WZRRQD4p6BkIIQT_hvwLo0L
CODEN IAECCG
Cites_doi 10.4197/Met.28-1.9
10.1016/j.ssci.2014.04.005
10.1109/ICIINFS.2014.7036515
10.2486/indhealth.42.424
10.1016/j.aap.2008.04.008
10.1016/j.future.2022.12.004
10.1061/(ASCE)CO.1943-7862.0001332
10.1016/j.ssci.2017.01.003
10.2147/MDER.S73079
10.1109/ACCESS.2020.3022246
10.1080/10803548.2020.1838774
10.1016/0925-7535(95)00043-7
10.1016/j.eswa.2024.124399
10.1088/1757-899X/972/1/012060
10.1016/j.aap.2010.12.019
10.1002/ajim.20880
10.18869/acadpub.cjhr.2.1.37
10.1016/j.ymssp.2018.05.052
10.5539/jsd.v8n2p57
10.1109/CISAT62382.2024.10695218
10.1177/0020881713504673
10.3390/pr9101759
10.1108/BEPAM-05-2022-0065
10.1016/j.scitotenv.2020.143716
10.1007/978-3-030-15577-3_24
10.1145/3377929.3389999
10.1088/1742-6596/1776/1/012057
10.1016/j.hrmr.2016.04.005
10.1016/j.seares.2025.102577
10.1080/00423114.2024.2323600
10.1016/j.sjbs.2020.06.033
10.1016/j.apergo.2004.12.002
10.22531/muglajsci.660022
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3589024
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 124555
ExternalDocumentID oai_doaj_org_article_c2df104f66f74537a294161e61273222
10_1109_ACCESS_2025_3589024
11080030
Genre orig-research
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-22d2eced057e94692d9ac6667d5994effd37a6b21fde0915911d28e1534dd8ad3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534551100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:46 EDT 2025
Sat Nov 01 15:52:53 EDT 2025
Sat Nov 29 07:44:20 EST 2025
Wed Aug 27 02:13:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-22d2eced057e94692d9ac6667d5994effd37a6b21fde0915911d28e1534dd8ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5623-7897
0000-0001-8682-8447
OpenAccessLink https://ieeexplore.ieee.org/document/11080030
PQID 3246674560
PQPubID 4845423
PageCount 13
ParticipantIDs ieee_primary_11080030
doaj_primary_oai_doaj_org_article_c2df104f66f74537a294161e61273222
proquest_journals_3246674560
crossref_primary_10_1109_ACCESS_2025_3589024
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
Kapiszewski (ref26) 2017
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
Zhao (ref35) 2024; 51
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Mancini (ref5) 2015; 45
Arquillos (ref18) 2008; 43
References_xml – ident: ref8
  doi: 10.4197/Met.28-1.9
– ident: ref23
  doi: 10.1016/j.ssci.2014.04.005
– volume: 45
  start-page: 313
  year: 2015
  ident: ref5
  article-title: Not by benevolence alone: The use of project sukuk to finance public-private partnerships in Saudi Arabia
  publication-title: Pub. Cont. Law J.
– ident: ref29
  doi: 10.1109/ICIINFS.2014.7036515
– ident: ref24
  doi: 10.2486/indhealth.42.424
– ident: ref20
  doi: 10.1016/j.aap.2008.04.008
– ident: ref31
  doi: 10.1016/j.future.2022.12.004
– volume: 51
  start-page: 86
  issue: 5
  year: 2024
  ident: ref35
  article-title: Short-term urban rail passenger flow prediction using temporal convolutional network-long short-term memory (TCN-LSTM) based on multidimensional predictable features
  publication-title: J. Beijing Univ. Chem. Technol.
– ident: ref2
  doi: 10.1061/(ASCE)CO.1943-7862.0001332
– ident: ref4
  doi: 10.1016/j.ssci.2017.01.003
– ident: ref6
  doi: 10.2147/MDER.S73079
– volume: 43
  start-page: 381
  issue: 5
  year: 2008
  ident: ref18
  article-title: Analysis of construction accidents in spain, 2003–
  publication-title: J. Saf. Res.
– ident: ref30
  doi: 10.1109/ACCESS.2020.3022246
– ident: ref9
  doi: 10.1080/10803548.2020.1838774
– ident: ref22
  doi: 10.1016/0925-7535(95)00043-7
– ident: ref37
  doi: 10.1016/j.eswa.2024.124399
– ident: ref17
  doi: 10.1088/1757-899X/972/1/012060
– ident: ref21
  doi: 10.1016/j.aap.2010.12.019
– ident: ref25
  doi: 10.1002/ajim.20880
– ident: ref10
  doi: 10.18869/acadpub.cjhr.2.1.37
– ident: ref12
  doi: 10.1016/j.ymssp.2018.05.052
– ident: ref3
  doi: 10.5539/jsd.v8n2p57
– ident: ref13
  doi: 10.1109/CISAT62382.2024.10695218
– ident: ref27
  doi: 10.1177/0020881713504673
– ident: ref34
  doi: 10.3390/pr9101759
– start-page: 66
  volume-title: Arab versus Asian migrant workers in the GCC countries
  year: 2017
  ident: ref26
– ident: ref7
  doi: 10.1108/BEPAM-05-2022-0065
– ident: ref28
  doi: 10.1016/j.scitotenv.2020.143716
– ident: ref1
  doi: 10.1007/978-3-030-15577-3_24
– ident: ref14
  doi: 10.1145/3377929.3389999
– ident: ref36
  doi: 10.1088/1742-6596/1776/1/012057
– ident: ref16
  doi: 10.1016/j.hrmr.2016.04.005
– ident: ref32
  doi: 10.1016/j.seares.2025.102577
– ident: ref33
  doi: 10.1080/00423114.2024.2323600
– ident: ref11
  doi: 10.1016/j.sjbs.2020.06.033
– ident: ref19
  doi: 10.1016/j.apergo.2004.12.002
– ident: ref15
  doi: 10.22531/muglajsci.660022
SSID ssj0000816957
Score 2.333967
Snippet Construction Accidents (CA) remain a major concern for occupational safety, especially within high-risk environments such as those found across the expanding...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 124543
SubjectTerms Accidents
Configurations
Construction accidents
Construction accidents & safety
Construction industry
Construction site accidents
Decomposition
Deep learning
Forecasting
Image reconstruction
Injuries
Noise
Occupational safety
Optimization
Predictive models
Safety management
signal processing
time series
Time series analysis
Time-frequency analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqxKEcENBUpITKhx5r2PWu7fUxBFJ6IEV8VNws22NLi9QEkcDvZ7wfJagHLr2uVrL9Zj1-sx69R8g3Bz6TUZYscOdYKYRjroCCaVFJqaUqcEs1ZhNqNqvu7vTlmtVX6glr5YFb4I49h4glQ5QyqlIUynKdOHnAk1mlW4KUfTOl14qpJgdXudRCdTJDeaaPx5MJrggLQi6OCpFu18o3R1Gj2N9ZrPyTl5vDZrpDtjuWSMft7HbJhzDfI1tr2oGfyP3PXugB6K_fF6fspP5xdcuuL8YTOu07rihSUprcN71dpv5mmvw5e8VYOvY-WYqulrSeUySCNBmcwOIPXUR6bZ-gxglYV9sBuZ2e3UzOWWecwHwh8xXjHHjwAZCLBY31LwdtPdYpCoTWZYgREEfpeB4hIF8QmPCAVwGTXwlQWSg-k435Yh72CVVCeptrKJDIILMKNqjcyZA7LbnOqjgk33sMzUOrj2GauiLTpoXcJMhNB_mQnCSc_76axK2bBxhy04XcvBfyIRmkKL2Ol_okMVkNyagPm-l24tIgYcSFI03MvvyPsQ_Ix7Se9ifMiGxgyMIh2fTPq3r5-LX5CF8A7zrarA
  priority: 102
  providerName: Directory of Open Access Journals
Title Integrated OVMD-BiGRU-SMAC Framework for Forecasting Construction Accidents in the Kingdom of Saudi Arabia
URI https://ieeexplore.ieee.org/document/11080030
https://www.proquest.com/docview/3246674560
https://doaj.org/article/c2df104f66f74537a294161e61273222
Volume 13
WOSCitedRecordID wos001534551100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOLY8iFtrKB464TZzYjo_bbRc4bEGUot4sP8ZSKrGL2G2P_HbGjlOoEAcuURQlytifH9_Y4_kIeeOCr2SULQPuHGuFcMw1oWFadFJqqRrsUllsQp2fd1dX-lM5rJ7PwgBADj6Do3Sb9_LDyt-kpbLjFLKeWuUW2VJKDoe17hZUkoKEFqpkFqorfTydzbAQ6ANycdSItKHW3pt9cpL-oqry11Cc55f57n9a9oTsFCJJpwPyT8kDWD4jj_9IL_icXH8Yc0EE-vHr4pSd9O8-X7KLxXRG52NQFkXWSpNAp7frFAJNk4TnmFSWTr1PqqObNe2XFLkiTRooYfWNriK9sDehRwOs6-0euZyffZm9Z0VbgflG1hvGeeDgISBdA40uMg_aenRlVBBatxBjaJSVjtcxAFIKgWNi4B3g-NiG0NnQvCDby9USXhKqhPS21qFBroPkCyyo2kmonZZcV12ckLdjnZvvQwoNk12PSpsBIpMgMgWiCTlJuNy9mvJf5wdY4aZ0J-N5iOhIRimjagWaynXy1AD5mkp7RxOyl0D6_b-Cz4TsjzCb0lnXBjklFhyZZPXqH5-9Jo-SicPSyz7ZRhTggDz0t5t-_eMw-_F4Xfw8O8xt8hft-dwU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagIAEHHiWIQAEfONbtrndtr49pILSiCYi2qDfLT2mRSBBJ-f3MON4CQhy4rVZr7difH9_Y4_kIee2Cr2SSLYvcOdYK4ZhrQsO06KTUUjUwpLLYhFosustL_bFcVs93YWKMOfgsHuBjPssPK3-FW2WHGLKOvfImuYXSWeW61vWWCmpIaKFKbqG60oeT6RSqAV4gFweNwCO19o_1J6fpL7oqf03GeYWZPfhP2x6S-4VK0skW-0fkRlzuknu_JRh8TL6cDNkgAv3wef6GHfXvPl2ws_lkSmdDWBYF3kpRotPbNQZBUxTxHNLK0on3qDu6WdN-SYEtUlRBCauvdJXomb0KPRhgXW9H5GL29nx6zIq6AvONrDeM88CjjwEIW9TgJPOgrQdnRgWhdRtTCo2y0vE6hQikQsCsGHgXYYZsQ-hsaJ6QneVqGZ8SqoT0ttahAbYD9CvaqGonY-205Lrq0pjsD21uvm2TaJjsfFTabCEyCJEpEI3JEeJy_SlmwM4voMFNGVDG85DAlUxSJtUKMJVr9NUiMDaFp0djMkKQfv2v4DMmewPMpgzXtQFWCRUHLlk9-0exV-TO8fn81JyeLN4_J3fR3O1GzB7ZAUTiC3Lb_9j06-8vc5_8CS3Z3Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+OVMD-BiGRU-SMAC+Framework+for+Forecasting+Construction+Accidents+in+the+Kingdom+of+Saudi+Arabia&rft.jtitle=IEEE+access&rft.au=Alsulami%2C+Badr+T.&rft.au=Khattak%2C+Afaq&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=124543&rft.epage=124555&rft_id=info:doi/10.1109%2FACCESS.2025.3589024&rft.externalDocID=11080030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon