Optimization control of the double‐capacity water tank‐level system using the deep deterministic policy gradient algorithm

Process control systems are subject to external factors such as changes in working conditions and perturbation interference, which can significantly affect the system's stability and overall performance. The application and promotion of intelligent control algorithms with self‐learning, self‐op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering reports (Hoboken, N.J.) Ročník 5; číslo 11
Hlavní autori: Ye, Likun, Jiang, Pei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken John Wiley & Sons, Inc 01.11.2023
Wiley
Predmet:
ISSN:2577-8196, 2577-8196
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Process control systems are subject to external factors such as changes in working conditions and perturbation interference, which can significantly affect the system's stability and overall performance. The application and promotion of intelligent control algorithms with self‐learning, self‐optimization, and self‐adaption characteristics have thus become a challenging yet meaningful research topic. In this article, we propose a novel approach that incorporates the deep deterministic policy gradient (DDPG) algorithm into the control of double‐capacity water tanklevel system. Specifically, we introduce a fully connected layer on the observer side of the critic network to enhance its expression capability and processing efficiency, allowing for the extraction of important features for water‐level control. Additionally, we optimize the node parameters of the neural network and use the RELU activation function to ensure the network's ability to continuously observe and learn from the external water tank environment while avoiding the issue of vanishing gradients. We enhance the system's feedback regulation ability by adding the PID controller output to the observer input based on the liquid level deviation and height. This integration with the DDPG control method effectively leverages the benefits of both, resulting in improved robustness and adaptability of the system. Experimental results show that our proposed model outperforms traditional control methods in terms of convergence, tracking, anti‐disturbance and robustness performances, highlighting its effectiveness in improving the stability and precision of double‐capacity water tank systems.
AbstractList Process control systems are subject to external factors such as changes in working conditions and perturbation interference, which can significantly affect the system's stability and overall performance. The application and promotion of intelligent control algorithms with self-learning, self-optimization, and self-adaption characteristics have thus become a challenging yet meaningful research topic. In this article, we propose a novel approach that incorporates the deep deterministic policy gradient (DDPG) algorithm into the control of double-capacity water tanklevel system. Specifically, we introduce a fully connected layer on the observer side of the critic network to enhance its expression capability and processing efficiency, allowing for the extraction of important features for water-level control. Additionally, we optimize the node parameters of the neural network and use the RELU activation function to ensure the network's ability to continuously observe and learn from the external water tank environment while avoiding the issue of vanishing gradients. We enhance the system's feedback regulation ability by adding the PID controller output to the observer input based on the liquid level deviation and height. This integration with the DDPG control method effectively leverages the benefits of both, resulting in improved robustness and adaptability of the system. Experimental results show that our proposed model outperforms traditional control methods in terms of convergence, tracking, anti-disturbance and robustness performances, highlighting its effectiveness in improving the stability and precision of double-capacity water tank systems.
Abstract Process control systems are subject to external factors such as changes in working conditions and perturbation interference, which can significantly affect the system's stability and overall performance. The application and promotion of intelligent control algorithms with self‐learning, self‐optimization, and self‐adaption characteristics have thus become a challenging yet meaningful research topic. In this article, we propose a novel approach that incorporates the deep deterministic policy gradient (DDPG) algorithm into the control of double‐capacity water tanklevel system. Specifically, we introduce a fully connected layer on the observer side of the critic network to enhance its expression capability and processing efficiency, allowing for the extraction of important features for water‐level control. Additionally, we optimize the node parameters of the neural network and use the RELU activation function to ensure the network's ability to continuously observe and learn from the external water tank environment while avoiding the issue of vanishing gradients. We enhance the system's feedback regulation ability by adding the PID controller output to the observer input based on the liquid level deviation and height. This integration with the DDPG control method effectively leverages the benefits of both, resulting in improved robustness and adaptability of the system. Experimental results show that our proposed model outperforms traditional control methods in terms of convergence, tracking, anti‐disturbance and robustness performances, highlighting its effectiveness in improving the stability and precision of double‐capacity water tank systems.
Author Ye, Likun
Jiang, Pei
Author_xml – sequence: 1
  givenname: Likun
  orcidid: 0000-0002-6689-1286
  surname: Ye
  fullname: Ye, Likun
  organization: Shien‐Ming Wu School of Intelligent Engineering South China University of Technology Guangzhou City Guangdong Province China
– sequence: 2
  givenname: Pei
  surname: Jiang
  fullname: Jiang, Pei
  organization: School of Instrument Science and Optoelectronic Engineering Beihang University Beijing City China
BookMark eNptUctqHDEQFMGGOLYv-QJBboF19NgZzRyDycNg8MU5ix5Na6yNRppI2oT1IeQT8o35kmh3YwghF7VoqqqLqhfkJMSAhLzk7IozJt5gmMQVF23bPSNnolFq1fG-Pfnr_5xc5rxhFcwVZ5Kdke93S3Gze4TiYqAmhpKip9HS8oB0jNvB468fPw0sYFzZ0W9QMNEC4XPdevyKnuZdLjjTbXZhOrIQl_pU4OyCy8UZukTvzI5OCUaHoVDwU0yuPMwX5NSCz3j5Z56TT-_f3V9_XN3efbi5fnu7MrLlZcW7hhnBrGywY_0wcNM00Cvb23UdYhQjjHawfLTKynUrrOJd11rkgwVQVshzcnPUHSNs9JLcDGmnIzh9WMQ0aUjVqUctOTR8kEoOrVlzi71FBdjzkXWdFcNe69VRa0nxyxZz0Zu4TaHa16JeVTVn2VcUO6JMijkntLoGeEi5JHBec6b3pel9afpQWqW8_ofyZPQ_4N96Ep8s
CitedBy_id crossref_primary_10_2166_hydro_2024_020
crossref_primary_10_1007_s43621_025_01832_3
crossref_primary_10_2478_ijssis_2025_0029
crossref_primary_10_1080_23307706_2024_2439520
crossref_primary_10_1007_s11081_025_09990_z
Cites_doi 10.1109/ACCESS.2022.3176608
10.1109/ACCESS.2021.3096208
10.1109/JIOT.2019.2921159
10.1109/ACCESS.2020.3025194
10.1016/j.dche.2022.100023
10.1109/TII.2019.2894282
10.1016/j.compchemeng.2020.107133
10.1109/TCAD.2018.2878183
10.1016/j.trc.2018.12.018
10.1016/j.asoc.2021.107295
10.3390/jsan10040060
10.1109/ACCESS.2020.2968595
10.1109/ACCESS.2022.3180504
10.1007/s00521-022-07033-7
10.1063/5.0032377
10.1109/ACCESS.2022.3174625
10.1016/j.egyr.2022.02.231
10.1016/j.compchemeng.2019.106610
10.1109/JIOT.2021.3091508
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1002/eng2.12668
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2577-8196
EndPage n/a
ExternalDocumentID oai_doaj_org_article_31a51b373b6c41fe9fe7ae91d088f2b2
10_1002_eng2_12668
GroupedDBID 0R~
1OC
24P
AAMMB
AAYXX
ABJCF
ACCMX
ACXQS
ADKYN
ADMLS
ADZMN
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-1850c20f35e809bb1c55a97f9f4a972d2dadfbf1df7f3462f71886fe1bfaa7f23
IEDL.DBID BENPR
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979823000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2577-8196
IngestDate Fri Oct 03 12:28:23 EDT 2025
Wed Aug 13 06:29:08 EDT 2025
Sat Nov 29 03:20:55 EST 2025
Tue Nov 18 20:48:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1850c20f35e809bb1c55a97f9f4a972d2dadfbf1df7f3462f71886fe1bfaa7f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6689-1286
OpenAccessLink https://www.proquest.com/docview/2886719639?pq-origsite=%requestingapplication%
PQID 2886719639
PQPubID 5066167
ParticipantIDs doaj_primary_oai_doaj_org_article_31a51b373b6c41fe9fe7ae91d088f2b2
proquest_journals_2886719639
crossref_citationtrail_10_1002_eng2_12668
crossref_primary_10_1002_eng2_12668
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Engineering reports (Hoboken, N.J.)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_10_1
Lynch MC (e_1_2_9_17_1) 2016
e_1_2_9_13_1
e_1_2_9_12_1
Efheij H (e_1_2_9_9_1) 2019
Dey N (e_1_2_9_8_1) 2013; 5
e_1_2_9_15_1
Li L (e_1_2_9_5_1) 2021; 405
e_1_2_9_14_1
Chai TY (e_1_2_9_6_1) 2020; 46
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_7_1
Zhou ZH (e_1_2_9_2_1) 2015
e_1_2_9_4_1
e_1_2_9_3_1
Venkataraman K (e_1_2_9_11_1) 2019
Xu TY (e_1_2_9_23_1) 2021
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – ident: e_1_2_9_16_1
  doi: 10.1109/ACCESS.2022.3176608
– ident: e_1_2_9_22_1
  doi: 10.1109/ACCESS.2021.3096208
– volume: 46
  start-page: 2005
  issue: 10
  year: 2020
  ident: e_1_2_9_6_1
  article-title: Development direction of industrial artificial intelligence
  publication-title: Journal of Automation
– volume: 405
  start-page: 1
  issue: 3
  year: 2021
  ident: e_1_2_9_5_1
  article-title: Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: a review
  publication-title: Chem Eng J
– ident: e_1_2_9_19_1
  doi: 10.1109/JIOT.2019.2921159
– ident: e_1_2_9_28_1
  doi: 10.1109/ACCESS.2020.3025194
– ident: e_1_2_9_14_1
  doi: 10.1016/j.dche.2022.100023
– start-page: 64
  volume-title: 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)
  year: 2019
  ident: e_1_2_9_9_1
– ident: e_1_2_9_24_1
  doi: 10.1109/TII.2019.2894282
– ident: e_1_2_9_15_1
  doi: 10.1016/j.compchemeng.2020.107133
– volume: 5
  start-page: 2277
  issue: 3
  year: 2013
  ident: e_1_2_9_8_1
  article-title: Design and implementation of a water level controller using fuzzy logic
  publication-title: Int J Eng Technol
– ident: e_1_2_9_20_1
  doi: 10.1109/TCAD.2018.2878183
– volume-title: Machine Learning
  year: 2015
  ident: e_1_2_9_2_1
– ident: e_1_2_9_12_1
  doi: 10.1016/j.trc.2018.12.018
– ident: e_1_2_9_26_1
  doi: 10.1016/j.asoc.2021.107295
– ident: e_1_2_9_4_1
  doi: 10.3390/jsan10040060
– ident: e_1_2_9_10_1
  doi: 10.1109/ACCESS.2020.2968595
– ident: e_1_2_9_21_1
  doi: 10.1109/ACCESS.2022.3180504
– start-page: 4210
  volume-title: Recovering Robustness in Model‐free Reinforcement Learning
  year: 2019
  ident: e_1_2_9_11_1
– ident: e_1_2_9_25_1
  doi: 10.1007/s00521-022-07033-7
– start-page: 11480
  volume-title: Proceedings of the 38th International Conference on Machine Learning
  year: 2021
  ident: e_1_2_9_23_1
– ident: e_1_2_9_7_1
  doi: 10.1063/5.0032377
– start-page: 1
  year: 2016
  ident: e_1_2_9_17_1
  publication-title: Int Conf Learn Rep
– ident: e_1_2_9_3_1
  doi: 10.1109/ACCESS.2022.3174625
– ident: e_1_2_9_18_1
  doi: 10.1016/j.egyr.2022.02.231
– ident: e_1_2_9_27_1
  doi: 10.1016/j.compchemeng.2019.106610
– ident: e_1_2_9_13_1
  doi: 10.1109/JIOT.2021.3091508
SSID ssj0002171030
Score 2.283768
Snippet Process control systems are subject to external factors such as changes in working conditions and perturbation interference, which can significantly affect the...
Abstract Process control systems are subject to external factors such as changes in working conditions and perturbation interference, which can significantly...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Artificial intelligence
Batch processes
Chemical oxygen demand
Comparative analysis
Compensation
Control algorithms
Control methods
Control systems
Controllers
DDPG adaptive compensation control
DDPG pure control
Energy consumption
Industrial production
Liquid levels
Machine learning
Methods
Neural networks
Optimization
Perturbation
process control system
Process controls
Proportional integral derivative
reinforcement learning
Robotics
Robustness
Water levels
Water tanks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl5NAcStI0dPNRBM2lBycrybbsYxu65FDSHlrIzehjZhu62V28TnIL-Qn5jf0lHUneZUMKvfRigxhjMzOa9wyjN4wdhynaWILLjC9tllvrMkplkYEWhdc6gFxU1_-iLy6qy8v629qor9ATluSBk-NOlTCFsEorW7pcINQI2kAtPG0PlDZWX2I9az9ToQYT0Q7zs1Z6pPIUpmN5IgiOqicIFIX6n9XhCC6jbfaqZ4X8Y_qaHfYCpq_Z1ppW4C67_0qb-7o_Ncn7DnM-Q04MjvvZjZ3A74dHR9jniFjzO-KQLSfm94tWJ6EziCfRZh463cfpKYA5XVI_TBRs5vMoE8zHbewE67iZjGftVffz-g37Mfr8_ew864cnZE6VossIh4dODlEVUA1ra4UrClNrrDGnm_TSG48WhUeNKi8lEkhVJYKwaIxGqfbYxnQ2hbeMeweVQUmBUza3WtcOdAVFiV4pXzg1YB-WDm1cryweBlxMmqSJLJvg_CY6f8Der2znSU_jr1afQlxWFkEDOy5QZjR9ZjT_yowBO1xGtek35qKRVRD0o6pT7_-Pdxywl2H-fDqceMg2uvYGjtimu-2uFu27mJN_AO4K7bU
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimization control of the double‐capacity water tank‐level system using the deep deterministic policy gradient algorithm
URI https://www.proquest.com/docview/2886719639
https://doaj.org/article/31a51b373b6c41fe9fe7ae91d088f2b2
Volume 5
WOSCitedRecordID wos000979823000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M7S
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: PIMPY
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgywEO5VmxpawswYWD6dpO4uSEKGpFJVhWPEQ5RX5NQGw3SzYFiV_P2PEuIBAXLoniOJKlGc-MJp-_j5CHQUUbCm-ZdoVhmTGWoStz5hXPnVIhyUV2_RdqNivPzqp5aritE6xyExNjoHatDT3yQ1EGJjZ0l-rJ6gsLqlHh72qS0LhMdgJTWTYiO0fHs_nrbZcFC-6go7XlJRWHftmIxxzTUvlbJoqE_X_E45hkTq7_7_JukN1UXtKngz_cJJf88ha59gvp4G3y_RVGifN0_JImqDptgWIpSF17YRaeWUyhFutz-g1L0Y5iAfmZLQK8iA7MzzTA5ZvhC-9XeBlANZH1ma4i1zBtuggn66leNLjU_uP5HfLu5Pjts-csKTAwKwveM0zmUyumIHNfTitjuM1zXSmoIMObcMJpBwa4AwUyKwRgpisL8NyA1gqE3COjZbv0dwl11pcaBFpfmswoVVmvSp8X4KR0uZVj8mhjjdomevKgkrGoB2JlUQfL1dFyY_JgO3c1kHL8ddZRMOp2RiDSjgNt19RpX9aS65wbqaQpbMbBV-CV9hV3GH1BGDEmBxt712l3r-ufxt7_9-t75GqQpx_OLh6QUd9d-Pvkiv3af1p3k-Ssk9gHmATU6Rscm5--nH_Ap_ensx_AOP38
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwBuxUMAScOBguraTODkgxKvqqttlD0UqpxC_0ortZsmmVPCj-I2MnWQBgbj1wCWRkskh9pdvxs7MNwCPfRdtl1hNC5MoGimlKUKZUStZbKT0Ti6o60_kdJoeHmazDfje18L4tMqeEwNRm0r7PfJtnnolNoRL9mL5mfquUf7vat9Co4XFnv16hku21fPxG5zfJ5zvvD14vUu7rgJUi4Q1FB3USPORE7FNR5lSTMdxkUmXuQhP3HBTGKccM046ESXcIXunibNMuaKQzgsdIOVvRgj2dACbs_H-7MN6VwcDfN-3a62DyrftouTPGLrB9DfPFxoE_MH_wantXP3fhuMaXOnCZ_Kyxft12LCLG3D5F1HFm_DtHbLgSVdeSrpUfFI5gqEuMdWpmluqMUTQuP4gZxhq1wQD5E907tOnSKtsTXw5QNk-Ye0SD23SUFC1JsugpUzKOqTLNaSYlzg0zdHJLXh_Li9_GwaLamHvADHapoXjiG6hIiVlpq1MbZw4I4SJtRjC0372c93Jr_suIPO8FY7muUdKHpAyhEdr22UrOvJXq1ceRGsLLxQeLlR1mXe8kwtWxEwJKVSiI-Zs5qwsbMYMehfHFR_CVo-vvGOvVf4TXHf_ffshXNw92J_kk_F07x5c4hgAtnWaWzBo6lN7Hy7oL83xqn7QfSgEPp43GH8AAgxYkA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqghAc-EYsFLAEHDiYXdtJnBwQAsqKqtVSCZB6M_HHhKrbzZJNqeCn8esYO8kCAnHrgUsiJZNDnOeZZ2fmDSGPQhdtyLxlpcsMS4yxDKHMmVc8dUqFIBfV9ffUbJYfHBT7G-T7UAsT0ioHnxgdtatt2CMfizwosSFcijH0aRH729Pny88sdJAKf1qHdhodRHb911Ncvq2e7Wzjt34sxPT1-1dvWN9hgFmZ8ZZhsJpYMQGZ-nxSGMNtmpaFggISPAknXOnAAHegQCaZAPTkeQaeGyhLBUH0AN3_OZUgT4hpg-_W-ztI9UMHr7Uiqhj7RSWecgyI-W8xMLYK-CMSxPA2vfI_D8xVcrkn1fRFNwuukQ2_uE4u_SK1eIN8e4u-8bgvOqV9gj6tgSIBpq4-MXPPLBIHi6sSeooEvKFIm4_YPCRV0U7vmoYigap7wvslHrpUoqh1TZdRYZlWTUyia2k5r3Bo2k_HN8mHM3n5W2RzUS_8bUKd9XkJAjEvTWKUKqxXuU8zcFK61MoReTIgQdtelD30BpnrTk5a6IAaHVEzIg_XtstOiuSvVi8DoNYWQT48XqibSvfeSEteptxIJU1mEw6-AK9KX3CHMQeEESOyNWBN9z5tpX8C7c6_bz8gFxCBem9ntnuXXBTICrvizS2y2TYn_h45b7-0h6vmfpwxlHw8ayT-AM2DX9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+control+of+the+double-capacity+water+tank-level+system+using+the+deep+deterministic+policy+gradient+algorithm&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Ye%2C+Likun&rft.au=Jiang%2C+Pei&rft.date=2023-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2577-8196&rft.volume=5&rft.issue=11&rft_id=info:doi/10.1002%2Feng2.12668&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon