Lightweight and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication

Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However, existing methods of this type often fall short of meeting the new demands in terms of model parameter size and storage efficiency. To address thes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 158285 - 158301
Hlavní autoři: Sun, Youming, Wang, Jiafeng, Wei, Lile, Chen, Haiqiang, Dang, Shuping, Li, Xiangcheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However, existing methods of this type often fall short of meeting the new demands in terms of model parameter size and storage efficiency. To address these issues, we propose a lightweight wireless image transmission method based on a tiny ConvNeXt architecture (ConvNeXt-T), referred to as DeepJSCC-T. To reduce the system's parameter size and storage requirements, we adopt the efficient ConvNeXt-T as the backbone network for JSCC, thereby achieving a lightweight design. To further ensure adaptability to varying bandwidth and signal-to-noise ratio (SNR) conditions, we design a lightweight SNR-adaptive module based on large convolutional kernels, which enhances both flexibility and transmission performance. The experimental results show that, compared with existing methods, the proposed DeepJSCC-T achieves significant reductions in both parameter size and storage overhead. Specifically, DeepJSCC-T reduces the number of parameters by 24.65% and 27.52% relative to the Attention-based DeepJSCC (ADJSCC) and the variable-length DeepJSCC (DeepJSCC-V), while lowering storage overhead by 30.98% and 33.47%, respectively. Notably, despite its more compact architecture, DeepJSCC-T maintains competitive PSNR performance, demonstrates clear advantages in high-resolution image transmission, and exhibits strong adaptability under different SNR and bandwidth conditions, making it suitable for resource-constrained semantic communication scenarios.
AbstractList Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However, existing methods of this type often fall short of meeting the new demands in terms of model parameter size and storage efficiency. To address these issues, we propose a lightweight wireless image transmission method based on a tiny ConvNeXt architecture (ConvNeXt-T), referred to as DeepJSCC-T. To reduce the system's parameter size and storage requirements, we adopt the efficient ConvNeXt-T as the backbone network for JSCC, thereby achieving a lightweight design. To further ensure adaptability to varying bandwidth and signal-to-noise ratio (SNR) conditions, we design a lightweight SNR-adaptive module based on large convolutional kernels, which enhances both flexibility and transmission performance. The experimental results show that, compared with existing methods, the proposed DeepJSCC-T achieves significant reductions in both parameter size and storage overhead. Specifically, DeepJSCC-T reduces the number of parameters by 24.65% and 27.52% relative to the Attention-based DeepJSCC (ADJSCC) and the variable-length DeepJSCC (DeepJSCC-V), while lowering storage overhead by 30.98% and 33.47%, respectively. Notably, despite its more compact architecture, DeepJSCC-T maintains competitive PSNR performance, demonstrates clear advantages in high-resolution image transmission, and exhibits strong adaptability under different SNR and bandwidth conditions, making it suitable for resource-constrained semantic communication scenarios.
Author Dang, Shuping
Wang, Jiafeng
Chen, Haiqiang
Sun, Youming
Li, Xiangcheng
Wei, Lile
Author_xml – sequence: 1
  givenname: Youming
  orcidid: 0000-0001-9963-3876
  surname: Sun
  fullname: Sun, Youming
  organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China
– sequence: 2
  givenname: Jiafeng
  orcidid: 0009-0006-0414-2948
  surname: Wang
  fullname: Wang, Jiafeng
  organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China
– sequence: 3
  givenname: Lile
  orcidid: 0009-0004-9633-0537
  surname: Wei
  fullname: Wei, Lile
  organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China
– sequence: 4
  givenname: Haiqiang
  orcidid: 0000-0002-0694-1595
  surname: Chen
  fullname: Chen, Haiqiang
  organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China
– sequence: 5
  givenname: Shuping
  orcidid: 0000-0002-0018-815X
  surname: Dang
  fullname: Dang, Shuping
  organization: School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol, U.K
– sequence: 6
  givenname: Xiangcheng
  orcidid: 0009-0007-3547-5531
  surname: Li
  fullname: Li, Xiangcheng
  email: xcli@gxu.edu.cn
  organization: School of Computer and Electronics and Information, Guangxi University, Nanning, Guangxi, China
BookMark eNpNUcFu2zAMFYYWWNf1C7aDgJ2TiZYlS8fA69oAAXZIi94qSDadKYilTHI67O-nzMU2HkiC5Hsk8d6RixADEvIB2BKA6c-rtr3dbpcVq8SSS9ZIrd-QqwqkXnDB5cV_-Vtyk_OeFVOlJJor8rzxu-_TTzx7akNPV709Tv4F6RfEI21j78OODjHRJ5_wgDnT9Wh3SB-SDXn0OfsYqA90i6MNk-8KZBxPwXd2Kp335HKwh4w3r_GaPH69fWjvF5tvd-t2tVl0XMK0AFsLq52rmHJWCCl6zlABCI5OOekANFPY1FZoBwIa1YNjOAwdMtDccX5N1jNvH-3eHJMfbfplovXmTyGmnbGpXHdAMwBvrFASFZf1oKUTQ41c141UXKNwhevTzHVM8ccJ82T28ZRCOd_wSoCogCsoU3ye6lLMOeHwdyswc9bFzLqYsy7mVZeC-jijPCL-Q5w_VaD4bzXnikQ
CODEN IAECCG
Cites_doi 10.1109/TCSVT.2021.3082521
10.48550/arXiv.2211.11943
10.1109/JSAIT.2020.2987203
10.1109/CVPR.2016.90
10.1109/ACCESS.2025.3558107
10.1109/JSAC.2022.3221952
10.1109/TCCN.2019.2919300
10.1109/GLOBECOM54140.2023.10436784
10.1002/bltj.20540
10.1109/ICCV51070.2023.01540
10.1109/TWC.2023.3234408
10.1109/CVPRW.2017.150
10.1109/TCSVT.2020.3010627
10.1109/ICASSP49357.2023.10094735
10.1109/DCC.2000.838192
10.1109/JSAC.2021.3126087
10.1109/JSAC.2022.3191112
10.1109/TCSVT.2017.2734838
10.58496/BJIoT/2025/003
10.1016/S0923-5965(01)00024-8
10.1109/TSP.2022.3147307
10.1109/TCSVT.2018.2867067
10.1109/JSAC.2022.3180802
10.1109/JSAC.2023.3288252
10.1109/ACCESS.2023.3266656
10.1109/ISTC.2018.8625377
10.1109/TSP.2021.3071210
10.1109/TCCN.2024.3424842
10.1109/TCCN.2024.3422496
10.1109/JSAC.2021.3087240
10.1109/CVPR52688.2022.01167
10.1109/MeditCom61057.2024.10621322
10.1109/JIOT.2025.3529492
10.1109/TIP.2003.819861
10.1109/ICASSP.2018.8461983
10.1109/CVPR.2018.00474
10.1109/JIOT.2024.3352737
10.1109/MWC.002.2200468
10.70470/KHWARIZMIA/2024/004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3607699
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 158301
ExternalDocumentID oai_doaj_org_article_f137a586e8364f96b5f4e39476839e5b
10_1109_ACCESS_2025_3607699
11153818
Genre orig-research
GrantInformation_xml – fundername: KR&DP of Guangxi
  grantid: GuiKeAD25069071; GuiKeAD25069102
– fundername: National Natural Science Foundation of China
  grantid: 61961004; 62361003; 62261003
  funderid: 10.13039/501100001809
– fundername: Innovation Project of Guangxi Graduate Education
  grantid: YCSW2025124
– fundername: Natural Science Foundation of Guangxi
  grantid: 2025GXNSFAA069672
  funderid: 10.13039/501100004607
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-1a45a9bb208ba5565d30e81153eb8b6b11908e74a59b15178d1b0effce0193b33
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574203300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:02 EDT 2025
Sat Nov 01 15:16:23 EDT 2025
Sat Nov 29 07:27:52 EST 2025
Wed Oct 01 07:05:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1a45a9bb208ba5565d30e81153eb8b6b11908e74a59b15178d1b0effce0193b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-3547-5531
0000-0001-9963-3876
0009-0004-9633-0537
0000-0002-0694-1595
0009-0006-0414-2948
0000-0002-0018-815X
OpenAccessLink https://doaj.org/article/f137a586e8364f96b5f4e39476839e5b
PQID 3251521381
PQPubID 4845423
PageCount 17
ParticipantIDs ieee_primary_11153818
doaj_primary_oai_doaj_org_article_f137a586e8364f96b5f4e39476839e5b
proquest_journals_3251521381
crossref_primary_10_1109_ACCESS_2025_3607699
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Krizhevsky (ref40) 2009
ref12
ref34
Guo (ref37) 2022
ref15
ref14
ref36
ref31
Bellard (ref2) 2022
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Luo (ref45) 2017
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Franzen (ref42) 2024
ref6
Vangala (ref5) 2015
References_xml – ident: ref33
  doi: 10.1109/TCSVT.2021.3082521
– ident: ref38
  doi: 10.48550/arXiv.2211.11943
– ident: ref21
  doi: 10.1109/JSAIT.2020.2987203
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– year: 2022
  ident: ref37
  article-title: SegNeXt: Rethinking convolutional attention design for semantic segmentation
  publication-title: arXiv:2209.08575
– year: 2017
  ident: ref45
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: arXiv:1701.04128
– ident: ref23
  doi: 10.1109/ACCESS.2025.3558107
– ident: ref31
  doi: 10.1109/JSAC.2022.3221952
– ident: ref11
  doi: 10.1109/TCCN.2019.2919300
– ident: ref20
  doi: 10.1109/GLOBECOM54140.2023.10436784
– ident: ref7
  doi: 10.1002/bltj.20540
– ident: ref39
  doi: 10.1109/ICCV51070.2023.01540
– ident: ref34
  doi: 10.1109/TWC.2023.3234408
– ident: ref41
  doi: 10.1109/CVPRW.2017.150
– ident: ref9
  doi: 10.1109/TCSVT.2020.3010627
– ident: ref32
  doi: 10.1109/ICASSP49357.2023.10094735
– ident: ref1
  doi: 10.1109/DCC.2000.838192
– ident: ref17
  doi: 10.1109/JSAC.2021.3126087
– ident: ref29
  doi: 10.1109/JSAC.2022.3191112
– ident: ref8
  doi: 10.1109/TCSVT.2017.2734838
– volume-title: Kodak24 Dataset
  year: 2024
  ident: ref42
– volume-title: BPG Image Format
  year: 2022
  ident: ref2
– year: 2015
  ident: ref5
  article-title: A comparative study of polar code constructions for the AWGN channel
  publication-title: arXiv:1501.02473
– ident: ref13
  doi: 10.58496/BJIoT/2025/003
– ident: ref3
  doi: 10.1016/S0923-5965(01)00024-8
– ident: ref4
  doi: 10.1109/TSP.2022.3147307
– ident: ref10
  doi: 10.1109/TCSVT.2018.2867067
– ident: ref16
  doi: 10.1109/JSAC.2022.3180802
– volume-title: Learning multiple layers of features from tiny images
  year: 2009
  ident: ref40
– ident: ref18
  doi: 10.1109/JSAC.2023.3288252
– ident: ref22
  doi: 10.1109/ACCESS.2023.3266656
– ident: ref6
  doi: 10.1109/ISTC.2018.8625377
– ident: ref15
  doi: 10.1109/TSP.2021.3071210
– ident: ref35
  doi: 10.1109/TCCN.2024.3424842
– ident: ref27
  doi: 10.1109/TCCN.2024.3422496
– ident: ref30
  doi: 10.1109/JSAC.2021.3087240
– ident: ref14
  doi: 10.1109/CVPR52688.2022.01167
– ident: ref24
  doi: 10.1109/MeditCom61057.2024.10621322
– ident: ref26
  doi: 10.1109/JIOT.2025.3529492
– ident: ref43
  doi: 10.1109/TIP.2003.819861
– ident: ref28
  doi: 10.1109/ICASSP.2018.8461983
– ident: ref44
  doi: 10.1109/CVPR.2018.00474
– ident: ref25
  doi: 10.1109/JIOT.2024.3352737
– ident: ref19
  doi: 10.1109/MWC.002.2200468
– ident: ref12
  doi: 10.70470/KHWARIZMIA/2024/004
SSID ssj0000816957
Score 2.3347208
Snippet Currently, deep learning-based joint source channel coding (JSCC) methods have achieved significant progress in enabling semantic communication. However,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 158285
SubjectTerms Adaptation models
Bandwidth
Bandwidths
Coding
Communication
ConvNeXt
Decoding
Feature extraction
Image coding
Image communication
Image reconstruction
Image resolution
Image transmission
joint source channel coding
lightweight model
Parameters
Semantic communication
Semantics
Signal to noise ratio
Wireless communication
wireless image transmission
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMcKI8iti3IB46kTWI7to_bhQokVCEBUk9YdjKWVqLZVbuFv98Zx30gxIFblIfi-MvMfDP2zAC8NT22XTCpapHETaXGVVantkKlekv2dpBhajZhTk_t2Zn7UpLVcy4MIubNZ3jIh3ktf1j1VxwqOyK51GxhtmDLGDMla90GVLiDhNOmVBZqanc0XyzoI8gHbPWh7MhhzwVe76xPLtJfuqr8pYqzfTnZ-c-RPYUnhUiK-YT8M3iA43N4fK-84Av48Zk97985-CnCOIj5ENas3sR7xLVYrNhuCWKtgvfA_iSdJz6dk34R2YDRD8CRNLEcxVc8JwCWvfgjnWQXvp98-Lb4WJV-ClUvu2ZTNUHp4GJsaxuDJiY3yBotjxyjjV1siBxYNCpoF4kIGDs0scaUeiQeKKOUL2F7XI34CoQmGtBELlZGFKDn1UaHiQDQTqs0dGYG727m2a-nshk-uxu18xMsnmHxBZYZHDMWt7dyzet8gibZFxHyqZEmaNuhlZ1Kros6KZROkcMkHeo4g10G5u59BZMZHNxA64uAXnpJvI6YC13f-8dj-_CIhziFWw5ge3Nxha_hYf9rs7y8eJP_vWuc4dYs
  priority: 102
  providerName: IEEE
Title Lightweight and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication
URI https://ieeexplore.ieee.org/document/11153818
https://www.proquest.com/docview/3251521381
https://doaj.org/article/f137a586e8364f96b5f4e39476839e5b
Volume 13
WOSCitedRecordID wos001574203300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8SnKR-WBkUBdf8QeSwGBBBUSIDFh2clZqkRDBQU2fjtnJ9AiBhaWDEkkx--Se-8c-5mQ_byArnJ5yLqAn5sIzGRahm4GQhQa-bbkrt5sIh8M9P29uZ7Z6ivOCavtgWvgjgLjuZNageZKBKO8DAK4ESiTuQHpY_ZF1TNTTKUcrJkyMm9shljHHPX6fewRFoRdecgVVu_J7XVKRcmxv9li5VdeTmRztkKWG5VIe_XTrZI5qNbI0ox34Dp5uIxl9Xsa2aSuKmmvdOOYu-gJwJj2nyIpUZSkNE5wfcSERi9GmDxoYieMbhwmo8OK3sAI0R0W9MdakQ1yd3Z62z_Pms0SsoIrNsmYE9IZ7xEM7yTKtJJ3QKPe4-C1V54h82vIhZPGI8vnumS-AyEUgCKPe843yXz1VMEWoRI5nvnoRIb8XsRfiQYCAiqNFKFUeYscfOFmx7Unhk21RMfYGmYbYbYNzC1yHLH9vjUaWqcTGGbbhNn-FeYW2YiRmbYXe4Zio0V2v0Jlm6_vxXIUbShL8Pr2f7S9QxZjf-qBl10yP3l-hT2yULxNhi_P7fTi4fHq47Sdlg9-Aiba2fw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOLY8ilj7wgSNp49hO7OOyULXqdlWJIvWEZSdjaSWaXbXb9u8zdtwWhDhwi_JQHH-ZmW_GnhmAj02LVe2aUFRI4iYDN4VWoSpQylaTve2EG5pNNLOZPj83pzlZPeXCIGLafIZ78TCt5XeL9jqGyvZJLlW0MI_hiZKy4kO61n1IJfaQMKrJtYV4afbHkwl9BnmBldoTNbnsqcTrg_1JZfpzX5W_lHGyMAcb_zm2l7CeqSQbD9i_gkfYv4YXvxUYfAM_ptH3vk3hT-b6jo07t4wKjn1BXLLJIlouRryVxV2wP0nrsaML0jAsmTD6BWIsjc179g0vCIJ5y_5IKNmE7wdfzyaHRe6oULSi5quCO6mc8b4qtXeKuFwnStRx5Oi1rz0neqCxkU4ZT1Sg0R33JYbQIjFB4YV4C2v9osd3wBQRAe5juTIiAW1cbzQYCABllAxd3Yzg09082-VQOMMmh6M0doDFRlhshmUEnyMW97fGqtfpBE2yzUJkAxeNU7pGLWoZTO1VkCiMJJdJGFR-BJsRmIf3ZUxGsH0Hrc0iemUFMTviLnT9_T8e-wDPDs9OpnZ6NDvegudxuEPwZRvWVpfXuANP25vV_OpyN_2HvwDo_Nlz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+and+Adaptive+Deep+Coding+for+Wireless+Image+Transmission+in+Semantic+Communication&rft.jtitle=IEEE+access&rft.au=Sun%2C+Youming&rft.au=Wang%2C+Jiafeng&rft.au=Wei%2C+Lile&rft.au=Chen%2C+Haiqiang&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=158285&rft.epage=158301&rft_id=info:doi/10.1109%2FACCESS.2025.3607699&rft.externalDocID=11153818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon