Deep Reinforcement Learning-Based Multipath Routing for LEO Megaconstellation Networks

The expansion of megaconstellation networks (MCNs) represents a promising solution for achieving global Internet coverage. To meet the growing demand for satellite services, multipath routing allows the simultaneous establishment of multiple transmission paths, enabling the transmission of flows in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 13; H. 15; S. 3054
Hauptverfasser: Han, Chi, Xiong, Wei, Yu, Ronghuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2024
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The expansion of megaconstellation networks (MCNs) represents a promising solution for achieving global Internet coverage. To meet the growing demand for satellite services, multipath routing allows the simultaneous establishment of multiple transmission paths, enabling the transmission of flows in parallel. Nevertheless, the mobility of satellites and time-varying link states presents a challenge for the discovery of optimal paths and traffic scheduling in multipath routing. Given the inflexibility of traditional static deep reinforcement learning (DRL)-based routing algorithms in dealing with time-varying constellation topologies, DRL-based multipath routing (DMR) enabled by a graph neural network (GNN) is proposed as a means of enhancing the transmission performance of MCNs. DMR decouples the stochastic optimization problem of multipath routing under traffic and bandwidth constraints into two subproblems: multipath routing discovery and multipath traffic scheduling. Firstly, the minimum hop count-based multipath route discovery algorithm (MHMRD) is proposed for the computation of multiple available paths between all source and destination nodes. Secondly, the GNN-based multipath traffic scheduling scheme (GMTS) is proposed as a means of dynamically scheduling the traffic on each available path for each data stream, based on the state information of ISLs and traffic demand. Simulation results demonstrate that the proposed scheme can be scaled to constellations with different configurations without the necessity for repeated training and enhance the throughput, completion ratio, and delay by 42.64%, 17.39%, and 3.66% in comparison with the shortest path first algorithm (SPF), respectively.
AbstractList The expansion of megaconstellation networks (MCNs) represents a promising solution for achieving global Internet coverage. To meet the growing demand for satellite services, multipath routing allows the simultaneous establishment of multiple transmission paths, enabling the transmission of flows in parallel. Nevertheless, the mobility of satellites and time-varying link states presents a challenge for the discovery of optimal paths and traffic scheduling in multipath routing. Given the inflexibility of traditional static deep reinforcement learning (DRL)-based routing algorithms in dealing with time-varying constellation topologies, DRL-based multipath routing (DMR) enabled by a graph neural network (GNN) is proposed as a means of enhancing the transmission performance of MCNs. DMR decouples the stochastic optimization problem of multipath routing under traffic and bandwidth constraints into two subproblems: multipath routing discovery and multipath traffic scheduling. Firstly, the minimum hop count-based multipath route discovery algorithm (MHMRD) is proposed for the computation of multiple available paths between all source and destination nodes. Secondly, the GNN-based multipath traffic scheduling scheme (GMTS) is proposed as a means of dynamically scheduling the traffic on each available path for each data stream, based on the state information of ISLs and traffic demand. Simulation results demonstrate that the proposed scheme can be scaled to constellations with different configurations without the necessity for repeated training and enhance the throughput, completion ratio, and delay by 42.64%, 17.39%, and 3.66% in comparison with the shortest path first algorithm (SPF), respectively.
Audience Academic
Author Han, Chi
Yu, Ronghuan
Xiong, Wei
Author_xml – sequence: 1
  givenname: Chi
  orcidid: 0000-0001-6043-8045
  surname: Han
  fullname: Han, Chi
– sequence: 2
  givenname: Wei
  surname: Xiong
  fullname: Xiong, Wei
– sequence: 3
  givenname: Ronghuan
  surname: Yu
  fullname: Yu, Ronghuan
BookMark eNp9kE1LAzEQhoNUsH78Ai8LnrcmO7ubzbHW-gGtgqjXJWYnNXWb1CRF_PdG60FEnMsMw_vMy7z7ZGCdRUKOGR0BCHqKParonTUqMGAV0KrcIcOCcpGLQhSDH_MeOQphSVMJBg3QIXk8R1xnd2isdl7hCm3MZii9NXaRn8mAXTbf9NGsZXzO7twmpn2WpNlsepvNcSGVsyFi38tonM1uML45_xIOya6WfcCj735AHi6m95OrfHZ7eT0Zz3IFNYs5a8STqJQudVfKsgQmVFPV_KmkHBvOO6i1YDUAUk25LphWFXSMdbxUUgFncEBOtnfX3r1uMMR26TbeJssWqKCNqOtKJNVoq1rIHtvPV6OX6YLscGXSA6hN2o8bWlasgIonALaA8i4Ej7pde7OS_r1ltP0Mvf0j9ESJX5Qy8SuXZGf6f9kP0RqNDw
CitedBy_id crossref_primary_10_3390_su16219239
crossref_primary_10_1002_spe_70001
crossref_primary_10_3390_electronics14071239
Cites_doi 10.1109/TCOMM.2023.3251360
10.1109/TNSM.2022.3198074
10.1109/MWC.2016.1600317WC
10.1109/TC.2017.2709742
10.1109/TAES.2019.2938447
10.1016/j.comcom.2022.09.029
10.1109/ACCESS.2018.2820719
10.1109/CIoT53061.2022.9766635
10.1109/COMST.2020.3028247
10.23919/JCC.2021.10.015
10.1109/TVT.2023.3333848
10.1109/GLOBECOM54140.2023.10436959
10.1109/MNET.2018.1800097
10.1109/TVT.2019.2925187
10.1109/TWC.2022.3144189
10.1109/WCNC55385.2023.10118676
10.1109/MCSA.1999.749281
10.1109/TCOMM.2018.2880785
10.1145/3229607.3229610
10.1109/JSAC.2024.3365878
10.1109/MNET.2018.1800193
10.1109/TVT.2022.3217952
10.1007/s11633-022-1326-3
10.1109/ACCESS.2022.3151081
10.1109/TMC.2018.2831679
10.1109/MNET.012.2300052
10.1016/j.neucom.2022.08.005
10.1109/TCC.2019.2961093
10.1049/iet-com.2016.0574
10.1109/ACCESS.2020.2978582
10.1109/JSAC.2020.3000405
10.3390/rs15082165
10.3390/electronics11182952
10.1109/INFOCOM42981.2021.9488736
10.1109/TNET.2021.3126933
10.1109/TMC.2022.3215976
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13153054
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A804512357
10_3390_electronics13153054
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-189b95cf4fd4a44319c8567b407e877d36f91633e0f07f21fc53d11d74cac3713
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286954200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Jul 26 02:44:47 EDT 2025
Tue Nov 04 18:17:22 EST 2025
Sat Nov 29 07:14:41 EST 2025
Tue Nov 18 21:03:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-189b95cf4fd4a44319c8567b407e877d36f91633e0f07f21fc53d11d74cac3713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6043-8045
OpenAccessLink https://www.proquest.com/docview/3090896659?pq-origsite=%requestingapplication%
PQID 3090896659
PQPubID 2032404
ParticipantIDs proquest_journals_3090896659
gale_infotracacademiconefile_A804512357
crossref_primary_10_3390_electronics13153054
crossref_citationtrail_10_3390_electronics13153054
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bi (ref_19) 2019; 33
Kim (ref_32) 2022; 10
Jiang (ref_1) 2023; 71
Huang (ref_12) 2022; 21
Wei (ref_17) 2023; 37
Tian (ref_13) 2023; 20
Manikandan (ref_38) 2017; 11
ref_36
ref_35
Xue (ref_5) 2019; 67
Rusek (ref_18) 2020; 38
Lei (ref_15) 2022; 508
Tang (ref_24) 2019; 18
ref_16
ref_37
Han (ref_21) 2023; 72
Kato (ref_26) 2017; 24
Giuseppi (ref_34) 2022; 19
Li (ref_25) 2022; 10
Huang (ref_14) 2018; 32
Huang (ref_11) 2024; 73
Jiang (ref_10) 2019; 55
Sun (ref_31) 2022; 30
Chen (ref_39) 2021; 18
Li (ref_8) 2024; 42
ref_3
Giambene (ref_22) 2019; 68
Jiang (ref_33) 2018; 6
ref_29
ref_28
Chen (ref_23) 2020; 8
Kodheli (ref_2) 2021; 23
ref_9
ref_4
Almasan (ref_30) 2022; 196
ref_7
Hu (ref_20) 2024; 23
Mao (ref_27) 2017; 66
ref_6
References_xml – volume: 71
  start-page: 2860
  year: 2023
  ident: ref_1
  article-title: Spatio-Temporal Routing, Redundant Coding and Multipath Scheduling for Deterministic Satellite Network Transmission
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2023.3251360
– volume: 20
  start-page: 246
  year: 2023
  ident: ref_13
  article-title: Efficient Federated DRL-Based Cooperative Caching for Mobile Edge Networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2022.3198074
– volume: 24
  start-page: 146
  year: 2017
  ident: ref_26
  article-title: The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2016.1600317WC
– volume: 66
  start-page: 1946
  year: 2017
  ident: ref_27
  article-title: Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2017.2709742
– volume: 55
  start-page: 2592
  year: 2019
  ident: ref_10
  article-title: A Space–Time Graph Based Multipath Routing in Disruption-Tolerant Earth-Observing Satellite Networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2019.2938447
– volume: 196
  start-page: 184
  year: 2022
  ident: ref_30
  article-title: Deep Reinforcement Learning Meets Graph Neural Networks: Exploring a Routing Optimization Use Case
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.09.029
– volume: 6
  start-page: 19823
  year: 2018
  ident: ref_33
  article-title: scMPTCP: SDN Cooperated Multipath Transfer for Satellite Network With Load Awareness
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820719
– ident: ref_4
  doi: 10.1109/CIoT53061.2022.9766635
– volume: 23
  start-page: 70
  year: 2021
  ident: ref_2
  article-title: Satellite Communications in the New Space Era: A Survey and Future Challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.3028247
– volume: 18
  start-page: 204
  year: 2021
  ident: ref_39
  article-title: Traffic Engineering Based on Deep Reinforcement Learning in Hybrid IP/SR Network
  publication-title: China Commun.
  doi: 10.23919/JCC.2021.10.015
– volume: 73
  start-page: 5454
  year: 2024
  ident: ref_11
  article-title: A GNN-Enabled Multipath Routing Algorithm for Spatial-Temporal Varying LEO Satellite Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3333848
– ident: ref_6
  doi: 10.1109/GLOBECOM54140.2023.10436959
– volume: 32
  start-page: 35
  year: 2018
  ident: ref_14
  article-title: Deep Reinforcement Learning for Multimedia Traffic Control in Software Defined Networking
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800097
– volume: 68
  start-page: 8117
  year: 2019
  ident: ref_22
  article-title: Analysis of a Packet-Level Block Coding Approach for Terrestrial-Satellite Mobile Systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2925187
– volume: 21
  start-page: 5889
  year: 2022
  ident: ref_12
  article-title: Pheromone Incentivized Intelligent Multipath Traffic Scheduling Approach for LEO Satellite Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2022.3144189
– ident: ref_37
– ident: ref_7
  doi: 10.1109/WCNC55385.2023.10118676
– ident: ref_9
  doi: 10.1109/MCSA.1999.749281
– ident: ref_35
– volume: 67
  start-page: 1284
  year: 2019
  ident: ref_5
  article-title: SERO: A Model-Driven Seamless Roaming Framework for Wireless Mesh Network With Multipath TCP
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2880785
– ident: ref_28
  doi: 10.1145/3229607.3229610
– volume: 42
  start-page: 1188
  year: 2024
  ident: ref_8
  article-title: Stigmergy and Hierarchical Learning for Routing Optimization in Multi-Domain Collaborative Satellite Networks
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/JSAC.2024.3365878
– volume: 33
  start-page: 22
  year: 2019
  ident: ref_19
  article-title: Software Defined Space-Terrestrial Integrated Networks: Architecture, Challenges, and Solutions
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800193
– volume: 72
  start-page: 3440
  year: 2023
  ident: ref_21
  article-title: Time-Varying Topology Model for Dynamic Routing in LEO Satellite Constellation Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3217952
– volume: 19
  start-page: 127
  year: 2022
  ident: ref_34
  article-title: Satellite Integration into 5G: Deep Reinforcement Learning for Network Selection
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1326-3
– volume: 10
  start-page: 18121
  year: 2022
  ident: ref_32
  article-title: Deep Reinforcement Learning-Based Routing on Software-Defined Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151081
– volume: 18
  start-page: 179
  year: 2019
  ident: ref_24
  article-title: Multipath Cooperative Routing with Efficient Acknowledgement for LEO Satellite Networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2831679
– volume: 37
  start-page: 90
  year: 2023
  ident: ref_17
  article-title: G-Routing: Graph Neural Networks-Based Flexible Online Routing
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.012.2300052
– volume: 508
  start-page: 79
  year: 2022
  ident: ref_15
  article-title: Solve Routing Problems with a Residual Edge-Graph Attention Neural Network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.08.005
– volume: 10
  start-page: 383
  year: 2022
  ident: ref_25
  article-title: Efficient Provision of Service Function Chains in Overlay Networks Using Reinforcement Learning
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2019.2961093
– volume: 11
  start-page: 136
  year: 2017
  ident: ref_38
  article-title: Ant Based Multipath Backbone Routing for Load Balancing in MANET
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2016.0574
– volume: 8
  start-page: 44760
  year: 2020
  ident: ref_23
  article-title: An Adaptive On-Demand Multipath Routing Protocol With QoS Support for High-Speed MANET
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978582
– ident: ref_36
– volume: 38
  start-page: 2260
  year: 2020
  ident: ref_18
  article-title: RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/JSAC.2020.3000405
– ident: ref_3
  doi: 10.3390/rs15082165
– ident: ref_16
  doi: 10.3390/electronics11182952
– ident: ref_29
  doi: 10.1109/INFOCOM42981.2021.9488736
– volume: 30
  start-page: 629
  year: 2022
  ident: ref_31
  article-title: Enabling Scalable Routing in Software-Defined Networks With Deep Reinforcement Learning on Critical Nodes
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2021.3126933
– volume: 23
  start-page: 835
  year: 2024
  ident: ref_20
  article-title: Software Defined Multicast Using Segment Routing in LEO Satellite Networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2022.3215976
SSID ssj0000913830
Score 2.3118165
Snippet The expansion of megaconstellation networks (MCNs) represents a promising solution for achieving global Internet coverage. To meet the growing demand for...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3054
SubjectTerms Algorithms
Bandwidths
Data transmission
Decision making
Deep learning
Efficiency
Graph neural networks
Machine learning
Network topologies
Neural networks
Routing (telecommunications)
Satellite communications
Satellite communications services industry
Satellite constellations
Scheduling
Shortest-path problems
Topology
Traffic assignment
Traffic information
Title Deep Reinforcement Learning-Based Multipath Routing for LEO Megaconstellation Networks
URI https://www.proquest.com/docview/3090896659
Volume 13
WOSCitedRecordID wos001286954200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFD74uAtd-BbHx5CF4OYG26ZJk5X4GFFwxiL3iropnTQRQcbRji797Z7TdnyAuHGbJiXkJOeVk-8D2MY9a4UsFI-l0RzjL8ONiwzPCYYSbUSS--qh8FnS6-mrK5M2CbeyKasc68RKURcPlnLkuyKgGyqlpNkbPnJijaLb1YZCYxKmCSWBqBtSefOeYyHMSy2CGmxIYHS_-8EtU4YCD3sg4y8G6Xu1XNma4_nfznIB5hovk-3X22IRJtxgCWY_YQ8uw-WRc0N24SrkVFslCVkDtnrLD9C2Fax6nEuUxYzqhrCdYVd21jlnXXeLmhQ9S6qdItGyXl1OXq7A_-POv8MT3pAscCtUOOKhNn0jrY99EecxuhPGaqmSPgZ6TidJIZRHD1IIF_gg8VHorRRFGBZJbHMrMMRdhanBw8CtAYtlHkWhMlGiLdo833dKS4sxk88VqoWgBdF4pTPbIJATEcZ9hpEIiSf7Rjwt-Ps-aFgDcPzcfYdEmNHi4b9xjvUrA5whAV1l-5oAdQjjpwWbYxFmzbktsw_5rf_8eQNmInRv6lLATZgaPT27LfhjX0Z35VMbpg86vfSiDZPd10672pTYlp520-s34h7sFw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RpVLbA_SpboHWh1a91CKxY8c-oIqnWLG7XVW0glOadWyEhJYt2Rbxp_iNncmDh4S4ceg1D8uxv8znsWe-AfiImHVSFZonyhqO_pfl1gvLc5KhRI5I81AlCvfT4dAcHNjRHFy2uTAUVtnaxMpQF6eO9shXZUQnVFor-3X6m1PVKDpdbUto1LDY8xfn6LKVa70tnN9PQuxs72_u8qaqAHdSxzMeGzu2yoUkFEmeIH9aZ5ROx-jZeJOmhdQBl0xS-ihEaRBxcEoWcVykicudRJ8O230E8wmBvQPzo95gdHi1q0Mqm0ZGtbyRlDZava5mU8YSzUukklsUeDcRVOy2s_i_jctzWGjW0Wy9Bv4LmPOTl_DshrriK_i55f2UffeVNqyrtkFZIyd7xDeQvQtWpR9TUWZGkVF4neGjrL_9jQ38EXIFrp0pOozAy4Z1wHz5Gn48yIe9gc7kdOLfAktULkSsrUiNQ1YPY6-NcugVhlyj4Yu6INqZzVyjsU6lPk4y9LUIDtkdcOjCl6uXprXEyP2PfybIZDR42Db2sc6jwB6SlFe2bkgyiFSMurDcQiZrLFOZXePl3f23P8CT3f1BP-v3hntL8FTgYq4OfFyGzuzsj1-Bx-7v7Lg8e9_8BAx-PTS-_gGsuEQq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gGqMHUdS4CtoHDRc6O9M9_ToYAywbCeu6MUoIl3G2p5uQkGVlVo1_zV9n1TxAE8KNg9d5dPrxdT26q74CeI2Y9VKVmmfKWY7-l-MuCMcLoqFEHWGKWCcKj8x4bA8P3WQJfne5MBRW2cnEWlCXZ57OyPsyoRsqrZXrxzYsYjIYvpt_41RBim5au3IaDUT2w6-f6L5Vb_cGuNZvhBjuft55z9sKA9xLnS54at3UKR-zWGZFhrrUeau0maKXE6wxpdQRzScpQxITE0UavZJlmpYm84WX6N9hu7fgtsExUjjhRB1dnO8Q36aVSUN0JKVL-pd1bapUoqBJVPaPMrxaJdR6brjyP8_QQ3jQWtdsq9kOj2ApzFbh_l-ci4_hYBDCnH0KNWOsrw9HWUsye8y3UaeXrE5KplLNjOKl8DnDT9lo9yP7EI5Rg6BFTTFjBGk2bsLoqyfw5UYG9hSWZ2ez8AxYpgohUu2EsR51fZwGbZVHXzEWGsVh0gPRrXLuW-Z1KgBymqMHRtDIr4BGDzYvfpo3xCPXf75B8Mlp8rBt7GOTXYE9JIKvfMsSkRBxG_VgrYNP3sqrKr_EzvPrX7-CuwiqfLQ33n8B9wRaeE005BosL86_h3W4438sTqrzl_VuYPD1psH1B7F2S40
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning-Based+Multipath+Routing+for+LEO+Megaconstellation+Networks&rft.jtitle=Electronics+%28Basel%29&rft.au=Han%2C+Chi&rft.au=Xiong%2C+Wei&rft.au=Yu%2C+Ronghuan&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=13&rft.issue=15&rft.spage=3054&rft_id=info:doi/10.3390%2Felectronics13153054&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon