A continuous approach for the concave cost supply problem via DC programming and DCA
The paper addresses an important but difficult class of concave cost supply management problems which consist in minimizing a separable increasing concave objective function subject to linear and disjunctive constraints. We first recast these problems into mixed zero-one nondifferentiable concave mi...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 156; číslo 3; s. 325 - 338 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
01.02.2008
Amsterdam Elsevier New York, NY |
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper addresses an important but difficult class of concave cost supply management problems which consist in minimizing a separable increasing concave objective function subject to linear and disjunctive constraints. We first recast these problems into mixed zero-one nondifferentiable concave minimization over linear constraints problems and then apply exact penalty techniques to state equivalent nondifferentiable polyhedral DC (Difference of Convex functions) programs. A new deterministic approach based on DC programming and DCA (DC Algorithms) is investigated to solve the latter ones. Finally numerical simulations are reported which show the efficiency, the robustness and the globality of our approach. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2007.03.024 |