Importance Sampling and Feature Fusion Paradigm-Boosted Multi-Modal Convolutional Neural Networks: Deployment in Composite Curing Process Monitored by Electro-Mechanical Impedance
The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance (EMI) offers promising, non-destructive, real-time monitoring, but the complexity of EMI signals poses challenges. Convolutional Neural Networks (CNNs) have the potential to enhance EMI-based monitoring accuracy. However, training CNNs on multi-modal EMI signals requires addressing data heterogeneity, class imbalance, and computational complexity at present. This study develops the Importance Sampling Algorithm-optimized Multi-Modal CNNs (ISA-MM-CNNs) paradigm for EMI-based evaluation of composite curing processes. By prioritizing informative samples and capturing complementary information from diverse EMI signal modalities, we aim to improve the robustness and efficiency of CNNs in evaluating curing degrees. This study outlines EMI monitoring challenges, details the ISA-MM-CNNs paradigm, and discusses data preprocessing, network architecture, and training optimization. Experimental results demonstrate the superiority of the developed ISA-MM-CNNs and suggest further studies for the curing monitoring of composites. |
|---|---|
| AbstractList | The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance (EMI) offers promising, non-destructive, real-time monitoring, but the complexity of EMI signals poses challenges. Convolutional Neural Networks (CNNs) have the potential to enhance EMI-based monitoring accuracy. However, training CNNs on multi-modal EMI signals requires addressing data heterogeneity, class imbalance, and computational complexity at present. This study develops the Importance Sampling Algorithm-optimized Multi-Modal CNNs (ISA-MM-CNNs) paradigm for EMI-based evaluation of composite curing processes. By prioritizing informative samples and capturing complementary information from diverse EMI signal modalities, we aim to improve the robustness and efficiency of CNNs in evaluating curing degrees. This study outlines EMI monitoring challenges, details the ISA-MM-CNNs paradigm, and discusses data preprocessing, network architecture, and training optimization. Experimental results demonstrate the superiority of the developed ISA-MM-CNNs and suggest further studies for the curing monitoring of composites. |
| Author | Gao, Zeyuan Han, Zhibin Zhu, Jianjian Zhao, Xin Li, Meng |
| Author_xml | – sequence: 1 givenname: Zeyuan surname: Gao fullname: Gao, Zeyuan organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China – sequence: 2 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China – sequence: 3 givenname: Meng surname: Li fullname: Li, Meng organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China – sequence: 4 givenname: Zhibin surname: Han fullname: Han, Zhibin organization: Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, The Netherlands – sequence: 5 givenname: Jianjian orcidid: 0009-0009-5382-1041 surname: Zhu fullname: Zhu, Jianjian email: zhujj.work@cafuc.edu.cn organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China |
| BookMark | eNpNUctuEzEUHaEiUUq_ABaWWE_q12Rm2JUhKZEaqBRYW35cB4eJHWwPKN_FD-I0Fao31746L_m8ri588FBVbwmeEYL7m9thWGw2M4ppM2NNQxrcvaguKZn3NWvY_OLZ_VV1ndIOl9OVVdNeVn9X-0OIWXoNaCP3h9H5LZLeoCXIPEVAyym54NGDjNK47b7-GELKYNB6GrOr18HIEQ3B_w7jlAuwvL7AFB9H_hPiz_QBfYLDGI578Bk5X8DFMbkMaJjiye0hBg0poXXwLodYtNURLUbQOYZ6DfqH9E4XwZIUzCnom-qllWOC66d5VX1fLr4Nn-v7r3er4fa-1mxOck0p0xxTrBsuKTWmUS1rrKWGYGqxZdwqbSzrW8VBddgSojrWFYZtqZFasatqddY1Qe7EIbq9jEcRpBOPixC3Qsbs9AiC8x76nnNFW8LnxqqeYUWUlk0nuaZt0Xp_1jrE8GuClMUuTLF8VxKMdIS3rOtPKHZG6RhSimD_uxIsTmWLc9niVLZ4Kruw3p1ZDgCeMUqGlnH2D8hZqvI |
| CODEN | IAECCG |
| Cites_doi | 10.58286/28083 10.1016/j.jcp.2015.03.047 10.3390/s22249920 10.1016/j.jmapro.2023.03.015 10.1016/j.ymssp.2022.109634 10.1177/1475921705049752 10.1177/14759217221109944 10.1117/12.2559262 10.1109/JSEN.2023.3343779 10.1016/j.ast.2013.03.008 10.1177/1045389X14560368 10.1016/j.strusafe.2022.102216 10.1016/j.ymssp.2020.107467 10.1016/j.compositesa.2022.107321 10.26678/abcm.cobem2023.cob2023-1091 10.1007/s10443-021-09904-z 10.1002/wics.56 10.1016/j.istruc.2023.03.017 10.1007/s00339-024-07314-z 10.1177/1475921711414234 10.1016/j.insmatheco.2015.06.001 10.1145/3558819.3565132 10.3390/s18051307 10.1007/s40430-024-04916-9 10.1016/j.compstruct.2021.114789 10.1109/TPAMI.2023.3275156 10.1088/2631-8695/abb568 10.1088/1361-665X/ace868 10.1007/s11029-021-09941-6 10.1198/tech.2006.s440 10.1109/JSEN.2021.3132943 10.1177/1475921721993419 10.1016/j.matpr.2023.06.451 10.3390/jcs7020053 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3551508 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplorer url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_449e9944b27146dfb930b1bca58a4c27 10_1109_ACCESS_2025_3551508 10930734 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Civil Aviation Flight University of China for the Introduction of High-level Talents grantid: CZKY2024209 – fundername: Young Scientist Fund of the National Natural Science Foundation of China grantid: 52205171 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-223c4020c54a22dd5b735ff2d102f0f34fbcdf397b4eb80f11b838402f72dacb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453644600038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:28:42 EDT 2025 Mon Jun 30 12:03:38 EDT 2025 Sat Nov 29 08:05:44 EST 2025 Wed Aug 27 02:03:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-223c4020c54a22dd5b735ff2d102f0f34fbcdf397b4eb80f11b838402f72dacb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-5382-1041 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10930734 |
| PQID | 3181473897 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_3181473897 doaj_primary_oai_doaj_org_article_449e9944b27146dfb930b1bca58a4c27 crossref_primary_10_1109_ACCESS_2025_3551508 ieee_primary_10930734 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 Zhang (ref34) 2023 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref19 doi: 10.58286/28083 – ident: ref29 doi: 10.1016/j.jcp.2015.03.047 – ident: ref24 doi: 10.3390/s22249920 – ident: ref2 doi: 10.1016/j.jmapro.2023.03.015 – ident: ref12 doi: 10.1016/j.ymssp.2022.109634 – ident: ref27 doi: 10.1177/1475921705049752 – ident: ref11 doi: 10.1177/14759217221109944 – ident: ref21 doi: 10.1117/12.2559262 – ident: ref9 doi: 10.1109/JSEN.2023.3343779 – ident: ref30 doi: 10.1016/j.ast.2013.03.008 – ident: ref22 doi: 10.1177/1045389X14560368 – ident: ref32 doi: 10.1016/j.strusafe.2022.102216 – ident: ref17 doi: 10.1016/j.ymssp.2020.107467 – ident: ref1 doi: 10.1016/j.compositesa.2022.107321 – ident: ref7 doi: 10.26678/abcm.cobem2023.cob2023-1091 – ident: ref16 doi: 10.1007/s10443-021-09904-z – ident: ref31 doi: 10.1002/wics.56 – ident: ref3 doi: 10.1016/j.istruc.2023.03.017 – ident: ref8 doi: 10.1007/s00339-024-07314-z – ident: ref6 doi: 10.1177/1475921711414234 – year: 2023 ident: ref34 article-title: Meta-transformer: A unified framework for multimodal learning publication-title: arXiv:2307.10802 – ident: ref28 doi: 10.1016/j.insmatheco.2015.06.001 – ident: ref13 doi: 10.1145/3558819.3565132 – ident: ref14 doi: 10.3390/s18051307 – ident: ref4 doi: 10.1007/s40430-024-04916-9 – ident: ref26 doi: 10.1016/j.compstruct.2021.114789 – ident: ref35 doi: 10.1109/TPAMI.2023.3275156 – ident: ref20 doi: 10.1088/2631-8695/abb568 – ident: ref15 doi: 10.1088/1361-665X/ace868 – ident: ref18 doi: 10.1007/s11029-021-09941-6 – ident: ref33 doi: 10.1198/tech.2006.s440 – ident: ref23 doi: 10.1109/JSEN.2021.3132943 – ident: ref5 doi: 10.1177/1475921721993419 – ident: ref10 doi: 10.1016/j.matpr.2023.06.451 – ident: ref25 doi: 10.3390/jcs7020053 |
| SSID | ssj0000816957 |
| Score | 2.334415 |
| Snippet | The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial neural networks Complexity Composite curing Composite materials Convolutional neural networks Corrosion resistance Curing Data models electro-mechanical impedance Electromagnetic interference Feature extraction Heterogeneity Impedance Importance sampling Importance sampling algorithm Mechanical impedance Monitoring Monte Carlo methods multi-modal learning Neural networks Proposals Real time Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCEoRCwX5wBHT2HHimFsbumolWlUCpN4sf1Z7aLbK7lbid_UPdsZx0SIOXHqKEkWxnTcev7E8bwj5FBVPNonERO01BChNx1zdtqzRvostd4nHnCj8XZ2fd5eX-mKr1BeeCZvkgacfdyCljlpL6YSCSR2S03XluPO26az0IueRV0pvBVPZB3e81Y0qMkO80geHfQ8jgoBQNF9gjUUZ9L-WoqzYX0qs_OOX82Izf0leFJZID6fevSJP4rBLnm9pB74md6fXmToDaPSHxXPhwxW1Q6BI6jZjpPMNboTRCzvasLi6ZkfLnM9Bc8otO1sGaKBfDrfF9uAOhTryJZ8MX32l3yKWA8b9Q7oYKLoOPOIVaZ9zG2lJMqCTXxjh2-43PZ7q6rCziDnFaAIUehoDdnSP_Jof_-xPWKnAwHzd8jUD7uAxwPSNtEKE0DhVNymJALQkVamWyfmQgNI4GV1XJc5dV0PIKJISwXpXvyE7w3KIbwl1ylvkFsIKK4FVORHaBiNi2ToeqzAjnx_AMDeT0IbJAUqlzYSdQexMwW5GjhCwP6-iSnZ-ALZjiu2Y_9nOjOwh3FvtaXR5ckb2H_A3ZUqvDDg_LhXwO_XuMdp-T57heKbdnH2ysx438QN56m_Xi9X4MVvzPYQe-fs priority: 102 providerName: Directory of Open Access Journals |
| Title | Importance Sampling and Feature Fusion Paradigm-Boosted Multi-Modal Convolutional Neural Networks: Deployment in Composite Curing Process Monitored by Electro-Mechanical Impedance |
| URI | https://ieeexplore.ieee.org/document/10930734 https://www.proquest.com/docview/3181473897 https://doaj.org/article/449e9944b27146dfb930b1bca58a4c27 |
| Volume | 13 |
| WOSCitedRecordID | wos001453644600038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxQEOtEARW9rKB4643Th2nHBr012BxFaVAKk3y5_VHpqg7G4lLv1T_EFmHLcqQhy47EeUjSd6E_vNrN8MIe-DKqKJPDJeugYCFFkzW1YVk42rQ1XYWIQkFP6iLi7qq6vmMovVkxYmhJA2n4Vj_Jj-y_e922Cq7ARLH4FLii2ypVQ1irUeEirYQaKRKlcWglNPTtsWbgJiQC6PYVnFyud_rD6pSH_uqvLXVJzWl_nOf1q2S15kIklPR-Rfkiehe0WePyov-Jr8-nyT2DXgSr8a3DreXVPTeYq8bzMEOt9groxemsH45fUNO-uT5IMmVS5b9B4GaPvuNrsnfMNaHuktbR5ffaTnATsGo3V02VGcXXAXWKBtkj_SrEOg49QxwLXtTzobW--wRUDZMXoJBUuDR0P3yPf57Fv7ieUmDcyVVbFmQC8cxqBOCsO599KqUsbIPTCXOI2liNb5CKzHimDraSwKW5cQVfKouDfOlm_Idtd34S2hVjmD9IMbbgQQL8t9JTFoFpUtwtRPyId78PSPsRaHTjHMtNEj1hqx1hnrCTlDgB9OxULa6QAgp_NzqYVoQtMIYTkO46MFHG1hnZG1EY6rCdlDtB-NNwI9IQf3_qLzU7_SMD8WQgEFVPv_-Nk78gxNHHM4B2R7PWzCIXnqbtfL1XCUEgLwuribHSXn_g2qh_n7 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAEHnq26UMAHjqSNHTsPbm3oqhW7q0oUqTfLz2oPTVB2t1J_F3-QGcetihAHTnkoiSf6JvY3jr8ZQj75igUdeMh4YRsIUGSdmaIsM9nY2pfMBOajUHhWLRb1xUVzlsTqUQvjvY-Lz_w-7sZ_-a63G5wqO8DUR-CS4iF5JIXg-SjXuptSwRoSjaxSbiG4-OCwbeE1IArkch8GVsx9_sf4E9P0p7oqf3XGcYSZvvhP216S54lK0sMR-1fkge9ek2f3Egy-Ib9OryK_BmTpd42Lx7tLqjtHkfltBk-nG5wto2d60G55eZUd9VH0QaMuN5v3Dhpo--46OSgcYTaPuInLx1df6FePNYPROrrsKPYvuA7M0zYKIGlSItCx8xjg2eaGHo_Fd7K5R-Ex-gkFS71DQ7fJj-nxeXuSpTINmS1Kts6AYFiMQq0UmnPnpKkKGQJ3wF1CHgoRjHUBeI8R3tR5YMzUBcSVPFTcaWuKHbLV9Z3fJdRUViMB4ZprAdTLcFdKDJtFaZjP3YR8vgVP_RyzcagYxeSNGrFWiLVKWE_IEQJ8dymm0o4nADmVvkwlROObRgjDsRkXDOBomLFa1lpYXk3INqJ9r70R6AnZu_UXlb77lYIekokKSGD19h-3fSRPTs7nMzU7XXx7R56iueOMzh7ZWg8b_548ttfr5Wr4EJ37N__C-xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+Sampling+and+Feature+Fusion+Paradigm-Boosted+Multi-Modal+Convolutional+Neural+Networks%3A+Deployment+in+Composite+Curing+Process+Monitored+by+Electro-Mechanical+Impedance&rft.jtitle=IEEE+access&rft.au=Gao%2C+Zeyuan&rft.au=Zhao%2C+Xin&rft.au=Li%2C+Meng&rft.au=Han%2C+Zhibin&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2025.3551508&rft.externalDocID=10930734 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |