Exploiting Deep Learning for Wind Power Forecasting Based on Big Data Analytics

Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 9; no. 20; p. 4417
Main Authors: Mujeeb, Sana, Alghamdi, Turki Ali, Ullah, Sameeh, Fatima, Aisha, Javaid, Nadeem, Saba, Tanzila
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2019
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model’s performance was evaluated on big data of Maine wind farm ISO NE, USA.
AbstractList Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model’s performance was evaluated on big data of Maine wind farm ISO NE, USA.
Author Mujeeb, Sana
Saba, Tanzila
Alghamdi, Turki Ali
Javaid, Nadeem
Fatima, Aisha
Ullah, Sameeh
Author_xml – sequence: 1
  givenname: Sana
  surname: Mujeeb
  fullname: Mujeeb, Sana
– sequence: 2
  givenname: Turki Ali
  orcidid: 0000-0001-6706-2183
  surname: Alghamdi
  fullname: Alghamdi, Turki Ali
– sequence: 3
  givenname: Sameeh
  surname: Ullah
  fullname: Ullah, Sameeh
– sequence: 4
  givenname: Aisha
  orcidid: 0000-0001-9620-4806
  surname: Fatima
  fullname: Fatima, Aisha
– sequence: 5
  givenname: Nadeem
  surname: Javaid
  fullname: Javaid, Nadeem
– sequence: 6
  givenname: Tanzila
  orcidid: 0000-0003-3138-3801
  surname: Saba
  fullname: Saba, Tanzila
BookMark eNptkVFLwzAUhYNMcM69-AsKvgnVpEnb9HGbmw4G82HgY7hN70ZGbWrSofv3ZpuiiLkPOTd853DDvSS9xjZIyDWjd5wX9B7atkioECw_I_2E5lnMg-790hdk6P2WhlMwLhntk-X0o62t6UyziR4Q22iB4JpDt7YuejFNFT3bd3TRzDrU4I_gGDxWkW2isQku6CAaNVDvO6P9FTlfQ-1x-HUPyGo2XU2e4sXycT4ZLWLNM9bFTJdaSEwkaC6LUKXMi1RkacpLVmBVQgWp1nItU9RSUsY1Q8QkEDwvgA_I_BRbWdiq1plXcHtlwajjg3UbBS7MU6MCWZaoRUmrJBUShOSi0IzJDGglNMiQdXPKap1926Hv1NbuXPiQV0nKeZZnNMkCRU-UdtZ7h2ulTQedsU3nwNSKUXVYgvpZQrDc_rF8D_oP_Anye4gR
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3305379
crossref_primary_10_1177_0309524X221113013
crossref_primary_10_1016_j_energy_2024_133645
crossref_primary_10_3390_app10093151
crossref_primary_10_1007_s10489_023_04824_w
crossref_primary_10_1002_jemt_24681
crossref_primary_10_3390_en15249657
crossref_primary_10_1016_j_energy_2025_138216
crossref_primary_10_1109_ACCESS_2024_3471073
crossref_primary_10_7717_peerj_cs_1949
crossref_primary_10_3390_app10175808
crossref_primary_10_3390_technologies12100194
crossref_primary_10_3390_app10175975
crossref_primary_10_3390_en15196919
crossref_primary_10_1007_s00521_025_11230_5
crossref_primary_10_3390_en16145383
crossref_primary_10_1109_TSTE_2021_3067436
crossref_primary_10_3390_app142310795
crossref_primary_10_1109_JIOT_2023_3293800
crossref_primary_10_1111_exsy_13467
crossref_primary_10_1016_j_egyr_2022_10_342
crossref_primary_10_1016_j_egyr_2023_12_031
crossref_primary_10_1016_j_energy_2020_119509
crossref_primary_10_1016_j_patcog_2022_108623
crossref_primary_10_1145_3586006
crossref_primary_10_1109_ACCESS_2024_3380014
crossref_primary_10_3390_en13236319
crossref_primary_10_32604_cmc_2022_022309
crossref_primary_10_1016_j_renene_2023_119241
crossref_primary_10_1109_ACCESS_2020_3040083
crossref_primary_10_1007_s00521_021_06323_w
crossref_primary_10_3390_en12244669
crossref_primary_10_1109_TIA_2021_3126272
crossref_primary_10_1016_j_ref_2020_06_005
crossref_primary_10_3390_su13063235
crossref_primary_10_1109_ACCESS_2024_3354706
crossref_primary_10_3390_app10072633
crossref_primary_10_3390_en18133557
crossref_primary_10_1109_ACCESS_2020_3034113
crossref_primary_10_1109_ACCESS_2024_3379327
crossref_primary_10_1051_e3sconf_202449102043
crossref_primary_10_3390_en14051290
crossref_primary_10_3390_en17164089
crossref_primary_10_3390_su15097114
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_1016_j_eti_2021_101531
crossref_primary_10_1088_1402_4896_ad3305
crossref_primary_10_1007_s10489_022_03958_7
crossref_primary_10_1016_j_energy_2021_121271
crossref_primary_10_1109_ACCESS_2023_3285824
crossref_primary_10_1155_int_8890906
crossref_primary_10_3390_smartcities4020043
crossref_primary_10_1016_j_renene_2021_10_104
crossref_primary_10_3390_en15093136
crossref_primary_10_1007_s11042_024_18916_3
crossref_primary_10_3389_fenrg_2023_1220085
crossref_primary_10_1002_we_2760
crossref_primary_10_1016_j_advengsoft_2023_103426
crossref_primary_10_4491_KSEE_2021_43_4_219
crossref_primary_10_1115_1_4068868
crossref_primary_10_1002_qre_3562
crossref_primary_10_3390_e22121412
crossref_primary_10_3390_en14020310
crossref_primary_10_1049_gtd2_70134
crossref_primary_10_1088_1742_6596_1748_3_032015
crossref_primary_10_1007_s00202_025_02983_2
crossref_primary_10_1002_er_6679
Cites_doi 10.1109/TSTE.2015.2429586
10.1063/1.5024297
10.3390/s18113947
10.1109/TSG.2014.2377292
10.1063/1.4995334
10.1002/we.1779
10.1155/2018/9327536
10.1186/s40537-014-0007-7
10.1007/978-3-030-33509-0_5
10.1109/TSTE.2018.2831238
10.1063/1.5034022
10.1109/TSTE.2016.2604679
10.1016/j.asoc.2017.05.031
10.1109/PCT.2007.4538398
10.1016/j.apenergy.2016.05.083
10.1016/j.apenergy.2018.02.069
10.1007/s11367-016-1075-z
10.1016/j.energy.2015.12.026
10.1016/j.energy.2017.01.104
10.1109/TSTE.2016.2560628
10.3390/en7074185
10.1109/TSG.2013.2280649
10.1016/j.scs.2019.101642
10.3390/electronics8020122
10.1016/j.swevo.2011.02.002
10.1016/j.apenergy.2016.11.111
10.1109/TSTE.2015.2441747
10.1016/j.rser.2015.11.050
10.1109/TSTE.2018.2841938
10.1109/JIOT.2017.2677578
10.1002/we.2029
10.1109/TPWRS.2018.2794450
10.3390/su11040987
10.1007/s40565-013-0012-4
10.1016/j.inffus.2017.10.006
10.1109/TSTE.2017.2718518
10.1016/j.renene.2014.09.060
10.1016/j.enconman.2014.10.001
10.1080/07350015.1995.10524599
10.1109/TSTE.2015.2472963
10.1016/j.apenergy.2016.03.096
10.1109/18.119732
10.1109/TSTE.2019.2890875
10.1109/TPWRS.2014.2299801
10.1109/TSTE.2018.2820198
10.1016/j.apenergy.2015.08.040
10.1109/TPWRS.2014.2363873
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9204417
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_a8bbec4b0d2548a48349c1186a0d4ca8
10_3390_app9204417
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-1cbc48e28ac389898b879546553b19edbada5cc8f85ec88013c1eee2465379a3
IEDL.DBID PIMPY
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496269400220&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:53:13 EDT 2025
Mon Jun 30 07:30:20 EDT 2025
Sat Nov 29 07:14:11 EST 2025
Tue Nov 18 21:40:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1cbc48e28ac389898b879546553b19edbada5cc8f85ec88013c1eee2465379a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6706-2183
0000-0001-9620-4806
0000-0003-3138-3801
OpenAccessLink https://www.proquest.com/publiccontent/docview/2533676026?pq-origsite=%requestingapplication%
PQID 2533676026
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_a8bbec4b0d2548a48349c1186a0d4ca8
proquest_journals_2533676026
crossref_citationtrail_10_3390_app9204417
crossref_primary_10_3390_app9204417
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shao (ref_34) 2018; 10
Lago (ref_52) 2018; 221
Zhang (ref_16) 2017; 122
ref_13
Chitsaz (ref_31) 2015; 89
Zhao (ref_48) 2018; 33
Tomporowski (ref_6) 2017; 19
ref_19
Chen (ref_11) 2013; 1
Chen (ref_53) 2014; 7
Xu (ref_20) 2015; 6
Zhao (ref_1) 2016; 177
Stephens (ref_38) 2015; 6
Torres (ref_35) 2018; 10
Cavalcante (ref_24) 2017; 20
Zhang (ref_17) 2018; 42
ref_22
Torres (ref_37) 2018; 2018
Yang (ref_23) 2018; 10
Pascual (ref_40) 2015; 158
Haque (ref_12) 2014; 29
Ghasemi (ref_39) 2016; 177
Wang (ref_47) 2018; 10
Derrac (ref_50) 2011; 1
Najafabadi (ref_18) 2015; 2
Wang (ref_9) 2016; 7
Diebold (ref_51) 1995; 13
Lin (ref_26) 2019; 10
Haupt (ref_15) 2016; 8
Yan (ref_25) 2018; 10
Coifman (ref_43) 1992; 38
Wu (ref_32) 2017; 4
Wang (ref_36) 2017; 188
ref_46
ref_45
ref_44
ref_41
Lee (ref_30) 2014; 5
Zhou (ref_14) 2016; 56
ref_2
Li (ref_29) 2015; 6
ref_49
Zhang (ref_21) 2015; 30
Qureshi (ref_33) 2017; 58
Ellis (ref_27) 2015; 18
Swinand (ref_10) 2015; 75
Athari (ref_8) 2018; 9
Yan (ref_28) 2016; 7
Jong (ref_3) 2016; 100
Shafiee (ref_5) 2016; 21
Mujeeb (ref_42) 2019; 51
ref_4
ref_7
References_xml – volume: 6
  start-page: 1283
  year: 2015
  ident: ref_20
  article-title: A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2429586
– volume: 10
  start-page: 43303
  year: 2018
  ident: ref_34
  article-title: A novel deep learning approach for short-term wind power forecasting based on infinite feature selection and recurrent neural network
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5024297
– ident: ref_49
  doi: 10.3390/s18113947
– volume: 6
  start-page: 1394
  year: 2015
  ident: ref_38
  article-title: Game theoretic model predictive control for distributed energy demand-side management
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2377292
– volume: 10
  start-page: 013305
  year: 2018
  ident: ref_35
  article-title: Deep learning to predict the generation of a wind farm
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4995334
– volume: 18
  start-page: 1611
  year: 2015
  ident: ref_27
  article-title: Predicting wind power variability events using different statistical methods driven by regional atmospheric model output
  publication-title: Wind Energy
  doi: 10.1002/we.1779
– volume: 2018
  start-page: 9327536
  year: 2018
  ident: ref_37
  article-title: Using deep learning to predict complex systems: A case study in wind farm generation
  publication-title: Complexity
  doi: 10.1155/2018/9327536
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_18
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– ident: ref_19
  doi: 10.1007/978-3-030-33509-0_5
– volume: 10
  start-page: 226
  year: 2019
  ident: ref_26
  article-title: A multi-model combination approach for probabilistic wind power forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2831238
– ident: ref_4
– volume: 10
  start-page: 45908
  year: 2018
  ident: ref_23
  article-title: The efficient market operation for wind energy trading based on the dynamic improved power forecasting
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5034022
– volume: 8
  start-page: 725
  year: 2016
  ident: ref_15
  article-title: Variable generation power forecasting as a big data problem
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2604679
– volume: 58
  start-page: 742
  year: 2017
  ident: ref_33
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.031
– ident: ref_13
  doi: 10.1109/PCT.2007.4538398
– volume: 177
  start-page: 40
  year: 2016
  ident: ref_39
  article-title: A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.083
– volume: 221
  start-page: 386
  year: 2018
  ident: ref_52
  article-title: Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.069
– volume: 21
  start-page: 961
  year: 2016
  ident: ref_5
  article-title: A parametric whole life cost model for offshore wind farms
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1075-z
– volume: 100
  start-page: 401
  year: 2016
  ident: ref_3
  article-title: Integrating large scale wind power into the electricity grid in the Northeast of Brazil
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.026
– volume: 122
  start-page: 528
  year: 2017
  ident: ref_16
  article-title: Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.104
– ident: ref_7
– volume: 7
  start-page: 1525
  year: 2016
  ident: ref_9
  article-title: Quantifying the economic and grid reliability impacts of improved wind power forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2560628
– volume: 7
  start-page: 4185
  year: 2014
  ident: ref_53
  article-title: Refined Diebold-Mariano test methods for the evaluation of wind power forecasting models
  publication-title: Energies
  doi: 10.3390/en7074185
– volume: 5
  start-page: 501
  year: 2014
  ident: ref_30
  article-title: Short-term wind power ensemble prediction based on Gaussian processes and neural networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2280649
– volume: 51
  start-page: 101642
  year: 2019
  ident: ref_42
  article-title: ESAENARX and DE-RELM: Novel schemes for big data predictive analytics of electricity load and price
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101642
– ident: ref_45
  doi: 10.3390/electronics8020122
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_50
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 188
  start-page: 56
  year: 2017
  ident: ref_36
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.111
– volume: 6
  start-page: 1447
  year: 2015
  ident: ref_29
  article-title: Wind power forecasting using neural network ensembles with feature selection
  publication-title: IEEE Trans. Sustain Energy
  doi: 10.1109/TSTE.2015.2441747
– volume: 56
  start-page: 215
  year: 2016
  ident: ref_14
  article-title: Big data driven smart energy management: From big data to big insights
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.050
– volume: 10
  start-page: 625
  year: 2018
  ident: ref_25
  article-title: Analytical Iterative Multistep Interval Forecasts of Wind Generation Based on TLGP
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2841938
– volume: 4
  start-page: 979
  year: 2017
  ident: ref_32
  article-title: A Data Mining Approach Combining K-Means Clustering With Bagging Neural Network for Short-Term Wind Power Forecasting
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2677578
– volume: 20
  start-page: 657
  year: 2017
  ident: ref_24
  article-title: LASSO vector autoregression structures for very short-term wind power forecasting
  publication-title: Wind Energy
  doi: 10.1002/we.2029
– volume: 33
  start-page: 5029
  year: 2018
  ident: ref_48
  article-title: Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2794450
– ident: ref_41
  doi: 10.3390/su11040987
– volume: 1
  start-page: 2
  year: 2013
  ident: ref_11
  article-title: Wind power in modern power systems
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-013-0012-4
– ident: ref_44
– volume: 42
  start-page: 146
  year: 2018
  ident: ref_17
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.006
– volume: 19
  start-page: 694
  year: 2017
  ident: ref_6
  article-title: Environmental control of wind power technology
  publication-title: Rocznik Ochrona Srodowiska
– volume: 9
  start-page: 128
  year: 2018
  ident: ref_8
  article-title: Impacts of Wind Power Uncertainty on Grid Vulnerability to Cascading Overload Failures
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2718518
– volume: 75
  start-page: 468
  year: 2015
  ident: ref_10
  article-title: Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.09.060
– volume: 89
  start-page: 588
  year: 2015
  ident: ref_31
  article-title: Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.10.001
– volume: 13
  start-page: 253
  year: 1995
  ident: ref_51
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1995.10524599
– ident: ref_2
– volume: 7
  start-page: 87
  year: 2016
  ident: ref_28
  article-title: Hybrid probabilistic wind power forecasting using temporally local Gaussian process
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2472963
– ident: ref_46
– volume: 177
  start-page: 793
  year: 2016
  ident: ref_1
  article-title: A novel bidirectional mechanism based on time series model for wind power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.096
– volume: 38
  start-page: 713
  year: 1992
  ident: ref_43
  article-title: Entropy-based algorithms for best basis selection
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.119732
– ident: ref_22
  doi: 10.1109/TSTE.2019.2890875
– volume: 29
  start-page: 1663
  year: 2014
  ident: ref_12
  article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2299801
– volume: 10
  start-page: 16
  year: 2018
  ident: ref_47
  article-title: Wind power curve modeling and wind power forecasting with inconsistent data
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2820198
– volume: 158
  start-page: 12
  year: 2015
  ident: ref_40
  article-title: Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.040
– volume: 30
  start-page: 2706
  year: 2015
  ident: ref_21
  article-title: An advanced approach for construction of optimal wind power prediction intervals
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2363873
SSID ssj0000913810
Score 2.4111488
Snippet Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4417
SubjectTerms Accuracy
Alternative energy sources
Big Data
convolution neural network
Data analysis
data analytics
Decomposition
Deep learning
demand side management
energy management
Energy resources
Forecasting
Forecasting techniques
Industrial plant emissions
Neural networks
Optimization techniques
Power supply
Random variables
Renewable resources
Teaching methods
Time series
Wavelet transforms
Wind power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2keNCD2KpYrbKgB3sI5qvJ7tGqxVPtoWBvYXd2lYKkpYn-fmc2W60oePEWwoQNM5l9M8nkPcYuIUytQFwOQpOnQYqAHEih8sAMMkBIjzJptRObyMdjMZvJyYbUF82ENfTAjeOuldC4TKpDg62MUPTuSwJWxZkKTQrK_eYb5nKjmXJ7sIyIuqrhI02wr6fvwTIOSXDrGwI5ov4f-7ADl9E-2_NVIb9p7qbNtmzZYbsbXIEd1vZZWPErTxXdP2CPboRuTqPL_M7aJfd0qS8ca1H-hP02n5AMGicFTlCVMxwicBm-KPlwjlepWnHHTEJ8zYdsOrqf3j4EXiIhgCSL6iACDamwsVCQkBCk0CQeTpxoiY6kNVoZNQAQz2JgAVM1SiCy1sbEqpZLlRyxVrko7THjGl1jDVYzIleIUSBjjYW31VrEYPGwy_prrxXg6cNJxeK1wDaCPFx8ebjLLj5tlw1pxq9WQ3L-pwURXbsTGP7Ch7_4K_xd1luHrvDZVxUx1rBZTuJaJ_-xxinbwTJJNiN8PdaqV2_2jG3Dez2vVufuwfsAFx7cNg
  priority: 102
  providerName: Directory of Open Access Journals
Title Exploiting Deep Learning for Wind Power Forecasting Based on Big Data Analytics
URI https://www.proquest.com/docview/2533676026
https://doaj.org/article/a8bbec4b0d2548a48349c1186a0d4ca8
Volume 9
WOSCitedRecordID wos000496269400220&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VhAM9tLSAmj6ileBAD1b9ir17qkibqBwIFqpEOVm7s9sqEkrSOO3v78x6k4JAnLhZ9liyPLPz2tnvA_iAce4kxeUotmUe5RSQIyV1GdlBgRTSk0I548kmyslE3tyoKhyPbsJY5donekfdoj3z3DY54TM7R-6Yn6WUpRQl0yedL-4j5pDivdZAqPECugy8FXegW33-Uv3Y9FwYA1MmcYtSmlG1z7vEKo2Zhuu3uOTh-__wzj7kjHf_78e-hp2QeopPra3swZab7cP2L4CE-7AXlnojPgY86tM38NXP6U15PlpcOrcQAZP1TlDCK75TUS8q5loTTPOJuvGCQ4qOVsxnYjilt_RKCw9_wqDQb-F6PLq-uIoCD0OEWZGsogQN5tKlUmPGbJPSMEM5A69lJlHOGm31AFHeyoFD8gdJholzLmXotlLp7B10ZvOZOwBh6E87SymTLDUFQlSpoezeGSNTdHTZg9O1EmoMGOVMlfGzplqFFVY_K6wH7zeyixaZ469SQ9blRoLRtP2N-fKuDouz1tKQKecmtmQ3UnN_VSFVXoWObY5a9uB4reY6LPGmftbq4b8fH8EryrJUOwF4DJ3V8sGdwEt8XE2bZR-6w9Gk-tb3zYB-sNgn6NX5WQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4AC2gBgqsBEj0YNVfsXcPCBFK1ahtyCES5bTanV2qSJUT4gDiR_EfmbHXKQjErQdulj22ZO_b-dgdvwfwHOPcS4rLUezKPMopIEdKmjJygwIppCeF8rYRmyjHY3l2piYb8KP7F4bbKjuf2DhqN0deI99PKS8pShZMer34HLFqFO-udhIaLSyO_fdvVLLVr0YHNL4v0vTw3fTtURRUBSLMimQVJWgxlz6VBjPWTpSW9baZRiyzifLOGmcGiPKTHHgkdCcZJt77lInISmUyeuw12MwJ63EPNiej08nH9aIOk2zKJG5pULNMxbwNrdKYdb5-C3yNPsAf7r-JaYd3_rOvcRduh-RZvGnRvgUbvtqGW79QKm7DVnBWtXgZGLX37sH7ptNwxh3e4sD7hQissueCUnbxYVY5MWG1OMFCpWjqxnBI8d2JeSWGM7rLrIxoCFyY1vo-TK_iLR9Ar5pXfgeEpaH0jpI-WRoK5ahSS_WJt1am6OmwD3vdKGsMLOss9nGhqdpiROhLRPTh2dp20XKL_NVqyGBZWzAfeHNivjzXwb1oIy1NxtzGjgp-aXiFWCHVjoWJXY5G9mG3w5EOTqrWlyB6-O_LT-HG0fT0RJ-MxseP4CbljKrtZ9yF3mr5xT-G6_h1NauXT8KEEKCvGHQ_ARw9R8I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RAFL3UrYg-VFsV11YdUME-hOZrk5kHEdftYqmsixTs2zBzZ1oWJLtuVsWf1n_Xe5PJVlF864NvIbkJJHPmfszcnAPwAuPcS4rLUezKPMopIEdKmjJygwIppCeF8rYRmygnE3l6qqYbcNH9C8NtlZ1PbBy1myOvkR-klJcUJQsmHZyFtojpaPxm8TViBSneae3kNFqIHPufP6h8q18fjWisX6bp-PDk3fsoKAxEmBXJKkrQYi59Kg1mrKMoLWtvM6VYZhPlnTXODBDlmRx4JKQnGSbe-5RJyUplMnrsDdgsM6p5erA5PJxMP60XeJhwUyZxS4maZSrmLWmVxqz59VsQbLQC_ggFTXwb3_2Pv8w92ApJtXjbzoJt2PDVDtz5hWpxB7aDE6vFq8C0vX8fPjYdiDPu_BYj7xcisM2eC0rlxedZ5cSUVeQEC5iiqRvDIcV9J-aVGM7oLrMyoiF2YbrrB3ByHW_5EHrVvPKPQFgaVu8oGZSloRCPKrVUt3hrZYqeDvuw3424xsC-ziIgXzRVYYwOfYWOPjxf2y5azpG_Wg0ZOGsL5glvTsyX5zq4HW2kpUma29ilVJoaXjlWSDVlYWKXo5F92OswpYPzqvUVoB7_-_IzuEVI0x-OJse7cJtSSdW2Oe5Bb7X85p_ATfy-mtXLp2FuCNDXjLlL0fdQXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Deep+Learning+for+Wind+Power+Forecasting+Based+on+Big+Data+Analytics&rft.jtitle=Applied+sciences&rft.au=Mujeeb%2C+Sana&rft.au=Turki+Ali+Alghamdi&rft.au=Ullah%2C+Sameeh&rft.au=Fatima%2C+Aisha&rft.date=2019-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=20&rft.spage=4417&rft_id=info:doi/10.3390%2Fapp9204417&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon