Topological Graph Polynomial and Quantum Field Theory Part II: Mehler Kernel Theories
We define a new topological polynomial extending the Bollobás–Riordan one, which obeys a four-term reduction relation of the deletion/contraction type and has a natural behaviour under partial duality. This allows to write down a completely explicit combinatorial evaluation of the polynomials, occur...
Uloženo v:
| Vydáno v: | Annales Henri Poincaré Ročník 12; číslo 3; s. 483 - 545 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
SP Birkhäuser Verlag Basel
01.04.2011
Springer |
| Témata: | |
| ISSN: | 1424-0637, 1424-0661 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We define a new topological polynomial extending the Bollobás–Riordan one, which obeys a four-term reduction relation of the deletion/contraction type and has a natural behaviour under partial duality. This allows to write down a completely explicit combinatorial evaluation of the polynomials, occurring in the parametric representation of the non-commutative Grosse–Wulkenhaar quantum field theory. An explicit solution of the parametric representation for commutative field theories based on the Mehler kernel is also provided. |
|---|---|
| ISSN: | 1424-0637 1424-0661 |
| DOI: | 10.1007/s00023-011-0087-2 |