Lightweight and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication
Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However, existing methods of this type often fall short of meeting the new demands in terms of model parameter size and storage efficiency. To address thes...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 158285 - 158301 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However, existing methods of this type often fall short of meeting the new demands in terms of model parameter size and storage efficiency. To address these issues, we propose a lightweight wireless image transmission method based on a tiny ConvNeXt architecture (ConvNeXt-T), referred to as DeepJSCC-T. To reduce the system's parameter size and storage requirements, we adopt the efficient ConvNeXt-T as the backbone network for JSCC, thereby achieving a lightweight design. To further ensure adaptability to varying bandwidth and signal-to-noise ratio (SNR) conditions, we design a lightweight SNR-adaptive module based on large convolutional kernels, which enhances both flexibility and transmission performance. The experimental results show that, compared with existing methods, the proposed DeepJSCC-T achieves significant reductions in both parameter size and storage overhead. Specifically, DeepJSCC-T reduces the number of parameters by 24.65% and 27.52% relative to the Attention-based DeepJSCC (ADJSCC) and the variable-length DeepJSCC (DeepJSCC-V), while lowering storage overhead by 30.98% and 33.47%, respectively. Notably, despite its more compact architecture, DeepJSCC-T maintains competitive PSNR performance, demonstrates clear advantages in high-resolution image transmission, and exhibits strong adaptability under different SNR and bandwidth conditions, making it suitable for resource-constrained semantic communication scenarios. |
|---|---|
| AbstractList | Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However, existing methods of this type often fall short of meeting the new demands in terms of model parameter size and storage efficiency. To address these issues, we propose a lightweight wireless image transmission method based on a tiny ConvNeXt architecture (ConvNeXt-T), referred to as DeepJSCC-T. To reduce the system’s parameter size and storage requirements, we adopt the efficient ConvNeXt-T as the backbone network for JSCC, thereby achieving a lightweight design. To further ensure adaptability to varying bandwidth and signal-to-noise ratio (SNR) conditions, we design a lightweight SNR-adaptive module based on large convolutional kernels, which enhances both flexibility and transmission performance. The experimental results show that, compared with existing methods, the proposed DeepJSCC-T achieves significant reductions in both parameter size and storage overhead. Specifically, DeepJSCC-T reduces the number of parameters by 24.65% and 27.52% relative to the Attention-based DeepJSCC (ADJSCC) and the variable-length DeepJSCC (DeepJSCC-V), while lowering storage overhead by 30.98% and 33.47%, respectively. Notably, despite its more compact architecture, DeepJSCC-T maintains competitive PSNR performance, demonstrates clear advantages in high-resolution image transmission, and exhibits strong adaptability under different SNR and bandwidth conditions, making it suitable for resource-constrained semantic communication scenarios. |
| Author | Dang, Shuping Wang, Jiafeng Chen, Haiqiang Sun, Youming Li, Xiangcheng Wei, Lile |
| Author_xml | – sequence: 1 givenname: Youming orcidid: 0000-0001-9963-3876 surname: Sun fullname: Sun, Youming organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China – sequence: 2 givenname: Jiafeng orcidid: 0009-0006-0414-2948 surname: Wang fullname: Wang, Jiafeng organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China – sequence: 3 givenname: Lile orcidid: 0009-0004-9633-0537 surname: Wei fullname: Wei, Lile organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China – sequence: 4 givenname: Haiqiang orcidid: 0000-0002-0694-1595 surname: Chen fullname: Chen, Haiqiang organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China – sequence: 5 givenname: Shuping orcidid: 0000-0002-0018-815X surname: Dang fullname: Dang, Shuping organization: School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol, U.K – sequence: 6 givenname: Xiangcheng orcidid: 0009-0007-3547-5531 surname: Li fullname: Li, Xiangcheng email: xcli@gxu.edu.cn organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China |
| BookMark | eNpNUcFu2zAMFYYWWNf1C7aDgJ2TiZYlS8fA69oAAXZIi94qSDadKYilTHI67O-nzMU2HkiC5Hsk8d6RixADEvIB2BKA6c-rtr3dbpcVq8SSS9ZIrd-QqwqkXnDB5cV_-Vtyk_OeFVOlJJor8rzxu-_TTzx7akNPV709Tv4F6RfEI21j78OODjHRJ5_wgDnT9Wh3SB-SDXn0OfsYqA90i6MNk-8KZBxPwXd2Kp335HKwh4w3r_GaPH69fWjvF5tvd-t2tVl0XMK0AFsLq52rmHJWCCl6zlABCI5OOekANFPY1FZoBwIa1YNjOAwdMtDccX5N1jNvH-3eHJMfbfplovXmTyGmnbGpXHdAMwBvrFASFZf1oKUTQ41c141UXKNwhevTzHVM8ccJ82T28ZRCOd_wSoCogCsoU3ye6lLMOeHwdyswc9bFzLqYsy7mVZeC-jijPCL-Q5w_VaD4bzXnikQ |
| CODEN | IAECCG |
| Cites_doi | 10.1109/TCSVT.2021.3082521 10.48550/arXiv.2211.11943 10.1109/JSAIT.2020.2987203 10.1109/CVPR.2016.90 10.1109/ACCESS.2025.3558107 10.1109/JSAC.2022.3221952 10.1109/TCCN.2019.2919300 10.1109/GLOBECOM54140.2023.10436784 10.1002/bltj.20540 10.1109/ICCV51070.2023.01540 10.1109/TWC.2023.3234408 10.1109/CVPRW.2017.150 10.1109/TCSVT.2020.3010627 10.1109/ICASSP49357.2023.10094735 10.1109/DCC.2000.838192 10.1109/JSAC.2021.3126087 10.1109/JSAC.2022.3191112 10.1109/TCSVT.2017.2734838 10.58496/BJIoT/2025/003 10.1016/S0923-5965(01)00024-8 10.1109/TSP.2022.3147307 10.1109/TCSVT.2018.2867067 10.1109/JSAC.2022.3180802 10.1109/JSAC.2023.3288252 10.1109/ACCESS.2023.3266656 10.1109/ISTC.2018.8625377 10.1109/TSP.2021.3071210 10.1109/TCCN.2024.3424842 10.1109/TCCN.2024.3422496 10.1109/JSAC.2021.3087240 10.1109/CVPR52688.2022.01167 10.1109/MeditCom61057.2024.10621322 10.1109/JIOT.2025.3529492 10.1109/TIP.2003.819861 10.1109/ICASSP.2018.8461983 10.1109/CVPR.2018.00474 10.1109/JIOT.2024.3352737 10.1109/MWC.002.2200468 10.70470/KHWARIZMIA/2024/004 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3607699 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 158301 |
| ExternalDocumentID | oai_doaj_org_article_f137a586e8364f96b5f4e39476839e5b 10_1109_ACCESS_2025_3607699 11153818 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: KR&DP of Guangxi grantid: GuiKeAD25069071; GuiKeAD25069102 – fundername: National Natural Science Foundation of China grantid: 61961004; 62361003; 62261003 funderid: 10.13039/501100001809 – fundername: Innovation Project of Guangxi Graduate Education grantid: YCSW2025124 – fundername: Natural Science Foundation of Guangxi grantid: 2025GXNSFAA069672 funderid: 10.13039/501100004607 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-1a45a9bb208ba5565d30e81153eb8b6b11908e74a59b15178d1b0effce0193b33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574203300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Sat Nov 01 15:16:23 EDT 2025 Sat Nov 29 07:27:52 EST 2025 Wed Oct 01 07:05:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-1a45a9bb208ba5565d30e81153eb8b6b11908e74a59b15178d1b0effce0193b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-3547-5531 0000-0001-9963-3876 0009-0004-9633-0537 0000-0002-0694-1595 0009-0006-0414-2948 0000-0002-0018-815X |
| OpenAccessLink | https://doaj.org/article/f137a586e8364f96b5f4e39476839e5b |
| PQID | 3251521381 |
| PQPubID | 4845423 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_11153818 doaj_primary_oai_doaj_org_article_f137a586e8364f96b5f4e39476839e5b proquest_journals_3251521381 crossref_primary_10_1109_ACCESS_2025_3607699 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Krizhevsky (ref40) 2009 ref12 ref34 Guo (ref37) 2022 ref15 ref14 ref36 ref31 Bellard (ref2) 2022 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Luo (ref45) 2017 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Franzen (ref42) 2024 ref6 Vangala (ref5) 2015 |
| References_xml | – ident: ref33 doi: 10.1109/TCSVT.2021.3082521 – ident: ref38 doi: 10.48550/arXiv.2211.11943 – ident: ref21 doi: 10.1109/JSAIT.2020.2987203 – ident: ref36 doi: 10.1109/CVPR.2016.90 – year: 2022 ident: ref37 article-title: SegNeXt: Rethinking convolutional attention design for semantic segmentation publication-title: arXiv:2209.08575 – year: 2017 ident: ref45 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: arXiv:1701.04128 – ident: ref23 doi: 10.1109/ACCESS.2025.3558107 – ident: ref31 doi: 10.1109/JSAC.2022.3221952 – ident: ref11 doi: 10.1109/TCCN.2019.2919300 – ident: ref20 doi: 10.1109/GLOBECOM54140.2023.10436784 – ident: ref7 doi: 10.1002/bltj.20540 – ident: ref39 doi: 10.1109/ICCV51070.2023.01540 – ident: ref34 doi: 10.1109/TWC.2023.3234408 – ident: ref41 doi: 10.1109/CVPRW.2017.150 – ident: ref9 doi: 10.1109/TCSVT.2020.3010627 – ident: ref32 doi: 10.1109/ICASSP49357.2023.10094735 – ident: ref1 doi: 10.1109/DCC.2000.838192 – ident: ref17 doi: 10.1109/JSAC.2021.3126087 – ident: ref29 doi: 10.1109/JSAC.2022.3191112 – ident: ref8 doi: 10.1109/TCSVT.2017.2734838 – volume-title: Kodak24 Dataset year: 2024 ident: ref42 – volume-title: BPG Image Format year: 2022 ident: ref2 – year: 2015 ident: ref5 article-title: A comparative study of polar code constructions for the AWGN channel publication-title: arXiv:1501.02473 – ident: ref13 doi: 10.58496/BJIoT/2025/003 – ident: ref3 doi: 10.1016/S0923-5965(01)00024-8 – ident: ref4 doi: 10.1109/TSP.2022.3147307 – ident: ref10 doi: 10.1109/TCSVT.2018.2867067 – ident: ref16 doi: 10.1109/JSAC.2022.3180802 – volume-title: Learning multiple layers of features from tiny images year: 2009 ident: ref40 – ident: ref18 doi: 10.1109/JSAC.2023.3288252 – ident: ref22 doi: 10.1109/ACCESS.2023.3266656 – ident: ref6 doi: 10.1109/ISTC.2018.8625377 – ident: ref15 doi: 10.1109/TSP.2021.3071210 – ident: ref35 doi: 10.1109/TCCN.2024.3424842 – ident: ref27 doi: 10.1109/TCCN.2024.3422496 – ident: ref30 doi: 10.1109/JSAC.2021.3087240 – ident: ref14 doi: 10.1109/CVPR52688.2022.01167 – ident: ref24 doi: 10.1109/MeditCom61057.2024.10621322 – ident: ref26 doi: 10.1109/JIOT.2025.3529492 – ident: ref43 doi: 10.1109/TIP.2003.819861 – ident: ref28 doi: 10.1109/ICASSP.2018.8461983 – ident: ref44 doi: 10.1109/CVPR.2018.00474 – ident: ref25 doi: 10.1109/JIOT.2024.3352737 – ident: ref19 doi: 10.1109/MWC.002.2200468 – ident: ref12 doi: 10.70470/KHWARIZMIA/2024/004 |
| SSID | ssj0000816957 |
| Score | 2.3347208 |
| Snippet | Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 158285 |
| SubjectTerms | Adaptation models Bandwidth Bandwidths Coding Communication ConvNeXt Decoding Feature extraction Image coding Image communication Image reconstruction Image resolution Image transmission joint source channel coding lightweight model Parameters Semantic communication Semantics Signal to noise ratio Wireless communication wireless image transmission |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1EN7gJZSsS2tfOiRQLyOX8dlAbUSQpUKFadadjKWVmKzK1jg7zN2DLSqeugtivNw_Nkz30w8MwBfomo9CTlfCaVk1USaxkZxrHQk_kDqbyxzMZifp_rszFxe2u8lWD3HwiBi3nyG--kw_8vvFu1tcpUd0LqUScOswZrWegjWenKopAoSVuqSWYjX9mAyndJHkA04lvtCkcGeE7w-a5-cpL9UVflLFGf9crL5nz17AxuFSLLJgPxbeIH9Frz-Lb3gO_h1mizv--z8ZL7v2KTzyyTe2BHikk0XSW8xYq0s7YG9IpnHvs1JvrCswGgCJE8am_XsB84JgFnL_ggn2YaLk-Pz6deq1FOoWqH4quK-kd6GMK5N8JKYXCdqNKnnGExQgRM5MKgbL20gIqBNx0ONMbZIPFAEId7Der_ocQeYjjZYOW5aIhQNtdFDW64CIk8Z2r0cwd7jOLvlkDbDZXOjtm6AxSVYXIFlBIcJi6dLU87rfIIG2ZUl5CIX2kuj0AjVRKuCjA0K25DBJCzKMILtBMzz-womI9h9hNaVBXrjBPE6Yi7U_uEft32EV6mLg7tlF9ZX17f4CV62d6vZzfXnPPceAJxS1mI priority: 102 providerName: IEEE |
| Title | Lightweight and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication |
| URI | https://ieeexplore.ieee.org/document/11153818 https://www.proquest.com/docview/3251521381 https://doaj.org/article/f137a586e8364f96b5f4e39476839e5b |
| Volume | 13 |
| WOSCitedRecordID | wos001574203300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8SkKpfLASGhdx449lgACqSAkPsSEZadnqRINFS2w8ds5O4EWMbCwZIijOH7n3L2z7HeEHHhZWHRyNuFSiiT1OI2VZJBkHvkDhr-uiMVg7vvZ1ZV6eNDXc6W-wp6wSh64Aq7tGc-sUBIUl6nX0gmfAtcp0mSuQbjgfZH1zCVT0QcrJrXIapkh1tHtXp7jiDAh7IojLjF7j2qvs1AUFfvrEiu__HIMNmdrZLVmibRXfd06WYByg6zMaQduksd-SKvf48omteWA9gZ2HHwXPQEY0_w5BCWKlJSGDa5P6NDoxQidB43RCa0blsnosKQ3MEJ0hwX9cVZki9ydnd7m50ldLCEpuGTThNlUWO0cguGsQJo24B1QyPc4OOWkYxj5FWSpFdphlM_UgLkOeF8AkjzuON8mi-VzCTuEZl47LbppgWwhxTZ8acGkA2BBft2KBjn8ws2MK00ME3OJjjYVzCbAbGqYG-Q4YPv9aBC0jjfQzKY2s_nLzA2yFSwz6y-MDMlGgzS_TGXqv29iOJI2pCXYvvsffe-R5TCeauGlSRanL6-wT5aKt-lw8tKKEw-vlx-nrXh88BNJj9oy |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPItYKOADR9LG8SP2cVmoWrGskCioJyw7GUsrtdlVu4W_z9hxWxDiwC2K83D82TPfTDwzAG-i7jwJOV8JrVUlI01jozlWbST-QOqvUbkYzLd5u1iY42P7uQSr51gYRMybz3A3HeZ_-f2qu0iusj1alyppmJtwS0nZ8DFc68qlkmpIWNWW3EK8tnvT2Yw-g6zARu0KTSZ7TvF6rX9ymv5SV-UvYZw1zP6D_-zbQ7hfqCSbjtg_ghs4PIZ7vyUYfALf58n2_pndn8wPPZv2fp0EHHuPuGazVdJcjHgrS7tgT0jqscNTkjAsqzCaAsmXxpYD-4KnBMGyY38ElGzD1_0PR7ODqlRUqDqh-abiXipvQ2hqE7wiLteLGk3qOQYTdOBEDwy20isbiAq0puehxhg7JCYoghBPYWtYDfgMWBttsKqRHVEKSW300I7rgMhTjnavJvD2cpzdekyc4bLBUVs3wuISLK7AMoF3CYurS1PW63yCBtmVReQiF61XRqMRWkarg4oShZVkMgmLKkxgOwFz_b6CyQR2LqF1ZYmeO0HMjrgLtT__x22v4c7B0ae5mx8uPr6Au6m7o_NlB7Y2Zxf4Em53PzbL87NXeR7-Aumh2ak |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+and+Adaptive+Deep+Coding+for+Wireless+Image+Transmission+in+Semantic+Communication&rft.jtitle=IEEE+access&rft.au=Sun%2C+Youming&rft.au=Wang%2C+Jiafeng&rft.au=Wei%2C+Lile&rft.au=Chen%2C+Haiqiang&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=158285&rft.epage=158301&rft_id=info:doi/10.1109%2FACCESS.2025.3607699&rft.externalDocID=11153818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |