Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms

The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection operators, high computational cost, and difficulty in visualization of objective space. While many approaches aim to counter these difficultie...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 17; no. 1; pp. 77 - 99
Main Authors: Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., Qingfu Zhang
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2013
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection operators, high computational cost, and difficulty in visualization of objective space. While many approaches aim to counter these difficulties by increasing the fidelity of the standard selection operators, the objective reduction approach attempts to eliminate objectives that are not essential to describe the Pareto-optimal front (POF). If the number of essential objectives is found to be two or three, the problem could be solved by the existing MOEAs. It implies that objective reduction could make an otherwise unsolvable (many-objective) problem solvable. Even when the essential objectives are four or more, the reduced representation of the problem will have favorable impact on the search efficiency, computational cost, and decision-making. Hence, development of generic and robust objective reduction approaches becomes important. This paper presents a principal component analysis and maximum variance unfolding based framework for linear and nonlinear objective reduction algorithms, respectively. The major contribution of this paper includes: 1) the enhancements in the core components of the framework for higher robustness in terms of applicability to a range of problems with disparate degree of redundancy; mechanisms to handle input data that poorly approximates the true POF; and dependence on fewer parameters to minimize the variability in performance; 2) proposition of an error measure to assess the quality of results; 3) sensitivity analysis of the proposed algorithms for the critical parameter involved, and the characteristics of the input data; and 4) study of the performance of the proposed algorithms vis-à-vis dominance relation preservation based algorithms, on a wide range of test problems (scaled up to 50 objectives) and two real-world problems.
AbstractList The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection operators, high computational cost, and difficulty in visualization of objective space. While many approaches aim to counter these difficulties by increasing the fidelity of the standard selection operators, the objective reduction approach attempts to eliminate objectives that are not essential to describe the Pareto-optimal front (POF). If the number of essential objectives is found to be two or three, the problem could be solved by the existing MOEAs. It implies that objective reduction could make an otherwise unsolvable (many-objective) problem solvable. Even when the essential objectives are four or more, the reduced representation of the problem will have favorable impact on the search efficiency, computational cost, and decision-making. Hence, development of generic and robust objective reduction approaches becomes important. This paper presents a principal component analysis and maximum variance unfolding based framework for linear and nonlinear objective reduction algorithms, respectively. The major contribution of this paper includes: 1) the enhancements in the core components of the framework for higher robustness in terms of applicability to a range of problems with disparate degree of redundancy; mechanisms to handle input data that poorly approximates the true POF; and dependence on fewer parameters to minimize the variability in performance; 2) proposition of an error measure to assess the quality of results; 3) sensitivity analysis of the proposed algorithms for the critical parameter involved, and the characteristics of the input data; and 4) study of the performance of the proposed algorithms vis-à-vis dominance relation preservation based algorithms, on a wide range of test problems (scaled up to 50 objectives) and two real-world problems.
Author Tiwari, A.
Deb, K.
Saxena, D. K.
Duro, J. A.
Qingfu Zhang
Author_xml – sequence: 1
  givenname: D. K.
  surname: Saxena
  fullname: Saxena, D. K.
  email: d.saxena@cranfield.ac.uk
  organization: Dept. of Manuf., Cranfield Univ., Cranfield, UK
– sequence: 2
  givenname: J. A.
  surname: Duro
  fullname: Duro, J. A.
  email: j.a.duro@cranfield.ac.uk
  organization: Dept. of Manuf., Cranfield Univ., Cranfield, UK
– sequence: 3
  givenname: A.
  surname: Tiwari
  fullname: Tiwari, A.
  email: a.tiwari@cranfield.ac.uk
  organization: Dept. of Manuf., Cranfield Univ., Cranfield, UK
– sequence: 4
  givenname: K.
  surname: Deb
  fullname: Deb, K.
  email: deb@iitk.ac.in
  organization: Dept. of Mech. Eng., Indian Inst. of Technol. Kanpur, Kanpur, India
– sequence: 5
  surname: Qingfu Zhang
  fullname: Qingfu Zhang
  email: qzhang@essex.ac.uk
  organization: Sch. of Comput. Sci. & Electron. Eng., Univ. of Essex, Colchester, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110574$$DView record in Pascal Francis
BookMark eNp9kM1Lw0AQxRepYFv9A8RLLh5Td5L9irdS_IJqQat4C9vNrG5JN2UThfrXm9iq4MHTvOG9NzC_Aen5yiMhx0BHADQ7m188TUYJhWSUgOKKyT3Sh4xBTGkieq2mKoulVM8HZFDXS0qBccj65GG2WKJp3DtG91i8tarykfPRrfab-NebrRu3ch-6s8-jqfOoQ6R9Ed1Vvtxu4_KlCq55XdWHZN_qssaj3RySx8uL-eQ6ns6ubibjaWxSAU0MSslC2EyZzBbArGCCWRTcLgpBCyYpFizjWiFyzjFNUWljOejUcGSWLtIhOd3eXeva6NIG7Y2r83VwKx02eSJbMlyyNie3OROqug5oc-Oar1eaoF2ZA807hnnHMO8Y5juGbRP-NL-P_9c52XYcIv7kBXAAYOknM5N_5g
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s40747_021_00270_8
crossref_primary_10_1145_3176644
crossref_primary_10_1109_TEVC_2022_3168836
crossref_primary_10_1016_j_jss_2014_11_043
crossref_primary_10_1109_TCYB_2019_2952881
crossref_primary_10_1007_s11269_014_0687_y
crossref_primary_10_1109_TEVC_2016_2519758
crossref_primary_10_1109_TEVC_2016_2639360
crossref_primary_10_1109_TSC_2023_3237755
crossref_primary_10_1108_IMDS_06_2015_0222
crossref_primary_10_1007_s12206_015_0434_1
crossref_primary_10_1016_j_neucom_2017_09_033
crossref_primary_10_1093_comjnl_bxx077
crossref_primary_10_1145_2505272
crossref_primary_10_1016_j_asoc_2016_08_042
crossref_primary_10_1109_TCYB_2016_2548239
crossref_primary_10_1109_TFUZZ_2021_3135972
crossref_primary_10_1016_j_compeleceng_2017_01_025
crossref_primary_10_1109_TCYB_2017_2737554
crossref_primary_10_1109_TEVC_2014_2350987
crossref_primary_10_1007_s12293_015_0151_4
crossref_primary_10_1016_j_anucene_2021_108461
crossref_primary_10_1109_TEVC_2019_2899030
crossref_primary_10_1162_evco_a_00179
crossref_primary_10_1007_s00500_021_06655_8
crossref_primary_10_1109_ACCESS_2019_2914069
crossref_primary_10_1109_TEVC_2015_2472283
crossref_primary_10_1109_MCI_2014_2326099
crossref_primary_10_1016_j_ijepes_2019_105657
crossref_primary_10_1007_s11269_015_0965_3
crossref_primary_10_1016_j_asoc_2017_09_017
crossref_primary_10_1016_j_neucom_2014_03_070
crossref_primary_10_1016_j_ins_2018_10_007
crossref_primary_10_1016_j_jhydrol_2015_10_024
crossref_primary_10_1016_j_pnucene_2021_103830
crossref_primary_10_1080_0952813X_2016_1270358
crossref_primary_10_1007_s00500_017_2498_6
crossref_primary_10_1109_TEVC_2017_2749619
crossref_primary_10_1007_s40747_019_0113_4
crossref_primary_10_1109_ACCESS_2020_3040752
crossref_primary_10_1109_TPWRS_2013_2292435
crossref_primary_10_1007_s41605_025_00577_x
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_ejor_2021_04_032
crossref_primary_10_1145_3459664
crossref_primary_10_3390_app122110744
crossref_primary_10_1109_TEVC_2016_2600642
crossref_primary_10_1016_j_eswa_2024_126060
crossref_primary_10_1080_10556788_2024_2405984
crossref_primary_10_1145_2792984
crossref_primary_10_1109_TEVC_2021_3131952
crossref_primary_10_1002_aic_17962
crossref_primary_10_1002_mcda_1680
crossref_primary_10_1007_s10479_022_04641_3
crossref_primary_10_1109_TEVC_2022_3188064
crossref_primary_10_1016_j_watres_2015_03_020
crossref_primary_10_1016_j_artint_2015_06_007
crossref_primary_10_1109_TEVC_2018_2794319
crossref_primary_10_1109_TCYB_2014_2363878
crossref_primary_10_1016_j_eswa_2016_10_015
crossref_primary_10_1371_journal_pone_0254839
crossref_primary_10_3390_app11094005
crossref_primary_10_1007_s00500_015_1648_y
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1007_s11704_022_1449_2
crossref_primary_10_1109_TEVC_2016_2634625
crossref_primary_10_1016_j_asoc_2017_11_041
crossref_primary_10_1016_j_aei_2024_102502
crossref_primary_10_1155_2020_5132803
crossref_primary_10_1016_j_jocs_2015_09_003
crossref_primary_10_1109_TEVC_2013_2281535
crossref_primary_10_1016_j_ins_2014_02_002
crossref_primary_10_1109_TEVC_2013_2281534
crossref_primary_10_1109_TEVC_2013_2290082
crossref_primary_10_1016_j_ins_2019_04_014
crossref_primary_10_1109_TEVC_2023_3269348
crossref_primary_10_1109_TCYB_2018_2859171
crossref_primary_10_1002_sec_1560
crossref_primary_10_1109_ACCESS_2019_2892836
crossref_primary_10_1109_ACCESS_2022_3188762
crossref_primary_10_1016_j_knosys_2017_09_035
crossref_primary_10_1109_TEVC_2017_2725902
crossref_primary_10_1109_TITS_2025_3559058
crossref_primary_10_1061__ASCE_WR_1943_5452_0001302
crossref_primary_10_1109_ACCESS_2022_3174360
crossref_primary_10_1155_2023_2005465
crossref_primary_10_1007_s13042_017_0728_y
crossref_primary_10_1007_s13748_019_00174_2
crossref_primary_10_1016_j_asoc_2015_06_007
crossref_primary_10_1007_s00500_015_1776_4
crossref_primary_10_1162_EVCO_a_00163
crossref_primary_10_1007_s10462_023_10526_z
crossref_primary_10_1109_TEVC_2013_2281524
crossref_primary_10_1007_s10732_020_09445_x
crossref_primary_10_1016_j_eij_2025_100733
crossref_primary_10_1007_s40747_017_0058_4
crossref_primary_10_1109_TEVC_2014_2373386
crossref_primary_10_1007_s40747_017_0039_7
crossref_primary_10_1109_TEVC_2018_2848254
crossref_primary_10_1109_TEVC_2015_2480780
crossref_primary_10_1016_j_swevo_2021_100862
crossref_primary_10_1007_s11241_018_9299_6
crossref_primary_10_1007_s12065_019_00297_4
crossref_primary_10_1109_TCYB_2020_3015998
crossref_primary_10_1016_j_fss_2021_03_009
crossref_primary_10_1109_TEVC_2016_2587749
crossref_primary_10_1007_s00158_017_1849_3
crossref_primary_10_1016_j_ins_2019_05_028
crossref_primary_10_1016_j_ins_2018_11_032
crossref_primary_10_1080_10556788_2022_2060971
crossref_primary_10_1016_j_eswa_2019_06_056
crossref_primary_10_1109_TNNLS_2014_2333664
crossref_primary_10_1145_2729974
crossref_primary_10_1109_TETCI_2023_3301401
crossref_primary_10_1007_s00500_019_04565_4
crossref_primary_10_1109_TEVC_2014_2313407
crossref_primary_10_1038_s41524_021_00573_x
crossref_primary_10_1016_j_compchemeng_2023_108520
crossref_primary_10_1016_j_oceaneng_2021_109438
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1186_s43067_025_00262_5
crossref_primary_10_1016_j_eswa_2016_10_045
crossref_primary_10_1016_j_eswa_2018_09_025
crossref_primary_10_1016_j_swevo_2022_101146
crossref_primary_10_1002_tee_23796
crossref_primary_10_1109_TCYB_2016_2550502
crossref_primary_10_2166_wst_2020_215
crossref_primary_10_1007_s00500_014_1234_8
crossref_primary_10_1016_j_ins_2014_11_044
crossref_primary_10_1016_j_petrol_2014_08_023
crossref_primary_10_1007_s10898_019_00737_6
crossref_primary_10_1007_s10732_017_9361_x
crossref_primary_10_1145_2742642
crossref_primary_10_1109_TEVC_2017_2672668
crossref_primary_10_1162_evco_a_00223
crossref_primary_10_1016_j_neucom_2014_06_076
crossref_primary_10_2166_ws_2020_329
crossref_primary_10_1109_TCYB_2019_2960039
crossref_primary_10_1109_TSMC_2022_3143657
crossref_primary_10_1016_j_procs_2014_09_077
crossref_primary_10_1007_s40747_017_0053_9
crossref_primary_10_1016_j_ins_2024_121751
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1016_j_asoc_2012_08_030
crossref_primary_10_1109_TEVC_2015_2505784
crossref_primary_10_1109_TEVC_2015_2504730
crossref_primary_10_1016_j_swevo_2024_101495
crossref_primary_10_1039_D3SE01602A
crossref_primary_10_1109_TEVC_2018_2844286
crossref_primary_10_1007_s13748_019_00185_z
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1007_s10489_022_03539_8
crossref_primary_10_1016_j_strusafe_2014_01_002
crossref_primary_10_3390_math8112018
crossref_primary_10_1080_15732479_2016_1198405
crossref_primary_10_1109_MCI_2019_2937612
crossref_primary_10_1109_TEVC_2016_2592479
crossref_primary_10_1016_j_petrol_2018_06_035
crossref_primary_10_1007_s12065_022_00787_y
crossref_primary_10_1007_s11081_020_09483_1
crossref_primary_10_1007_s11269_016_1253_6
crossref_primary_10_3390_mca28010017
crossref_primary_10_1016_j_ins_2022_05_005
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1109_ACCESS_2021_3123211
crossref_primary_10_3390_mca23020030
crossref_primary_10_1109_TEVC_2014_2315442
crossref_primary_10_1016_j_swevo_2019_03_006
crossref_primary_10_1016_j_ins_2017_08_078
Cites_doi 10.1007/11844297_54
10.1109/TEVC.2007.894202
10.1007/978-3-642-19893-9_14
10.1109/4235.996017
10.1007/978-3-642-19893-9_12
10.1007/978-3-540-70928-2_58
10.1007/978-3-540-70928-2_56
10.1109/TEVC.2007.892759
10.1109/CEC.2006.1688440
10.1109/TEVC.2005.851275
10.1109/GEFS.2008.4484566
10.1109/TEVC.2005.861417
10.1109/TEVC.2008.925798
10.1016/0094-114X(90)90030-N
10.1007/1-84628-137-7_6
10.1007/978-3-540-70928-2_57
10.1162/089976698300017467
10.1162/evco.2009.17.2.135
10.1007/978-3-642-01020-0_34
10.1162/evco.2009.17.4.17402
10.1162/106365600568167
10.1287/opre.28.6.1424
10.1162/106365605774666895
10.1109/TEVC.2010.2093579
10.1145/1389095.1389228
10.1080/10556789908805765
10.1145/1570256.1570386
10.1007/978-1-4419-8851-5
10.1080/10556789908805766
10.1007/s11263-005-4939-z
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TEVC.2012.2185847
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 99
ExternalDocumentID 27110574
10_1109_TEVC_2012_2185847
6151114
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
ID FETCH-LOGICAL-c361t-1887d6f98c9fd14f6464fe65fbd60d470ed495a8ee555e33e8acf51a3c5e4f0b3
IEDL.DBID RIE
ISICitedReferencesCount 219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314269200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Wed Apr 02 07:25:20 EDT 2025
Tue Nov 18 21:32:53 EST 2025
Sat Nov 29 03:13:46 EST 2025
Tue Aug 26 16:43:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fidelity
Visualization
Costs
Error estimation
Evolutionary algorithm
Variability
Multiobjective programming
Non linear programming
Optimization
Relevance
maximum variance unfolding and kernels
Dependence
Robustness
Productivity
Sensitivity analysis
Dominating set
Pareto optimum
Preservation
Decision making
Redundancy
Critical parameter
Dominance
Linear programming
many-objective optimization
Standards
Dimension reduction
Quality control
Algorithm analysis
Principal component analysis
Evolutionary multiobjective optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1887d6f98c9fd14f6464fe65fbd60d470ed495a8ee555e33e8acf51a3c5e4f0b3
PageCount 23
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2012_2185847
ieee_primary_6151114
pascalfrancis_primary_27110574
crossref_primary_10_1109_TEVC_2012_2185847
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref34
saul (ref27) 2006
ref37
ref15
ref36
ref14
cohen (ref31) 1988
ref30
ref33
ref11
hughes (ref2) 2005
ref32
zitzler (ref6) 2002
ref39
ref38
ref16
ref19
zitzler (ref12) 1999
ref18
purshouse (ref35) 2003
deb (ref23) 2006
ref24
ref26
shlens (ref25) 2009
ref20
ref41
ref22
ref21
obayashi (ref17) 2003
ref28
khare (ref1) 2003
ref29
ref8
ref7
ref9
ref4
ref3
ref5
ref40
zitzler (ref10) 2004; lncs 3242
References_xml – ident: ref20
  doi: 10.1007/11844297_54
– ident: ref4
  doi: 10.1109/TEVC.2007.894202
– ident: ref41
  doi: 10.1007/978-3-642-19893-9_14
– ident: ref5
  doi: 10.1109/4235.996017
– start-page: 95
  year: 2002
  ident: ref6
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc Evol Methods Des Optimization Control With Applicat Ind Problems
– ident: ref9
  doi: 10.1007/978-3-642-19893-9_12
– year: 2006
  ident: ref27
  publication-title: SemiSupervised Learning
– start-page: 72
  year: 2003
  ident: ref1
  publication-title: Evolutionary Multi-Criterion Optimization
– ident: ref24
  doi: 10.1007/978-3-540-70928-2_58
– ident: ref11
  doi: 10.1007/978-3-540-70928-2_56
– ident: ref8
  doi: 10.1109/TEVC.2007.892759
– ident: ref14
  doi: 10.1109/CEC.2006.1688440
– ident: ref13
  doi: 10.1109/TEVC.2005.851275
– ident: ref19
  doi: 10.1109/GEFS.2008.4484566
– ident: ref32
  doi: 10.1109/TEVC.2005.861417
– start-page: 2066
  year: 2003
  ident: ref35
  article-title: Evolutionary many-objective optimization: An exploratory analysis
  publication-title: Proc IEEE CEC
– ident: ref18
  doi: 10.1109/TEVC.2008.925798
– ident: ref37
  doi: 10.1016/0094-114X(90)90030-N
– ident: ref33
  doi: 10.1007/1-84628-137-7_6
– start-page: 222
  year: 2005
  ident: ref2
  article-title: Evolutionary many-objective optimization: Many once or one Many
  publication-title: Proc IEEE Congr Evol Comput
– year: 2009
  ident: ref25
  publication-title: A Tutorial on Principal Component Analysis
– ident: ref3
  doi: 10.1007/978-3-540-70928-2_57
– ident: ref26
  doi: 10.1162/089976698300017467
– year: 1988
  ident: ref31
  publication-title: Statistical Power Analysis for the Behavioral Sciences
– ident: ref36
  doi: 10.1162/evco.2009.17.2.135
– year: 1999
  ident: ref12
  publication-title: Evolutionary algorithms for multiobjective optimization Methods and applications
– ident: ref40
  doi: 10.1007/978-3-642-01020-0_34
– ident: ref15
  doi: 10.1162/evco.2009.17.4.17402
– start-page: 71
  year: 2003
  ident: ref17
  publication-title: Evolutionary Multi-Criterion Optimization
– ident: ref7
  doi: 10.1162/106365600568167
– start-page: 3353
  year: 2006
  ident: ref23
  article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multiobjective optimization problems
  publication-title: Proc IEEE CEC
– ident: ref38
  doi: 10.1287/opre.28.6.1424
– ident: ref34
  doi: 10.1162/106365605774666895
– ident: ref22
  doi: 10.1109/TEVC.2010.2093579
– ident: ref21
  doi: 10.1145/1389095.1389228
– ident: ref30
  doi: 10.1080/10556789908805765
– ident: ref39
  doi: 10.1145/1570256.1570386
– ident: ref16
  doi: 10.1007/978-1-4419-8851-5
– ident: ref29
  doi: 10.1080/10556789908805766
– volume: lncs 3242
  start-page: 832
  year: 2004
  ident: ref10
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc 8th PPSN
– ident: ref28
  doi: 10.1007/s11263-005-4939-z
SSID ssj0014519
Score 2.5279992
Snippet The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 77
SubjectTerms Algorithm design and analysis
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computational efficiency
Computer science; control theory; systems
Data processing. List processing. Character string processing
Decision making
Decision theory. Utility theory
Evolutionary multiobjective optimization
Exact sciences and technology
many-objective optimization
Mathematical programming
maximum variance unfolding and kernels
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Optical fibers
Optimization
principal component analysis
Redundancy
Search problems
Software
Theoretical computing
Title Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms
URI https://ieeexplore.ieee.org/document/6151114
Volume 17
WOSCitedRecordID wos000314269200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEODDYQ46UcOCE62rVpGm7TBOIAG4KBdqvSPGAIOrQHv5-47comISRujZJIVb7YjmPHH8Apw32EF1W-SQInoJQ6XPjUNrlAl0gImZXMv2W9XjQc8vsKnJdvYbTWWfKZbuFnFstXYznHq7ILtL4eslavMRbmb7XKiAGWScmT6bk9MUbDIoLpufxicPXcxSSudsvaMwwLrtigjFQFUyLF1K6KyekslmzMde1_f7cNW8VZknRy8HegotM61BY8DaQQ2zpsLhUdbMBjP3nLtRx5wLqtiAwZpeTOqgXnp69vdclH8UjzkliX1YoEEakivby4hm113l_Gk9Hs9WO6C0_XV4PujVNQKzjSD72Z41ndokLDI8mN8gITBmFgdEhNokJXBczVynpOItLaoqd9X0dCGuoJX1IdGDfx96CajlO9D0RI7bFQcsmotKcxnyvrwjAu2zSxIs1VE9zFYseyqDuO9BfvceZ_uDxGfGLEJy7wacJZOeUzL7rx1-AGYlEOLGBowskKomV_m3nIbRwc_D7vEDbaGeMFZqwcQXU2metjWJdfs9F0cpLtuW_dqtPY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GCuqDU6c4P2YefBK7tWvTNr6JOBTnFJ2yt5LmQydbJ_vw7zfXdtWBCL41JIGSX-4ul7vcD-AkwH2EF1Wujj3Lo5RajLvUNBlHl4hzkZbMbwedTtjrsYcSnBVvYZRSafKZquNnGsuXIzHDq7IGWl8HWauXkTmLZq-1ipgBFkrJ0umZOTOGvTyG6dis0b16ucQ0rmbdWDQMDC5YoZRWBZMi-cSsi84ILX5YmVb5f_-3CRv5aZJcZPBvQUkl21CeMzWQXHC3Yf1H2cEKPN3H75meI49YuRWxIf2E3BnFYH333RttMsyfaZ4T47QaoSA8kaSTldcwrYvB62jcn74NJzvw3LrqXl5bObmCJVzfmVqO0S7S1ywUTEvH077ne1r5VMfSt6UX2Eoa34mHShn8lOuqkAtNHe4Kqjxtx-4uLCWjRO0B4UI5gS-YCKgw5zGXSePEBEw0aWyEmskq2PPFjkReeRwJMAZR6oHYLEJ8IsQnyvGpwmkx5SMru_HX4ApiUQzMYahCbQHRor8ZOMhu7O3_Pu8YVq-7d-2ofdO5PYC1Zsp_gfkrh7A0Hc_UEayIz2l_Mq6l--8LE4nXIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Reduction+in+Many-Objective+Optimization%3A+Linear+and+Nonlinear+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Saxena%2C+Dhish+Kumar&rft.au=Duro%2C+Jo%C3%A3o+A.&rft.au=Tiwari%2C+Ashutosh&rft.au=Deb%2C+Kalyanmoy&rft.date=2013-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=17&rft.issue=1&rft.spage=77&rft.epage=99&rft_id=info:doi/10.1109%2FTEVC.2012.2185847&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2012_2185847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon