Component-aware generative autoencoder for structure hybrid and shape completion

Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphical models Jg. 129; S. 101185
Hauptverfasser: Zhang, Fan, Fu, Qiang, Liu, Yang, Li, Xueming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2023
Elsevier
Schlagworte:
ISSN:1524-0703, 1524-0711
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across different categories is still challenging for most of the deep-learning-based 3D modeling methods. In this paper, we propose a novel generative autoencoder that tackles the component combinations for 3D modeling of man-made objects. We use the segmented input objects to create component volumes that have redundant components and random configurations. By using the input objects and the associated component volumes to train the autoencoder, we can obtain an object volume consisting of components with proper quality and structure as the network output. Such a generative autoencoder can be applied to either multiple object categories for structure hybrid or a single object category for shape completion. We conduct a series of evaluations and experimental results to demonstrate the usability and practicability of our method. [Display omitted]
AbstractList Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across different categories is still challenging for most of the deep-learning-based 3D modeling methods. In this paper, we propose a novel generative autoencoder that tackles the component combinations for 3D modeling of man-made objects. We use the segmented input objects to create component volumes that have redundant components and random configurations. By using the input objects and the associated component volumes to train the autoencoder, we can obtain an object volume consisting of components with proper quality and structure as the network output. Such a generative autoencoder can be applied to either multiple object categories for structure hybrid or a single object category for shape completion. We conduct a series of evaluations and experimental results to demonstrate the usability and practicability of our method. [Display omitted]
Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across different categories is still challenging for most of the deep-learning-based 3D modeling methods. In this paper, we propose a novel generative autoencoder that tackles the component combinations for 3D modeling of man-made objects. We use the segmented input objects to create component volumes that have redundant components and random configurations. By using the input objects and the associated component volumes to train the autoencoder, we can obtain an object volume consisting of components with proper quality and structure as the network output. Such a generative autoencoder can be applied to either multiple object categories for structure hybrid or a single object category for shape completion. We conduct a series of evaluations and experimental results to demonstrate the usability and practicability of our method.
ArticleNumber 101185
Author Liu, Yang
Fu, Qiang
Li, Xueming
Zhang, Fan
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0003-3486-6040
  surname: Zhang
  fullname: Zhang, Fan
  email: zhangfan.kanv@gmail.com
– sequence: 2
  givenname: Qiang
  orcidid: 0000-0002-8944-8981
  surname: Fu
  fullname: Fu, Qiang
  email: fu.john.qiang@gmail.com
– sequence: 3
  givenname: Yang
  orcidid: 0000-0001-9814-638X
  surname: Liu
  fullname: Liu, Yang
  email: yang.liu@bupt.edu.cn
– sequence: 4
  givenname: Xueming
  orcidid: 0000-0003-1058-2799
  surname: Li
  fullname: Li, Xueming
  email: lixm@bupt.edu.cn
BookMark eNp9kMtqYzEMhk3pwPQyLzCr8wIntezYx4HZDGF6gUK7aNdGtuXUITkOPk6Hvn2dpnTZlYTQ_yF95-x0zCMx9hv4DDjoq_Vstc1hJriQhwEYdcLOQIl5zweA06-ey5_sfJrWvO2ouThjj8u83TXWWHv8j4W6FY1UsKZX6nBfM40-BypdzKWbatn7um9LL2-upNDhGLrpBXfU-UbZUE15vGQ_Im4m-vVZL9jz9b-n5W1__3Bzt_x733upofYgdATnotfSLwYzF2EwXEoRKAJ67hwgGYoBolBm0MoNBiM3Ug0Rohm8vGB3R27IuLa7krZY3mzGZD8Guawslpr8hqxR6CBIHUCpOTiN6KKDhdZOk-eLRWOJI8uXPE2F4hcPuD34tWt78GsPfu3Rbwv9OYaoffmaqNjJp6aLQirkazsjfRd_B7WPhvk
Cites_doi 10.1145/2185520.2185550
10.1145/2185520.2185551
10.1145/2185520.2185553
10.1145/3072959.3073637
10.1109/CVPR.2018.00745
10.1145/3272127.3275008
10.1145/1882261.1866206
10.1109/CVPR52688.2022.00040
10.1145/1778765.1778841
10.1016/j.cag.2015.06.009
10.1109/TPAMI.2009.161
10.1109/ICCV.2019.00885
10.1145/2461912.2461924
10.1145/2366145.2366199
10.1145/3130800.3130821
10.1145/2010324.1964930
10.1145/1882261.1866205
10.1109/TVCG.2020.3029759
10.1109/CVPR.2017.603
10.1145/2601097.2601185
10.1145/2461912.2461933
10.1145/2601097.2601102
10.1109/TVCG.2017.2739159
10.1145/1015706.1015775
10.1145/2010324.1964928
10.1016/j.gmod.2016.01.002
10.1609/aaai.v34i07.6798
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.gmod.2023.101185
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1524-0711
ExternalDocumentID oai_doaj_org_article_85ab1d36d15541b6aabfb1966b6ec099
10_1016_j_gmod_2023_101185
S1524070323000152
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFPKN
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HF~
HVGLF
HZ~
IHE
J1W
KOM
LG5
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
XPP
ZMT
ZU3
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c361t-126f1bbfc63c97842d780332def1ac0bb1ae8efd1f258765b78af08357f1f87c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001046647500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-0703
IngestDate Fri Oct 03 12:52:50 EDT 2025
Sat Nov 29 07:01:33 EST 2025
Fri Feb 23 02:37:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Generative autoencoder
Structure hybrid
3D modeling
Shape completion
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-126f1bbfc63c97842d780332def1ac0bb1ae8efd1f258765b78af08357f1f87c3
ORCID 0000-0003-3486-6040
0000-0003-1058-2799
0000-0001-9814-638X
0000-0002-8944-8981
OpenAccessLink https://doaj.org/article/85ab1d36d15541b6aabfb1966b6ec099
ParticipantIDs doaj_primary_oai_doaj_org_article_85ab1d36d15541b6aabfb1966b6ec099
crossref_primary_10_1016_j_gmod_2023_101185
elsevier_sciencedirect_doi_10_1016_j_gmod_2023_101185
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Graphical models
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Xu, Zhang, Cohen-Or, Chen (b32) 2012; 31
Bokeloh, Wand, Seidel (b35) 2010; 29
Fish, Averkiou, Van Kaick, Sorkine-Hornung, Cohen-Or, Mitra (b14) 2014; 33
Zhu, Xu, Chaudhuri, Yi, Zhang (b4) 2018; 37
Van Kaick, Tagliasacchi, Sidi, Zhang, Cohen-Or, Wolf, Hamarneh (b25) 2011
Su, Chen, Fu, Fu (b9) 2016; 54
Funkhouser, Kazhdan, Shilane, Min, Kiefer, Tal, Rusinkiewicz, Dobkin (b10) 2004; 23
Mo, Guerrero, Yi, Su, Wonka, Mitra, Guibas (b16) 2019
Kreavoy, Julius, Sheffer (b21) 2007
Xie, Yao, Sun, Zhou, Zhang (b40) 2019
Yin, Chen, Chaudhuri, Fisher, Kim, Zhang (b17) 2020
Wang, Guerrero, Kim, Chaudhuri, Sung, Ritchie (b18) 2022
P. Mittal, Y.-C. Cheng, M. Singh, S. Tulsiani, AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 306–315.
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
J. Li, C. Niu, K. Xu, Learning Part Generation and Assembly for Structure-Aware Shape Synthesis, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 11362–11369.
Fu, Chen, Su, Fu (b34) 2016; 85
Fu, Chen, Su, Fu (b8) 2017; 23
Fu, Chen, Su, Li, Fu (b15) 2016
Jain, Thormählen, Ritschel, Seidel (b30) 2012
Wang, Guerrero, Kim, Chaudhuri, Sung, Ritchie (b7) 2021
Kalogerakis, Chaudhuri, Koller, Koltun (b31) 2012; 31
Hertz, Perel, Giryes, Sorkine-Hornung, Cohen-Or (b23) 2022
Chaudhuri, Koltun (b12) 2010; 29
Jin, Fu, Deng (b38) 2020
Furukawa, Ponce (b2) 2009; 32
Chaudhuri, Kalogerakis, Guibas, Koltun (b20) 2011; 30
Zheng, Cohen-Or, Averkiou, Mitra (b28) 2014
Lee, Funkhouser (b11) 2008
Xu, Li, Zhang, Cohen-Or, Xiong, Cheng (b37) 2010; 29
Van Kaick, Xu, Zhang, Wang, Sun, Shamir, Cohen-Or (b27) 2013; 32
Kim, Li, Mitra, Chaudhuri, DiVerdi, Funkhouser (b29) 2013; 32
Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su (b41) 2015
Zheng, Cohen-Or, Mitra (b33) 2013
Shen, Fu, Chen, Hu (b42) 2012; 31
N. Schor, O. Katzir, H. Zhang, D. Cohen-Or, CompoNet: Learning to generate the unseen by part synthesis and composition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8759–8768.
D. Tome, C. Russell, L. Agapito, Lifting from the deep: Convolutional 3d pose estimation from a single image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2500–2509.
Guan, Liu, Liu, Yin, Hu, van Kaick, Zhang, Yumer, Carr, Mech, Zhang (b39) 2022; 28
Ovsjanikov, Li, Guibas, Mitra (b13) 2011; 30
Alhashim, Li, Xu, Cao, Ma, Zhang (b36) 2014; 33
Wang, Xu, Li, Zhang, Shamir, Liu, Cheng, Xiong (b26) 2011
J. Wu, C. Zhang, T. Xue, W.T. Freeman, J.B. Tenenbaum, Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS ’16, Red Hook, NY, USA, 2016, pp. 82–90.
Li, Xu, Chaudhuri, Yumer, Zhang, Guibas (b6) 2017; 36
Sung, Su, Kim, Chaudhuri, Guibas (b22) 2017; 36
Kim, Li, Mitra, DiVerdi, Funkhouser (b24) 2012; 31
Li (10.1016/j.gmod.2023.101185_b6) 2017; 36
Sung (10.1016/j.gmod.2023.101185_b22) 2017; 36
Jin (10.1016/j.gmod.2023.101185_b38) 2020
Wang (10.1016/j.gmod.2023.101185_b26) 2011
Fu (10.1016/j.gmod.2023.101185_b15) 2016
10.1016/j.gmod.2023.101185_b44
10.1016/j.gmod.2023.101185_b43
Zheng (10.1016/j.gmod.2023.101185_b28) 2014
Xu (10.1016/j.gmod.2023.101185_b32) 2012; 31
Su (10.1016/j.gmod.2023.101185_b9) 2016; 54
Kalogerakis (10.1016/j.gmod.2023.101185_b31) 2012; 31
Furukawa (10.1016/j.gmod.2023.101185_b2) 2009; 32
10.1016/j.gmod.2023.101185_b5
10.1016/j.gmod.2023.101185_b19
10.1016/j.gmod.2023.101185_b3
Funkhouser (10.1016/j.gmod.2023.101185_b10) 2004; 23
10.1016/j.gmod.2023.101185_b1
Yin (10.1016/j.gmod.2023.101185_b17) 2020
Chang (10.1016/j.gmod.2023.101185_b41) 2015
Wang (10.1016/j.gmod.2023.101185_b18) 2022
Kim (10.1016/j.gmod.2023.101185_b29) 2013; 32
Kim (10.1016/j.gmod.2023.101185_b24) 2012; 31
Van Kaick (10.1016/j.gmod.2023.101185_b27) 2013; 32
Xie (10.1016/j.gmod.2023.101185_b40) 2019
Hertz (10.1016/j.gmod.2023.101185_b23) 2022
Shen (10.1016/j.gmod.2023.101185_b42) 2012; 31
Zheng (10.1016/j.gmod.2023.101185_b33) 2013
Mo (10.1016/j.gmod.2023.101185_b16) 2019
Alhashim (10.1016/j.gmod.2023.101185_b36) 2014; 33
Zhu (10.1016/j.gmod.2023.101185_b4) 2018; 37
Chaudhuri (10.1016/j.gmod.2023.101185_b12) 2010; 29
Fish (10.1016/j.gmod.2023.101185_b14) 2014; 33
Jain (10.1016/j.gmod.2023.101185_b30) 2012
Lee (10.1016/j.gmod.2023.101185_b11) 2008
Chaudhuri (10.1016/j.gmod.2023.101185_b20) 2011; 30
Kreavoy (10.1016/j.gmod.2023.101185_b21) 2007
Fu (10.1016/j.gmod.2023.101185_b34) 2016; 85
Xu (10.1016/j.gmod.2023.101185_b37) 2010; 29
Bokeloh (10.1016/j.gmod.2023.101185_b35) 2010; 29
Guan (10.1016/j.gmod.2023.101185_b39) 2022; 28
Van Kaick (10.1016/j.gmod.2023.101185_b25) 2011
Wang (10.1016/j.gmod.2023.101185_b7) 2021
Fu (10.1016/j.gmod.2023.101185_b8) 2017; 23
Ovsjanikov (10.1016/j.gmod.2023.101185_b13) 2011; 30
References_xml – reference: N. Schor, O. Katzir, H. Zhang, D. Cohen-Or, CompoNet: Learning to generate the unseen by part synthesis and composition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8759–8768.
– volume: 32
  start-page: 70:1
  year: 2013
  end-page: 70:12
  ident: b29
  article-title: Learning part-based templates from large collections of 3D shapes
  publication-title: ACM Trans. Graph.
– volume: 85
  start-page: 1
  year: 2016
  end-page: 10
  ident: b34
  article-title: Natural lines inspired 3D shape re-design
  publication-title: Graph. Models
– reference: J. Li, C. Niu, K. Xu, Learning Part Generation and Assembly for Structure-Aware Shape Synthesis, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 11362–11369.
– start-page: 9:1
  year: 2020
  end-page: 9:10
  ident: b38
  article-title: Contour-based 3D modeling through joint embedding of shapes and contours
  publication-title: Symposium on Interactive 3D Graphics and Games
– start-page: 61
  year: 2020
  end-page: 70
  ident: b17
  article-title: Coalesce: Component assembly by learning to synthesize connections
  publication-title: 2020 International Conference on 3D Vision
– volume: 23
  start-page: 2574
  year: 2017
  end-page: 2585
  ident: b8
  article-title: Pose-inspired shape synthesis and functional hybrid
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 129
  year: 2007
  end-page: 138
  ident: b21
  article-title: Model composition from interchangeable components
  publication-title: 15th Pacific Conference on Computer Graphics and Applications
– volume: 29
  start-page: 104:1
  year: 2010
  end-page: 104:10
  ident: b35
  article-title: A connection between partial symmetry and inverse procedural modeling
  publication-title: ACM Trans. Graph.
– volume: 31
  start-page: 180:1
  year: 2012
  end-page: 180:11
  ident: b42
  article-title: Structure recovery by part assembly
  publication-title: ACM Trans. Graph.
– start-page: 287
  year: 2011
  end-page: 296
  ident: b26
  article-title: Symmetry hierarchy of man-made objects
  publication-title: Computer Graphics Forum, Vol. 30, No. 2
– start-page: 27
  year: 2016
  end-page: 36
  ident: b15
  article-title: Structure-adaptive shape editing for man-made objects
  publication-title: Computer Graphics Forum, Vol. 35, No. 2
– volume: 29
  start-page: 183:1
  year: 2010
  end-page: 183:10
  ident: b12
  article-title: Data-driven suggestions for creativity support in 3D modeling
  publication-title: ACM Trans. Graph.
– start-page: 2690
  year: 2019
  end-page: 2698
  ident: b40
  article-title: Pix2Vox: Context-aware 3D reconstruction from single and multi-view images
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision
– volume: 30
  start-page: 35:1
  year: 2011
  end-page: 35:10
  ident: b20
  article-title: Probabilistic reasoning for assembly-based 3D modeling
  publication-title: ACM Trans. Graph.
– volume: 33
  start-page: 34:1
  year: 2014
  end-page: 34:11
  ident: b14
  article-title: Meta-representation of shape families
  publication-title: ACM Trans. Graph.
– volume: 32
  start-page: 1362
  year: 2009
  end-page: 1376
  ident: b2
  article-title: Accurate, dense, and robust multiview stereopsis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 211:1
  year: 2018
  end-page: 211:14
  ident: b4
  article-title: SCORES: Shape composition with recursive substructure priors
  publication-title: ACM Trans. Graph.
– volume: 32
  start-page: 69:1
  year: 2013
  end-page: 69:10
  ident: b27
  article-title: Co-hierarchical analysis of shape structures
  publication-title: ACM Trans. Graph.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– volume: 31
  start-page: 54:1
  year: 2012
  end-page: 54:11
  ident: b24
  article-title: Exploring collections of 3d models using fuzzy correspondences
  publication-title: ACM Trans. Graph.
– volume: 36
  start-page: 1
  year: 2017
  end-page: 12
  ident: b22
  article-title: ComplementMe: Weakly-supervised component suggestions for 3D modeling
  publication-title: ACM Trans. Graph.
– reference: P. Mittal, Y.-C. Cheng, M. Singh, S. Tulsiani, AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 306–315.
– year: 2019
  ident: b16
  article-title: Structurenet: Hierarchical graph networks for 3d shape generation
– year: 2022
  ident: b23
  article-title: SPAGHETTI: Editing implicit shapes through part aware generation
– volume: 54
  start-page: 145
  year: 2016
  end-page: 153
  ident: b9
  article-title: Cross-class 3D object synthesis guided by reference examples
  publication-title: Comput. Graph.
– volume: 30
  start-page: 33:1
  year: 2011
  end-page: 33:10
  ident: b13
  article-title: Exploration of continuous variability in collections of 3d shapes
  publication-title: ACM Trans. Graph.
– start-page: 631
  year: 2012
  end-page: 640
  ident: b30
  article-title: Exploring shape variations by 3d-model decomposition and part-based recombination
  publication-title: Computer Graphics Forum, Vol. 31, No. 2pt3
– start-page: 97
  year: 2008
  end-page: 104
  ident: b11
  article-title: Sketch-based search and composition of 3D models
  publication-title: SBIM
– start-page: 195
  year: 2013
  end-page: 204
  ident: b33
  article-title: Smart variations: Functional substructures for part compatibility
  publication-title: Computer Graphics Forum, Vol. 32, No. 2pt2
– volume: 23
  start-page: 652
  year: 2004
  end-page: 663
  ident: b10
  article-title: Modeling by example
  publication-title: ACM Trans. Graph.
– volume: 28
  start-page: 1758
  year: 2022
  end-page: 1772
  ident: b39
  article-title: FAME: 3D shape generation via functionality-aware model evolution
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2015
  ident: b41
  article-title: Shapenet: An information-rich 3d model repository
– volume: 33
  start-page: 158:1
  year: 2014
  end-page: 158:10
  ident: b36
  article-title: Topology-varying 3D shape creation via structural blending
  publication-title: ACM Trans. Graph.
– volume: 36
  start-page: 52:1
  year: 2017
  end-page: 52:14
  ident: b6
  article-title: Grass: Generative recursive autoencoders for shape structures
  publication-title: ACM Trans. Graph.
– start-page: 1
  year: 2021
  end-page: 19
  ident: b7
  article-title: The shape part slot machine: Contact-based reasoning for generating 3D shapes from parts
– volume: 31
  start-page: 55:1
  year: 2012
  end-page: 55:11
  ident: b31
  article-title: A probabilistic model for component-based shape synthesis
  publication-title: ACM Trans. Graph. (TOG)
– volume: 31
  start-page: 57:1
  year: 2012
  end-page: 57:10
  ident: b32
  article-title: Fit and diverse: Set evolution for inspiring 3d shape galleries
  publication-title: ACM Trans. Graph.
– start-page: 610
  year: 2022
  end-page: 626
  ident: b18
  article-title: The shape part slot machine: Contact-based reasoning for generating 3D shapes from parts
  publication-title: European Conference on Computer Vision
– start-page: 553
  year: 2011
  end-page: 562
  ident: b25
  article-title: Prior knowledge for part correspondence
  publication-title: Computer Graphics Forum, Vol. 30, No. 2
– reference: D. Tome, C. Russell, L. Agapito, Lifting from the deep: Convolutional 3d pose estimation from a single image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2500–2509.
– volume: 29
  start-page: 184:1
  year: 2010
  end-page: 184:10
  ident: b37
  article-title: Style-content separation by anisotropic part scales
  publication-title: ACM Trans. Graph.
– reference: J. Wu, C. Zhang, T. Xue, W.T. Freeman, J.B. Tenenbaum, Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS ’16, Red Hook, NY, USA, 2016, pp. 82–90.
– start-page: 115
  year: 2014
  end-page: 124
  ident: b28
  article-title: Recurring part arrangements in shape collections
  publication-title: Computer Graphics Forum, Vol. 33, No. 2
– year: 2022
  ident: 10.1016/j.gmod.2023.101185_b23
– volume: 31
  start-page: 54:1
  issue: 4
  year: 2012
  ident: 10.1016/j.gmod.2023.101185_b24
  article-title: Exploring collections of 3d models using fuzzy correspondences
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2185520.2185550
– volume: 31
  start-page: 55:1
  issue: 4
  year: 2012
  ident: 10.1016/j.gmod.2023.101185_b31
  article-title: A probabilistic model for component-based shape synthesis
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2185520.2185551
– volume: 31
  start-page: 57:1
  issue: 4
  year: 2012
  ident: 10.1016/j.gmod.2023.101185_b32
  article-title: Fit and diverse: Set evolution for inspiring 3d shape galleries
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2185520.2185553
– volume: 36
  start-page: 52:1
  issue: 4
  year: 2017
  ident: 10.1016/j.gmod.2023.101185_b6
  article-title: Grass: Generative recursive autoencoders for shape structures
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073637
– ident: 10.1016/j.gmod.2023.101185_b43
  doi: 10.1109/CVPR.2018.00745
– volume: 37
  start-page: 211:1
  issue: 6
  year: 2018
  ident: 10.1016/j.gmod.2023.101185_b4
  article-title: SCORES: Shape composition with recursive substructure priors
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3272127.3275008
– volume: 29
  start-page: 184:1
  issue: 6
  year: 2010
  ident: 10.1016/j.gmod.2023.101185_b37
  article-title: Style-content separation by anisotropic part scales
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1882261.1866206
– ident: 10.1016/j.gmod.2023.101185_b44
  doi: 10.1109/CVPR52688.2022.00040
– volume: 29
  start-page: 104:1
  issue: 4
  year: 2010
  ident: 10.1016/j.gmod.2023.101185_b35
  article-title: A connection between partial symmetry and inverse procedural modeling
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1778765.1778841
– volume: 54
  start-page: 145
  year: 2016
  ident: 10.1016/j.gmod.2023.101185_b9
  article-title: Cross-class 3D object synthesis guided by reference examples
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2015.06.009
– start-page: 610
  year: 2022
  ident: 10.1016/j.gmod.2023.101185_b18
  article-title: The shape part slot machine: Contact-based reasoning for generating 3D shapes from parts
– volume: 32
  start-page: 1362
  issue: 8
  year: 2009
  ident: 10.1016/j.gmod.2023.101185_b2
  article-title: Accurate, dense, and robust multiview stereopsis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.161
– ident: 10.1016/j.gmod.2023.101185_b5
  doi: 10.1109/ICCV.2019.00885
– volume: 32
  start-page: 69:1
  issue: 4
  year: 2013
  ident: 10.1016/j.gmod.2023.101185_b27
  article-title: Co-hierarchical analysis of shape structures
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2461912.2461924
– start-page: 9:1
  year: 2020
  ident: 10.1016/j.gmod.2023.101185_b38
  article-title: Contour-based 3D modeling through joint embedding of shapes and contours
– start-page: 61
  year: 2020
  ident: 10.1016/j.gmod.2023.101185_b17
  article-title: Coalesce: Component assembly by learning to synthesize connections
– volume: 31
  start-page: 180:1
  issue: 6
  year: 2012
  ident: 10.1016/j.gmod.2023.101185_b42
  article-title: Structure recovery by part assembly
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2366145.2366199
– year: 2019
  ident: 10.1016/j.gmod.2023.101185_b16
– volume: 36
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.gmod.2023.101185_b22
  article-title: ComplementMe: Weakly-supervised component suggestions for 3D modeling
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3130800.3130821
– volume: 30
  start-page: 35:1
  issue: 4
  year: 2011
  ident: 10.1016/j.gmod.2023.101185_b20
  article-title: Probabilistic reasoning for assembly-based 3D modeling
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2010324.1964930
– start-page: 115
  year: 2014
  ident: 10.1016/j.gmod.2023.101185_b28
  article-title: Recurring part arrangements in shape collections
– volume: 29
  start-page: 183:1
  issue: 6
  year: 2010
  ident: 10.1016/j.gmod.2023.101185_b12
  article-title: Data-driven suggestions for creativity support in 3D modeling
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1882261.1866205
– start-page: 553
  year: 2011
  ident: 10.1016/j.gmod.2023.101185_b25
  article-title: Prior knowledge for part correspondence
– volume: 28
  start-page: 1758
  issue: 4
  year: 2022
  ident: 10.1016/j.gmod.2023.101185_b39
  article-title: FAME: 3D shape generation via functionality-aware model evolution
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2020.3029759
– start-page: 97
  year: 2008
  ident: 10.1016/j.gmod.2023.101185_b11
  article-title: Sketch-based search and composition of 3D models
– ident: 10.1016/j.gmod.2023.101185_b1
  doi: 10.1109/CVPR.2017.603
– start-page: 27
  year: 2016
  ident: 10.1016/j.gmod.2023.101185_b15
  article-title: Structure-adaptive shape editing for man-made objects
– year: 2015
  ident: 10.1016/j.gmod.2023.101185_b41
– volume: 33
  start-page: 34:1
  issue: 4
  year: 2014
  ident: 10.1016/j.gmod.2023.101185_b14
  article-title: Meta-representation of shape families
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2601097.2601185
– volume: 32
  start-page: 70:1
  issue: 4
  year: 2013
  ident: 10.1016/j.gmod.2023.101185_b29
  article-title: Learning part-based templates from large collections of 3D shapes
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2461912.2461933
– start-page: 631
  year: 2012
  ident: 10.1016/j.gmod.2023.101185_b30
  article-title: Exploring shape variations by 3d-model decomposition and part-based recombination
– start-page: 1
  year: 2021
  ident: 10.1016/j.gmod.2023.101185_b7
– ident: 10.1016/j.gmod.2023.101185_b3
– volume: 33
  start-page: 158:1
  issue: 4
  year: 2014
  ident: 10.1016/j.gmod.2023.101185_b36
  article-title: Topology-varying 3D shape creation via structural blending
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2601097.2601102
– start-page: 129
  year: 2007
  ident: 10.1016/j.gmod.2023.101185_b21
  article-title: Model composition from interchangeable components
– start-page: 195
  year: 2013
  ident: 10.1016/j.gmod.2023.101185_b33
  article-title: Smart variations: Functional substructures for part compatibility
– volume: 23
  start-page: 2574
  issue: 12
  year: 2017
  ident: 10.1016/j.gmod.2023.101185_b8
  article-title: Pose-inspired shape synthesis and functional hybrid
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2739159
– volume: 23
  start-page: 652
  year: 2004
  ident: 10.1016/j.gmod.2023.101185_b10
  article-title: Modeling by example
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015775
– volume: 30
  start-page: 33:1
  issue: 4
  year: 2011
  ident: 10.1016/j.gmod.2023.101185_b13
  article-title: Exploration of continuous variability in collections of 3d shapes
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2010324.1964928
– volume: 85
  start-page: 1
  year: 2016
  ident: 10.1016/j.gmod.2023.101185_b34
  article-title: Natural lines inspired 3D shape re-design
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2016.01.002
– ident: 10.1016/j.gmod.2023.101185_b19
  doi: 10.1609/aaai.v34i07.6798
– start-page: 2690
  year: 2019
  ident: 10.1016/j.gmod.2023.101185_b40
  article-title: Pix2Vox: Context-aware 3D reconstruction from single and multi-view images
– start-page: 287
  year: 2011
  ident: 10.1016/j.gmod.2023.101185_b26
  article-title: Symmetry hierarchy of man-made objects
SSID ssj0011542
Score 2.352307
Snippet Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 101185
SubjectTerms 3D modeling
Generative autoencoder
Shape completion
Structure hybrid
Title Component-aware generative autoencoder for structure hybrid and shape completion
URI https://dx.doi.org/10.1016/j.gmod.2023.101185
https://doaj.org/article/85ab1d36d15541b6aabfb1966b6ec099
Volume 129
WOSCitedRecordID wos001046647500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1524-0711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011542
  issn: 1524-0703
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1524-0711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011542
  issn: 1524-0703
  databaseCode: AIEXJ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYYAB8RTlUXlgQxZxHk4yFlQEDFUHkLpFPj_aIpFWfYD49_jiBGWChSmSZdnW3cXfZ_n8HSHXAgIhQScsAlAsdpjDQEnLhJJ5DtpCLHyxiXQ4zMbjfNQq9YU5YV4e2BvuNkskcB0JjcDHQUgJFlzYCBBGOXqDu2-Q5s1hqr4_cMSguudMwphhUNfPZXxm1-R9jhqhYYQNHKsotyCpUu5vIVMLbR4OyH5NE2nfL--QbJnyiOy1xAOPyQh_5XnpQIPJT7k0dFIpSOP2ReVmPUeFSm2W1LFS6lViN67T9AufaFFZarqayoWhVU65QfeckNeHwcv9I6vrIzAVCb5mPBSWA1glIuUOg3Go0yyIolAby6UKALg0mbGa2zBxm14CaSYtUq7UcpulKjolndKt84xQLAardKZR395RNJA5j5X7JGmQSS6SLrlpTFQsvAxG0eSHvRVo0AINWniDdskdWvGnJ0pYVw3OsUXt2OIvx3ZJ0vigqNmAR3k31OyXyc__Y_ILsotD-qy9S9JxXjJXZEd9rGerZY9s958G4-deFXPflWbavg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Component-aware+generative+autoencoder+for+structure+hybrid+and+shape+completion&rft.jtitle=Graphical+models&rft.au=Fan+Zhang&rft.au=Qiang+Fu&rft.au=Yang+Liu&rft.au=Xueming+Li&rft.date=2023-10-01&rft.pub=Elsevier&rft.issn=1524-0703&rft.volume=129&rft.spage=101185&rft_id=info:doi/10.1016%2Fj.gmod.2023.101185&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_85ab1d36d15541b6aabfb1966b6ec099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-0703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-0703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-0703&client=summon