Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms
The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection operators, high computational cost, and difficulty in visualization of objective space. While many approaches aim to counter these difficultie...
Saved in:
| Published in: | IEEE transactions on evolutionary computation Vol. 17; no. 1; pp. 77 - 99 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.02.2013
Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection operators, high computational cost, and difficulty in visualization of objective space. While many approaches aim to counter these difficulties by increasing the fidelity of the standard selection operators, the objective reduction approach attempts to eliminate objectives that are not essential to describe the Pareto-optimal front (POF). If the number of essential objectives is found to be two or three, the problem could be solved by the existing MOEAs. It implies that objective reduction could make an otherwise unsolvable (many-objective) problem solvable. Even when the essential objectives are four or more, the reduced representation of the problem will have favorable impact on the search efficiency, computational cost, and decision-making. Hence, development of generic and robust objective reduction approaches becomes important. This paper presents a principal component analysis and maximum variance unfolding based framework for linear and nonlinear objective reduction algorithms, respectively. The major contribution of this paper includes: 1) the enhancements in the core components of the framework for higher robustness in terms of applicability to a range of problems with disparate degree of redundancy; mechanisms to handle input data that poorly approximates the true POF; and dependence on fewer parameters to minimize the variability in performance; 2) proposition of an error measure to assess the quality of results; 3) sensitivity analysis of the proposed algorithms for the critical parameter involved, and the characteristics of the input data; and 4) study of the performance of the proposed algorithms vis-à-vis dominance relation preservation based algorithms, on a wide range of test problems (scaled up to 50 objectives) and two real-world problems. |
|---|---|
| AbstractList | The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection operators, high computational cost, and difficulty in visualization of objective space. While many approaches aim to counter these difficulties by increasing the fidelity of the standard selection operators, the objective reduction approach attempts to eliminate objectives that are not essential to describe the Pareto-optimal front (POF). If the number of essential objectives is found to be two or three, the problem could be solved by the existing MOEAs. It implies that objective reduction could make an otherwise unsolvable (many-objective) problem solvable. Even when the essential objectives are four or more, the reduced representation of the problem will have favorable impact on the search efficiency, computational cost, and decision-making. Hence, development of generic and robust objective reduction approaches becomes important. This paper presents a principal component analysis and maximum variance unfolding based framework for linear and nonlinear objective reduction algorithms, respectively. The major contribution of this paper includes: 1) the enhancements in the core components of the framework for higher robustness in terms of applicability to a range of problems with disparate degree of redundancy; mechanisms to handle input data that poorly approximates the true POF; and dependence on fewer parameters to minimize the variability in performance; 2) proposition of an error measure to assess the quality of results; 3) sensitivity analysis of the proposed algorithms for the critical parameter involved, and the characteristics of the input data; and 4) study of the performance of the proposed algorithms vis-à-vis dominance relation preservation based algorithms, on a wide range of test problems (scaled up to 50 objectives) and two real-world problems. |
| Author | Tiwari, A. Deb, K. Saxena, D. K. Duro, J. A. Qingfu Zhang |
| Author_xml | – sequence: 1 givenname: D. K. surname: Saxena fullname: Saxena, D. K. email: d.saxena@cranfield.ac.uk organization: Dept. of Manuf., Cranfield Univ., Cranfield, UK – sequence: 2 givenname: J. A. surname: Duro fullname: Duro, J. A. email: j.a.duro@cranfield.ac.uk organization: Dept. of Manuf., Cranfield Univ., Cranfield, UK – sequence: 3 givenname: A. surname: Tiwari fullname: Tiwari, A. email: a.tiwari@cranfield.ac.uk organization: Dept. of Manuf., Cranfield Univ., Cranfield, UK – sequence: 4 givenname: K. surname: Deb fullname: Deb, K. email: deb@iitk.ac.in organization: Dept. of Mech. Eng., Indian Inst. of Technol. Kanpur, Kanpur, India – sequence: 5 surname: Qingfu Zhang fullname: Qingfu Zhang email: qzhang@essex.ac.uk organization: Sch. of Comput. Sci. & Electron. Eng., Univ. of Essex, Colchester, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110574$$DView record in Pascal Francis |
| BookMark | eNp9kM1Lw0AQxRepYFv9A8RLLh5Td5L9irdS_IJqQat4C9vNrG5JN2UThfrXm9iq4MHTvOG9NzC_Aen5yiMhx0BHADQ7m188TUYJhWSUgOKKyT3Sh4xBTGkieq2mKoulVM8HZFDXS0qBccj65GG2WKJp3DtG91i8tarykfPRrfab-NebrRu3ch-6s8-jqfOoQ6R9Ed1Vvtxu4_KlCq55XdWHZN_qssaj3RySx8uL-eQ6ns6ubibjaWxSAU0MSslC2EyZzBbArGCCWRTcLgpBCyYpFizjWiFyzjFNUWljOejUcGSWLtIhOd3eXeva6NIG7Y2r83VwKx02eSJbMlyyNie3OROqug5oc-Oar1eaoF2ZA807hnnHMO8Y5juGbRP-NL-P_9c52XYcIv7kBXAAYOknM5N_5g |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s40747_021_00270_8 crossref_primary_10_1145_3176644 crossref_primary_10_1109_TEVC_2022_3168836 crossref_primary_10_1016_j_jss_2014_11_043 crossref_primary_10_1109_TCYB_2019_2952881 crossref_primary_10_1007_s11269_014_0687_y crossref_primary_10_1109_TEVC_2016_2519758 crossref_primary_10_1109_TEVC_2016_2639360 crossref_primary_10_1109_TSC_2023_3237755 crossref_primary_10_1108_IMDS_06_2015_0222 crossref_primary_10_1007_s12206_015_0434_1 crossref_primary_10_1016_j_neucom_2017_09_033 crossref_primary_10_1093_comjnl_bxx077 crossref_primary_10_1145_2505272 crossref_primary_10_1016_j_asoc_2016_08_042 crossref_primary_10_1109_TCYB_2016_2548239 crossref_primary_10_1109_TFUZZ_2021_3135972 crossref_primary_10_1016_j_compeleceng_2017_01_025 crossref_primary_10_1109_TCYB_2017_2737554 crossref_primary_10_1109_TEVC_2014_2350987 crossref_primary_10_1007_s12293_015_0151_4 crossref_primary_10_1016_j_anucene_2021_108461 crossref_primary_10_1109_TEVC_2019_2899030 crossref_primary_10_1162_evco_a_00179 crossref_primary_10_1007_s00500_021_06655_8 crossref_primary_10_1109_ACCESS_2019_2914069 crossref_primary_10_1109_TEVC_2015_2472283 crossref_primary_10_1109_MCI_2014_2326099 crossref_primary_10_1016_j_ijepes_2019_105657 crossref_primary_10_1007_s11269_015_0965_3 crossref_primary_10_1016_j_asoc_2017_09_017 crossref_primary_10_1016_j_neucom_2014_03_070 crossref_primary_10_1016_j_ins_2018_10_007 crossref_primary_10_1016_j_jhydrol_2015_10_024 crossref_primary_10_1016_j_pnucene_2021_103830 crossref_primary_10_1080_0952813X_2016_1270358 crossref_primary_10_1007_s00500_017_2498_6 crossref_primary_10_1109_TEVC_2017_2749619 crossref_primary_10_1007_s40747_019_0113_4 crossref_primary_10_1109_ACCESS_2020_3040752 crossref_primary_10_1109_TPWRS_2013_2292435 crossref_primary_10_1007_s41605_025_00577_x crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_ejor_2021_04_032 crossref_primary_10_1145_3459664 crossref_primary_10_3390_app122110744 crossref_primary_10_1109_TEVC_2016_2600642 crossref_primary_10_1016_j_eswa_2024_126060 crossref_primary_10_1080_10556788_2024_2405984 crossref_primary_10_1145_2792984 crossref_primary_10_1109_TEVC_2021_3131952 crossref_primary_10_1002_aic_17962 crossref_primary_10_1002_mcda_1680 crossref_primary_10_1007_s10479_022_04641_3 crossref_primary_10_1109_TEVC_2022_3188064 crossref_primary_10_1016_j_watres_2015_03_020 crossref_primary_10_1016_j_artint_2015_06_007 crossref_primary_10_1109_TEVC_2018_2794319 crossref_primary_10_1109_TCYB_2014_2363878 crossref_primary_10_1016_j_eswa_2016_10_015 crossref_primary_10_1371_journal_pone_0254839 crossref_primary_10_3390_app11094005 crossref_primary_10_1007_s00500_015_1648_y crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1007_s11704_022_1449_2 crossref_primary_10_1109_TEVC_2016_2634625 crossref_primary_10_1016_j_asoc_2017_11_041 crossref_primary_10_1016_j_aei_2024_102502 crossref_primary_10_1155_2020_5132803 crossref_primary_10_1016_j_jocs_2015_09_003 crossref_primary_10_1109_TEVC_2013_2281535 crossref_primary_10_1016_j_ins_2014_02_002 crossref_primary_10_1109_TEVC_2013_2281534 crossref_primary_10_1109_TEVC_2013_2290082 crossref_primary_10_1016_j_ins_2019_04_014 crossref_primary_10_1109_TEVC_2023_3269348 crossref_primary_10_1109_TCYB_2018_2859171 crossref_primary_10_1002_sec_1560 crossref_primary_10_1109_ACCESS_2019_2892836 crossref_primary_10_1109_ACCESS_2022_3188762 crossref_primary_10_1016_j_knosys_2017_09_035 crossref_primary_10_1109_TEVC_2017_2725902 crossref_primary_10_1109_TITS_2025_3559058 crossref_primary_10_1061__ASCE_WR_1943_5452_0001302 crossref_primary_10_1109_ACCESS_2022_3174360 crossref_primary_10_1155_2023_2005465 crossref_primary_10_1007_s13042_017_0728_y crossref_primary_10_1007_s13748_019_00174_2 crossref_primary_10_1016_j_asoc_2015_06_007 crossref_primary_10_1007_s00500_015_1776_4 crossref_primary_10_1162_EVCO_a_00163 crossref_primary_10_1007_s10462_023_10526_z crossref_primary_10_1109_TEVC_2013_2281524 crossref_primary_10_1007_s10732_020_09445_x crossref_primary_10_1016_j_eij_2025_100733 crossref_primary_10_1007_s40747_017_0058_4 crossref_primary_10_1109_TEVC_2014_2373386 crossref_primary_10_1007_s40747_017_0039_7 crossref_primary_10_1109_TEVC_2018_2848254 crossref_primary_10_1109_TEVC_2015_2480780 crossref_primary_10_1016_j_swevo_2021_100862 crossref_primary_10_1007_s11241_018_9299_6 crossref_primary_10_1007_s12065_019_00297_4 crossref_primary_10_1109_TCYB_2020_3015998 crossref_primary_10_1016_j_fss_2021_03_009 crossref_primary_10_1109_TEVC_2016_2587749 crossref_primary_10_1007_s00158_017_1849_3 crossref_primary_10_1016_j_ins_2019_05_028 crossref_primary_10_1016_j_ins_2018_11_032 crossref_primary_10_1080_10556788_2022_2060971 crossref_primary_10_1016_j_eswa_2019_06_056 crossref_primary_10_1109_TNNLS_2014_2333664 crossref_primary_10_1145_2729974 crossref_primary_10_1109_TETCI_2023_3301401 crossref_primary_10_1007_s00500_019_04565_4 crossref_primary_10_1109_TEVC_2014_2313407 crossref_primary_10_1038_s41524_021_00573_x crossref_primary_10_1016_j_compchemeng_2023_108520 crossref_primary_10_1016_j_oceaneng_2021_109438 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1186_s43067_025_00262_5 crossref_primary_10_1016_j_eswa_2016_10_045 crossref_primary_10_1016_j_eswa_2018_09_025 crossref_primary_10_1016_j_swevo_2022_101146 crossref_primary_10_1002_tee_23796 crossref_primary_10_1109_TCYB_2016_2550502 crossref_primary_10_2166_wst_2020_215 crossref_primary_10_1007_s00500_014_1234_8 crossref_primary_10_1016_j_ins_2014_11_044 crossref_primary_10_1016_j_petrol_2014_08_023 crossref_primary_10_1007_s10898_019_00737_6 crossref_primary_10_1007_s10732_017_9361_x crossref_primary_10_1145_2742642 crossref_primary_10_1109_TEVC_2017_2672668 crossref_primary_10_1162_evco_a_00223 crossref_primary_10_1016_j_neucom_2014_06_076 crossref_primary_10_2166_ws_2020_329 crossref_primary_10_1109_TCYB_2019_2960039 crossref_primary_10_1109_TSMC_2022_3143657 crossref_primary_10_1016_j_procs_2014_09_077 crossref_primary_10_1007_s40747_017_0053_9 crossref_primary_10_1016_j_ins_2024_121751 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1016_j_asoc_2012_08_030 crossref_primary_10_1109_TEVC_2015_2505784 crossref_primary_10_1109_TEVC_2015_2504730 crossref_primary_10_1016_j_swevo_2024_101495 crossref_primary_10_1039_D3SE01602A crossref_primary_10_1109_TEVC_2018_2844286 crossref_primary_10_1007_s13748_019_00185_z crossref_primary_10_1007_s00500_015_1955_3 crossref_primary_10_1007_s10489_022_03539_8 crossref_primary_10_1016_j_strusafe_2014_01_002 crossref_primary_10_3390_math8112018 crossref_primary_10_1080_15732479_2016_1198405 crossref_primary_10_1109_MCI_2019_2937612 crossref_primary_10_1109_TEVC_2016_2592479 crossref_primary_10_1016_j_petrol_2018_06_035 crossref_primary_10_1007_s12065_022_00787_y crossref_primary_10_1007_s11081_020_09483_1 crossref_primary_10_1007_s11269_016_1253_6 crossref_primary_10_3390_mca28010017 crossref_primary_10_1016_j_ins_2022_05_005 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_1109_ACCESS_2021_3123211 crossref_primary_10_3390_mca23020030 crossref_primary_10_1109_TEVC_2014_2315442 crossref_primary_10_1016_j_swevo_2019_03_006 crossref_primary_10_1016_j_ins_2017_08_078 |
| Cites_doi | 10.1007/11844297_54 10.1109/TEVC.2007.894202 10.1007/978-3-642-19893-9_14 10.1109/4235.996017 10.1007/978-3-642-19893-9_12 10.1007/978-3-540-70928-2_58 10.1007/978-3-540-70928-2_56 10.1109/TEVC.2007.892759 10.1109/CEC.2006.1688440 10.1109/TEVC.2005.851275 10.1109/GEFS.2008.4484566 10.1109/TEVC.2005.861417 10.1109/TEVC.2008.925798 10.1016/0094-114X(90)90030-N 10.1007/1-84628-137-7_6 10.1007/978-3-540-70928-2_57 10.1162/089976698300017467 10.1162/evco.2009.17.2.135 10.1007/978-3-642-01020-0_34 10.1162/evco.2009.17.4.17402 10.1162/106365600568167 10.1287/opre.28.6.1424 10.1162/106365605774666895 10.1109/TEVC.2010.2093579 10.1145/1389095.1389228 10.1080/10556789908805765 10.1145/1570256.1570386 10.1007/978-1-4419-8851-5 10.1080/10556789908805766 10.1007/s11263-005-4939-z |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS |
| Copyright_xml | – notice: 2014 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW |
| DOI | 10.1109/TEVC.2012.2185847 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1941-0026 |
| EndPage | 99 |
| ExternalDocumentID | 27110574 10_1109_TEVC_2012_2185847 6151114 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION AAYOK IQODW RIG |
| ID | FETCH-LOGICAL-c361t-1887d6f98c9fd14f6464fe65fbd60d470ed495a8ee555e33e8acf51a3c5e4f0b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 219 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314269200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Wed Apr 02 07:25:20 EDT 2025 Tue Nov 18 21:32:53 EST 2025 Sat Nov 29 03:13:46 EST 2025 Tue Aug 26 16:43:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fidelity Visualization Costs Error estimation Evolutionary algorithm Variability Multiobjective programming Non linear programming Optimization Relevance maximum variance unfolding and kernels Dependence Robustness Productivity Sensitivity analysis Dominating set Pareto optimum Preservation Decision making Redundancy Critical parameter Dominance Linear programming many-objective optimization Standards Dimension reduction Quality control Algorithm analysis Principal component analysis Evolutionary multiobjective optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-1887d6f98c9fd14f6464fe65fbd60d470ed495a8ee555e33e8acf51a3c5e4f0b3 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2012_2185847 ieee_primary_6151114 pascalfrancis_primary_27110574 crossref_primary_10_1109_TEVC_2012_2185847 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-01 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref34 saul (ref27) 2006 ref37 ref15 ref36 ref14 cohen (ref31) 1988 ref30 ref33 ref11 hughes (ref2) 2005 ref32 zitzler (ref6) 2002 ref39 ref38 ref16 ref19 zitzler (ref12) 1999 ref18 purshouse (ref35) 2003 deb (ref23) 2006 ref24 ref26 shlens (ref25) 2009 ref20 ref41 ref22 ref21 obayashi (ref17) 2003 ref28 khare (ref1) 2003 ref29 ref8 ref7 ref9 ref4 ref3 ref5 ref40 zitzler (ref10) 2004; lncs 3242 |
| References_xml | – ident: ref20 doi: 10.1007/11844297_54 – ident: ref4 doi: 10.1109/TEVC.2007.894202 – ident: ref41 doi: 10.1007/978-3-642-19893-9_14 – ident: ref5 doi: 10.1109/4235.996017 – start-page: 95 year: 2002 ident: ref6 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Proc Evol Methods Des Optimization Control With Applicat Ind Problems – ident: ref9 doi: 10.1007/978-3-642-19893-9_12 – year: 2006 ident: ref27 publication-title: SemiSupervised Learning – start-page: 72 year: 2003 ident: ref1 publication-title: Evolutionary Multi-Criterion Optimization – ident: ref24 doi: 10.1007/978-3-540-70928-2_58 – ident: ref11 doi: 10.1007/978-3-540-70928-2_56 – ident: ref8 doi: 10.1109/TEVC.2007.892759 – ident: ref14 doi: 10.1109/CEC.2006.1688440 – ident: ref13 doi: 10.1109/TEVC.2005.851275 – ident: ref19 doi: 10.1109/GEFS.2008.4484566 – ident: ref32 doi: 10.1109/TEVC.2005.861417 – start-page: 2066 year: 2003 ident: ref35 article-title: Evolutionary many-objective optimization: An exploratory analysis publication-title: Proc IEEE CEC – ident: ref18 doi: 10.1109/TEVC.2008.925798 – ident: ref37 doi: 10.1016/0094-114X(90)90030-N – ident: ref33 doi: 10.1007/1-84628-137-7_6 – start-page: 222 year: 2005 ident: ref2 article-title: Evolutionary many-objective optimization: Many once or one Many publication-title: Proc IEEE Congr Evol Comput – year: 2009 ident: ref25 publication-title: A Tutorial on Principal Component Analysis – ident: ref3 doi: 10.1007/978-3-540-70928-2_57 – ident: ref26 doi: 10.1162/089976698300017467 – year: 1988 ident: ref31 publication-title: Statistical Power Analysis for the Behavioral Sciences – ident: ref36 doi: 10.1162/evco.2009.17.2.135 – year: 1999 ident: ref12 publication-title: Evolutionary algorithms for multiobjective optimization Methods and applications – ident: ref40 doi: 10.1007/978-3-642-01020-0_34 – ident: ref15 doi: 10.1162/evco.2009.17.4.17402 – start-page: 71 year: 2003 ident: ref17 publication-title: Evolutionary Multi-Criterion Optimization – ident: ref7 doi: 10.1162/106365600568167 – start-page: 3353 year: 2006 ident: ref23 article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multiobjective optimization problems publication-title: Proc IEEE CEC – ident: ref38 doi: 10.1287/opre.28.6.1424 – ident: ref34 doi: 10.1162/106365605774666895 – ident: ref22 doi: 10.1109/TEVC.2010.2093579 – ident: ref21 doi: 10.1145/1389095.1389228 – ident: ref30 doi: 10.1080/10556789908805765 – ident: ref39 doi: 10.1145/1570256.1570386 – ident: ref16 doi: 10.1007/978-1-4419-8851-5 – ident: ref29 doi: 10.1080/10556789908805766 – volume: lncs 3242 start-page: 832 year: 2004 ident: ref10 article-title: Indicator-based selection in multiobjective search publication-title: Proc 8th PPSN – ident: ref28 doi: 10.1007/s11263-005-4939-z |
| SSID | ssj0014519 |
| Score | 2.5279992 |
| Snippet | The difficulties faced by existing multiobjective evolutionary algorithms (MOEAs) in handling many-objective problems relate to the inefficiency of selection... |
| SourceID | pascalfrancis crossref ieee |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 77 |
| SubjectTerms | Algorithm design and analysis Algorithmics. Computability. Computer arithmetics Applied sciences Computational efficiency Computer science; control theory; systems Data processing. List processing. Character string processing Decision making Decision theory. Utility theory Evolutionary multiobjective optimization Exact sciences and technology many-objective optimization Mathematical programming maximum variance unfolding and kernels Memory organisation. Data processing Operational research and scientific management Operational research. Management science Optical fibers Optimization principal component analysis Redundancy Search problems Software Theoretical computing |
| Title | Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms |
| URI | https://ieeexplore.ieee.org/document/6151114 |
| Volume | 17 |
| WOSCitedRecordID | wos000314269200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEODDYQ46UcOCE62rVpGm7TBOIAG4KBdqvSPGAIOrQHv5-47comISRujZJIVb7YjmPHH8Apw32EF1W-SQInoJQ6XPjUNrlAl0gImZXMv2W9XjQc8vsKnJdvYbTWWfKZbuFnFstXYznHq7ILtL4eslavMRbmb7XKiAGWScmT6bk9MUbDIoLpufxicPXcxSSudsvaMwwLrtigjFQFUyLF1K6KyekslmzMde1_f7cNW8VZknRy8HegotM61BY8DaQQ2zpsLhUdbMBjP3nLtRx5wLqtiAwZpeTOqgXnp69vdclH8UjzkliX1YoEEakivby4hm113l_Gk9Hs9WO6C0_XV4PujVNQKzjSD72Z41ndokLDI8mN8gITBmFgdEhNokJXBczVynpOItLaoqd9X0dCGuoJX1IdGDfx96CajlO9D0RI7bFQcsmotKcxnyvrwjAu2zSxIs1VE9zFYseyqDuO9BfvceZ_uDxGfGLEJy7wacJZOeUzL7rx1-AGYlEOLGBowskKomV_m3nIbRwc_D7vEDbaGeMFZqwcQXU2metjWJdfs9F0cpLtuW_dqtPY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GCuqDU6c4P2YefBK7tWvTNr6JOBTnFJ2yt5LmQydbJ_vw7zfXdtWBCL41JIGSX-4ul7vcD-AkwH2EF1Wujj3Lo5RajLvUNBlHl4hzkZbMbwedTtjrsYcSnBVvYZRSafKZquNnGsuXIzHDq7IGWl8HWauXkTmLZq-1ipgBFkrJ0umZOTOGvTyG6dis0b16ucQ0rmbdWDQMDC5YoZRWBZMi-cSsi84ILX5YmVb5f_-3CRv5aZJcZPBvQUkl21CeMzWQXHC3Yf1H2cEKPN3H75meI49YuRWxIf2E3BnFYH333RttMsyfaZ4T47QaoSA8kaSTldcwrYvB62jcn74NJzvw3LrqXl5bObmCJVzfmVqO0S7S1ywUTEvH077ne1r5VMfSt6UX2Eoa34mHShn8lOuqkAtNHe4Kqjxtx-4uLCWjRO0B4UI5gS-YCKgw5zGXSePEBEw0aWyEmskq2PPFjkReeRwJMAZR6oHYLEJ8IsQnyvGpwmkx5SMru_HX4ApiUQzMYahCbQHRor8ZOMhu7O3_Pu8YVq-7d-2ofdO5PYC1Zsp_gfkrh7A0Hc_UEayIz2l_Mq6l--8LE4nXIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Reduction+in+Many-Objective+Optimization%3A+Linear+and+Nonlinear+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Saxena%2C+Dhish+Kumar&rft.au=Duro%2C+Jo%C3%A3o+A.&rft.au=Tiwari%2C+Ashutosh&rft.au=Deb%2C+Kalyanmoy&rft.date=2013-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=17&rft.issue=1&rft.spage=77&rft.epage=99&rft_id=info:doi/10.1109%2FTEVC.2012.2185847&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2012_2185847 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |