Multi-Objective Combinatorial Optimization Algorithm Based on Asynchronous Advantage Actor–Critic and Graph Transformer Networks

Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives. Addressing the challenges inherent in applying deep reinforcement learning (DRL) to solve MOCOPs, such as model non-convergence, lengthy training...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 13; no. 19; p. 3842
Main Authors: Jia, Dongbao, Cao, Ming, Hu, Wenbin, Sun, Jing, Li, Hui, Wang, Yichen, Zhou, Weijie, Yin, Tiancheng, Qian, Ran
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2024
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives. Addressing the challenges inherent in applying deep reinforcement learning (DRL) to solve MOCOPs, such as model non-convergence, lengthy training periods, and insufficient diversity of solutions, this study introduces a novel multi-objective combinatorial optimization algorithm based on DRL. The proposed algorithm employs a uniform weight decomposition method to simplify complex multi-objective scenarios into single-objective problems and uses asynchronous advantage actor–critic (A3C) instead of conventional REINFORCE methods for model training. This approach effectively reduces variance and prevents the entrapment in local optima. Furthermore, the algorithm incorporates an architecture based on graph transformer networks (GTNs), which extends to edge feature representations, thus accurately capturing the topological features of graph structures and the latent inter-node relationships. By integrating a weight vector layer at the encoding stage, the algorithm can flexibly manage issues involving arbitrary weights. Experimental evaluations on the bi-objective traveling salesman problem demonstrate that this algorithm significantly outperforms recent similar efforts in terms of training efficiency and solution diversity.
AbstractList Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives. Addressing the challenges inherent in applying deep reinforcement learning (DRL) to solve MOCOPs, such as model non-convergence, lengthy training periods, and insufficient diversity of solutions, this study introduces a novel multi-objective combinatorial optimization algorithm based on DRL. The proposed algorithm employs a uniform weight decomposition method to simplify complex multi-objective scenarios into single-objective problems and uses asynchronous advantage actor–critic (A3C) instead of conventional REINFORCE methods for model training. This approach effectively reduces variance and prevents the entrapment in local optima. Furthermore, the algorithm incorporates an architecture based on graph transformer networks (GTNs), which extends to edge feature representations, thus accurately capturing the topological features of graph structures and the latent inter-node relationships. By integrating a weight vector layer at the encoding stage, the algorithm can flexibly manage issues involving arbitrary weights. Experimental evaluations on the bi-objective traveling salesman problem demonstrate that this algorithm significantly outperforms recent similar efforts in terms of training efficiency and solution diversity.
Audience Academic
Author Cao, Ming
Jia, Dongbao
Li, Hui
Qian, Ran
Hu, Wenbin
Sun, Jing
Yin, Tiancheng
Wang, Yichen
Zhou, Weijie
Author_xml – sequence: 1
  givenname: Dongbao
  orcidid: 0000-0001-7007-4134
  surname: Jia
  fullname: Jia, Dongbao
– sequence: 2
  givenname: Ming
  surname: Cao
  fullname: Cao, Ming
– sequence: 3
  givenname: Wenbin
  surname: Hu
  fullname: Hu, Wenbin
– sequence: 4
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
– sequence: 5
  givenname: Hui
  surname: Li
  fullname: Li, Hui
– sequence: 6
  givenname: Yichen
  surname: Wang
  fullname: Wang, Yichen
– sequence: 7
  givenname: Weijie
  surname: Zhou
  fullname: Zhou, Weijie
– sequence: 8
  givenname: Tiancheng
  surname: Yin
  fullname: Yin, Tiancheng
– sequence: 9
  givenname: Ran
  surname: Qian
  fullname: Qian, Ran
BookMark eNp9kUtOAzEMhiMEEs8TsInEeiCvtpPlUPGSgG66H2UyTpsyk5QkBcEKcQVuyEkIlAVCCHth69f_2ZK9izadd4DQISXHnEtyAh3oFLyzOlJOJS8F20A7jIxkIZlkmz_6bXQQ44LkkJSXnOyg15tVl2wxaRZ5iH0APPZ9Y51KPljV4cky2d4-q2S9w1U3y2qa9_hURWjxpxSfnJ7n5X4VcdU-KJfUDHClM__-8jbOdquxci2-CGo5x9OgXDQ-9BDwLaRHH-7iPtoyqotw8F330PT8bDq-LK4nF1fj6rrQfEhTwZikjTByMJRGtLRtNNFScAEwAG1Eo_XAsJFoWQNSUUVhJAxwRpQ0QI3he-hoPXYZ_P0KYqoXfhVc3lhzSodDSgeCZdfx2jVTHdTWGZ-C0jlb6K3Ohzc261VJORmVouQZkGtABx9jAFNrm77ulUHb1ZTUn1-q__hSZvkvdhlsr8LTv9QHowyggw
CitedBy_id crossref_primary_10_1088_1361_6382_adb2d5
crossref_primary_10_1038_s41598_025_04597_x
Cites_doi 10.1109/TNNLS.2018.2846646
10.1109/TNNLS.2022.3148435
10.1109/TNNLS.2021.3105937
10.1109/IJCNN52387.2021.9534083
10.1016/j.cie.2023.109180
10.18653/v1/2021.emnlp-main.243
10.1016/j.compbiolchem.2023.107911
10.1007/BF00992696
10.1109/CLEI.2015.7360024
10.1109/LRA.2020.3011351
10.1109/TCYB.2020.2977661
10.3934/era.2023145
10.1002/tee.23788
10.1109/ACCESS.2020.3011211
10.1016/j.neucom.2022.10.075
10.1109/TSMC.2019.2956121
10.1109/TSMCB.2012.2231860
10.1016/j.autcon.2022.104715
10.1109/TIE.2015.2475419
10.18653/v1/2021.acl-long.353
10.1109/TEVC.2007.892759
10.3390/electronics9050792
10.1155/2021/6618833
10.1109/TNNLS.2021.3105901
10.1016/j.simpat.2023.102777
10.1109/ACCESS.2018.2867494
10.3390/sym14010011
10.1007/s10462-021-09996-w
10.1109/TPAMI.2016.2644615
10.1109/TEVC.2022.3193294
10.1109/ICIT.2017.49
10.1016/j.comcom.2023.02.027
10.1016/S0377-2217(01)00104-7
10.1109/4235.996017
10.1109/ACCESS.2019.2892188
10.1016/j.ins.2022.08.072
10.1007/978-981-15-5577-0_45
10.1109/TNNLS.2023.3234629
10.1109/TEVC.2016.2634625
10.1109/CVPR.2016.138
10.1109/CVPR.2018.00393
10.1007/s00500-012-0964-8
10.1016/j.cor.2023.106403
10.1007/s10732-011-9178-y
10.1109/TII.2024.3390595
10.1111/j.1365-2486.2010.02302.x
10.1155/2022/3259222
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13193842
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A813078483
10_3390_electronics13193842
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-2291b4f9569f4d1dbc0c9434ee5ecf4bcc5f274d2be9a1a1e74fe320a9fe1ff3
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331955800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Jul 26 00:45:48 EDT 2025
Tue Nov 04 18:17:42 EST 2025
Sat Nov 29 07:14:31 EST 2025
Tue Nov 18 21:30:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-2291b4f9569f4d1dbc0c9434ee5ecf4bcc5f274d2be9a1a1e74fe320a9fe1ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7007-4134
OpenAccessLink https://www.proquest.com/docview/3116611542?pq-origsite=%requestingapplication%
PQID 3116611542
PQPubID 2032404
ParticipantIDs proquest_journals_3116611542
gale_infotracacademiconefile_A813078483
crossref_citationtrail_10_3390_electronics13193842
crossref_primary_10_3390_electronics13193842
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Jia (ref_52) 2018; 6
Deb (ref_16) 2002; 6
ref_58
Gan (ref_4) 2023; 27
Quadri (ref_20) 2023; 203
ref_55
Ahmed (ref_1) 2013; 17
Wu (ref_11) 2024; 161
ref_51
Zhu (ref_3) 2008; 4
ref_19
ref_59
Gebreyesus (ref_37) 2023; 18
Wu (ref_23) 2011; 17
Han (ref_57) 2020; 5
ref_60
Long (ref_48) 2015; 39
ref_22
Ungureanu (ref_10) 2006; 14
ref_65
Zhang (ref_6) 2024; 20
ref_63
ref_62
Huang (ref_39) 2023; 70
Yang (ref_13) 2009; 30
ref_29
Badrinarayanan (ref_31) 2017; 39
Gao (ref_28) 2019; 30
Zhang (ref_53) 2023; 34
Gronauer (ref_25) 2021; 55
Jia (ref_30) 2023; 31
Kim (ref_21) 2023; 147
ref_36
ref_35
ref_34
Liu (ref_41) 2015; 62
ref_33
Tabrizi (ref_12) 2023; 179
Badica (ref_8) 2023; 127
Zhang (ref_15) 2007; 11
Jia (ref_56) 2021; 2021
Sun (ref_2) 2022; 612
Jaszkiewicz (ref_17) 2002; 137
ref_38
Shao (ref_54) 2023; 34
Yao (ref_24) 2020; 8
Gong (ref_14) 2018; 22
Jia (ref_27) 2022; 2022
Jia (ref_32) 2019; 7
Tian (ref_64) 2023; 518
Ke (ref_18) 2013; 43
Gao (ref_26) 2023; 34
ref_46
ref_45
ref_44
ref_43
ref_42
Jia (ref_47) 2018; 25
ref_49
Gao (ref_9) 2021; 51
Li (ref_40) 2020; 51
Ronald (ref_61) 1992; 8
Basseur (ref_7) 2012; 18
ref_5
References_xml – volume: 30
  start-page: 2051
  year: 2009
  ident: ref_13
  article-title: Overview of intelligent optimization algorithm and its application in flight vehicles optimization design
  publication-title: J. Astronaut.
– volume: 30
  start-page: 601
  year: 2019
  ident: ref_28
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2846646
– ident: ref_49
– ident: ref_5
– volume: 34
  start-page: 7978
  year: 2023
  ident: ref_53
  article-title: Meta-Learning-Based Deep Reinforcement Learning for Multiobjective Optimization Problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3148435
– volume: 34
  start-page: 2133
  year: 2023
  ident: ref_54
  article-title: Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3105937
– ident: ref_50
  doi: 10.1109/IJCNN52387.2021.9534083
– volume: 179
  start-page: 109180
  year: 2023
  ident: ref_12
  article-title: A Three-Stage model for Clustering, Storage, and joint online order batching and picker routing Problems: Heuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109180
– ident: ref_59
  doi: 10.18653/v1/2021.emnlp-main.243
– ident: ref_42
– ident: ref_46
  doi: 10.1016/j.compbiolchem.2023.107911
– volume: 8
  start-page: 229
  year: 1992
  ident: ref_61
  article-title: Williams, Simple statistical gradient-following algorithms for connec tionist reinforcement learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992696
– ident: ref_65
  doi: 10.1109/CLEI.2015.7360024
– volume: 5
  start-page: 6217
  year: 2020
  ident: ref_57
  article-title: Actor-Critic Reinforcement Learning for Control With Stability Guarantee
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3011351
– volume: 51
  start-page: 3103
  year: 2020
  ident: ref_40
  article-title: Deep Reinforcement Learning for Multiobjective OptimizationJ
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2977661
– volume: 31
  start-page: 2878
  year: 2023
  ident: ref_30
  article-title: Application of intelligent time series prediction method to dew point forecast
  publication-title: Electron. Res. Arch.
  doi: 10.3934/era.2023145
– volume: 18
  start-page: 932
  year: 2023
  ident: ref_37
  article-title: Gated-Attention Model with Reinforcement Learning for Solving Dynamic Job Shop Scheduling Problem
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23788
– volume: 8
  start-page: 135513
  year: 2020
  ident: ref_24
  article-title: Path Planning Method with Improved Artificial Potential Field—A Reinforcement Learning Perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011211
– volume: 518
  start-page: 190
  year: 2023
  ident: ref_64
  article-title: A practical tutorial on solving optimization problems via PlatEMO
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.075
– volume: 51
  start-page: 3954
  year: 2021
  ident: ref_9
  article-title: Chaotic Local Search-based Differential Evolution Algorithms for Optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2956121
– volume: 43
  start-page: 1845
  year: 2013
  ident: ref_18
  article-title: MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and antcolony
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2231860
– volume: 147
  start-page: 104715
  year: 2023
  ident: ref_21
  article-title: Simulating travel paths of construction site workers via deep reinforcement learning considering their spatial cognition and wayfinding behavior
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104715
– volume: 62
  start-page: 7837
  year: 2015
  ident: ref_41
  article-title: Reinforcement Learning of Adaptive Energy Management With Transition Probability for a Hybrid Electric Tracked Vehicle
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2475419
– ident: ref_58
  doi: 10.18653/v1/2021.acl-long.353
– ident: ref_62
– ident: ref_38
– volume: 70
  start-page: 3074
  year: 2023
  ident: ref_39
  article-title: An Ising Model-Based Annealing Processor With 1024 Fully Connected Spins for Combinatorial Optimization Problems
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 11
  start-page: 712
  year: 2007
  ident: ref_15
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: ref_35
  doi: 10.3390/electronics9050792
– volume: 39
  start-page: 640
  year: 2015
  ident: ref_48
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2021
  start-page: 6618833
  year: 2021
  ident: ref_56
  article-title: Application and evolution for neural network and signal processing in large-scale systems
  publication-title: Complexity
  doi: 10.1155/2021/6618833
– volume: 34
  start-page: 2105
  year: 2023
  ident: ref_26
  article-title: Fully Complex-valued Dendritic Neuron Model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3105901
– volume: 4
  start-page: 59
  year: 2008
  ident: ref_3
  article-title: Evolutionary Algorithms for Multiobjective Optimization
  publication-title: Sci. Technol. Inf.
– ident: ref_34
– volume: 127
  start-page: 102777
  year: 2023
  ident: ref_8
  article-title: Exact and approximation algorithms for synthesizing specific classes of optimal block-structured processes
  publication-title: Simul. Model. Pract. Theory Int. J. Fed. Eur. Simul. Soc.
  doi: 10.1016/j.simpat.2023.102777
– volume: 6
  start-page: 48645
  year: 2018
  ident: ref_52
  article-title: Multiwindow nonharmonic analysis method for gravitational waves
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867494
– ident: ref_55
  doi: 10.3390/sym14010011
– volume: 14
  start-page: 202
  year: 2006
  ident: ref_10
  article-title: Traveling Salesman Problem with Transportation
  publication-title: Comput. Sci. J. Mold.
– volume: 55
  start-page: 895
  year: 2021
  ident: ref_25
  article-title: Multi-agent deep reinforcement learning: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09996-w
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_31
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 27
  start-page: 1235
  year: 2023
  ident: ref_4
  article-title: An adaptive reference vector based interval multi-objective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3193294
– ident: ref_19
  doi: 10.1109/ICIT.2017.49
– volume: 203
  start-page: 30
  year: 2023
  ident: ref_20
  article-title: Multi-user edge service orchestration based on Deep Reinforcement Learning
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2023.02.027
– ident: ref_63
– volume: 137
  start-page: 50
  year: 2002
  ident: ref_17
  article-title: Genetic local search for multi-objective combinatorial optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(01)00104-7
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-IIJ
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: ref_44
– volume: 25
  start-page: 238
  year: 2018
  ident: ref_47
  article-title: Timefrequency based non-harmonic analysis to reduce line noise impact for LIGO observation system
  publication-title: Astron
– volume: 7
  start-page: 11318
  year: 2019
  ident: ref_32
  article-title: EEG processing in internet of medical things using non-harmonic analysis: Application and evolution for SSVEP responses
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892188
– volume: 612
  start-page: 638
  year: 2022
  ident: ref_2
  article-title: A self-evolving fuzzy system online prediction-based dynamic multi-objective evolutionary algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.08.072
– ident: ref_43
  doi: 10.1007/978-981-15-5577-0_45
– ident: ref_51
  doi: 10.1109/TNNLS.2023.3234629
– volume: 22
  start-page: 47
  year: 2018
  ident: ref_14
  article-title: A set-based genetic algorithm for interval many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2634625
– ident: ref_45
  doi: 10.1109/CVPR.2016.138
– ident: ref_29
– ident: ref_33
– ident: ref_22
  doi: 10.1109/CVPR.2018.00393
– volume: 17
  start-page: 1283
  year: 2013
  ident: ref_1
  article-title: Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0964-8
– volume: 161
  start-page: 106403
  year: 2024
  ident: ref_11
  article-title: Heuristic algorithms based on column generation for an online product shipping problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106403
– volume: 18
  start-page: 263
  year: 2012
  ident: ref_7
  article-title: The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems
  publication-title: J. Heuristics
  doi: 10.1007/s10732-011-9178-y
– volume: 20
  start-page: 11103
  year: 2024
  ident: ref_6
  article-title: Price-Matching-Based Regional Energy Market With Hierarchical Reinforcement Learning Algorithm
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3390595
– volume: 17
  start-page: 927
  year: 2011
  ident: ref_23
  article-title: Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02302.x
– volume: 2022
  start-page: 3259222
  year: 2022
  ident: ref_27
  article-title: Verification of classification model and dendritic neuron model based on machine learning
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2022/3259222
– ident: ref_36
– ident: ref_60
SSID ssj0000913830
Score 2.317659
Snippet Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3842
SubjectTerms Algorithms
Cities
Combinatorial analysis
Decision making
Decomposition
Deep learning
Efficiency
Electric transformers
Entrapment
Genetic algorithms
Graphical representations
Heuristic
Mathematical optimization
Multiple objective analysis
Optimization
Optimization algorithms
Transformers
Traveling salesman problem
Title Multi-Objective Combinatorial Optimization Algorithm Based on Asynchronous Advantage Actor–Critic and Graph Transformer Networks
URI https://www.proquest.com/docview/3116611542
Volume 13
WOSCitedRecordID wos001331955800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BwqE90AdFXUpXPlTqpRaxnWySE1qqpeXAElV7AC6R49i0CLJ0k63US4X6F_oP-0s6k3ihlRCXXp2HLM14Xp75PoA3jpr8hi7iQ10OOc1Kcp04y4vIylhLixGta8km4skkOTlJM19wq31b5dImtoa6nBmqke8qIdCVoMOXe9dfObFG0e2qp9BYhTVCSSDqhiw6u62xEOZlooIObEhhdr97xy1TC1Q-lYTyH4d0v1lufc3Bk__d5VPY8FEmG3Vq8QxWbPUcHv-FPbgJP9vRW35cXHQmj6FlwCyZcnBUSXaMpuTKz2iy0eU5rjafr9g-Or2S0VL9vTIErDtb1KylZm7QMrER3QH8vvnVMSgwXZXsA0Fis-kyQLZzNulaz-sXMD0YT99_5J6QgRs1FA2XMhVF6DClSl1YirIwgSF8OWsja1xYGBM5zHJLWdhUCy1sHDqrZKBTZ4Vzagt61ayyL4EZa2KJuZSLTRC6wOg0UqUjODUtNSp3H-RSKLnxYOXEmXGZY9JCkszvkWQf3t1-dN1hdTz8-luSdk4nGf9ttB9IwB0SJlY-StC_x0mYqD7sLKWd-yNe53ei3n748St4JDES6joAd6DXzBf2Naybb82Xej6Atf3xJPs0gNWjH-NBq7-4lh0eZad_AIvYAXA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTaBeUpprTgBYgNVmM7mSQLhIZH6ajtdBazKCvLcWxo1WbKJAV1h_gFvoOf4ku4N48WpKq7Ltg6iRUlx_dh33sOwDNPRX4DH_GByQeceiW5SbzjWeRkbKTDiNbXYhPxeJzs76eTBfjV9cJQWWVnE2tDnc8s7ZFvKCHQlaDDl69PvnBSjaLT1U5Co4HFtjv7hilb-Wr0Dv_vcyk330_fbvFWVYBbNRAVlzIVWegxL0h9mIs8s4ElkjTnImd9mFkbeUzVcpm51AgjXBx6p2RgUu-E9wqnvQGLIWG9B4uT0e7k4_mmDpFsJipo2I2USoONCzGbUiDaVRLKfzzg5X6gdm6bK__ZZ7kDt9somg0b2N-FBVfcg-W_uBXvw4-6tZjvZYeNSWdo-bKDgvYYcMmxPTSVx20PKhsefcLR6vMxe4NOPWc0VJ4VloiDZ6clq6WnK7S8bEhnHL-__2wUIpgpcvaBKL_ZtEsA3JyNm9L68gFMr-MbPIReMSvcI2DW2VhiruhjG4Q-sCaNVO6JLs5Ig4u3D7LDgLYtGTtpghxpTMoIOPoS4PTh5flDJw0XydW3vyBwabJUOLc1bcMFviFxfulhgvFLnISJ6sNaBy7dmrBSXyBr9erLT-HW1nR3R--MxtuPYUli1NdUO65Br5qfunW4ab9WB-X8SbtcGOhrRuIffOxdvg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VglA5QPkTCwV8AHHB2thONskBoW3L0qrVdg97qLhYjmNDqzZbNimot6qvwNPwOjwJM_lpQap666FXJ7ES55s_e-YbgDeekvwGPuIDkw841Upyk3jHs8jJ2EiHHq2vm03E43Gyu5tOFuB3VwtDaZWdTqwVdT6ztEfeV0KgKUGDL_u-TYuYrI8-Hn3n1EGKTlq7dhoNRLbcyU8M38oPm-v4r99KOfo0XdvgbYcBbtVAVFzKVGShxxgh9WEu8swGlgjTnIuc9WFmbeQxbMtl5lIjjHBx6J2SgUm9E94rnPYW3MaPTSmbcBJ9Od_eIbrNRAUNz5FSadC_aGtTCsS9SkL5ny283CLUZm704AYv0DLcb31rNmyE4SEsuOIR3PuHcfExnNUFx3wn228UPUN9mO0VtPOAgsh2UIEetpWpbHjwFUerb4dsFU19zmioPCks0QnPjktWN6SuUB-zIZ18_Dn91fSNYKbI2WciAmfTLixwczZuEu7LJzC9jjV4CovFrHDPgFlnY4kRpI9tEPrAmjRSuScSOSMNinQPZIcHbVuKduoUcqAxVCMQ6UtA1IP35w8dNQwlV9_-joCmSX_h3Na0ZRj4hsQEpocJejVxEiaqBysd0HSr2Ep9gbLnV19-DXcRfnp7c7z1ApYkuoJNCuQKLFbzY_cS7tgf1V45f1XLDQN9zTD8C6-yZSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Combinatorial+Optimization+Algorithm+Based+on+Asynchronous+Advantage+Actor%E2%80%93Critic+and+Graph+Transformer+Networks&rft.jtitle=Electronics+%28Basel%29&rft.au=Jia%2C+Dongbao&rft.au=Cao%2C+Ming&rft.au=Hu%2C+Wenbin&rft.au=Sun%2C+Jing&rft.date=2024-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=19&rft.spage=3842&rft_id=info:doi/10.3390%2Felectronics13193842&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13193842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon