Trajectory-planning through interpolation by overlapping cubic arcs and cubic splines

A new path‐planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar industrial robot. The user prescribes a set of nodal points along a general curve to be followed by the chosen working point on the end‐effector of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 57; H. 11; S. 1615 - 1641
Hauptverfasser: du Plessis, L. J., Snyman, J. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 21.07.2003
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A new path‐planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar industrial robot. The user prescribes a set of nodal points along a general curve to be followed by the chosen working point on the end‐effector of the mechanism. Given these specified points along the path and additional prescribed kinematical requirements, Overlapping Cubic Arcs are fitted in the Cartesian domain and a cubic Spline interpolation curve is fitted in the time‐domain. Further user‐specified information is used to determine how the end‐effector orientation angle should vary along the specified curve. The proposed trajectory‐planning methodology is embodied in a computer‐algorithm (OCAS), which outputs continuous graphs for positions, velocities and accelerations in the time‐domain. If a varying end‐effector orientation angle is specified, the OCAS‐algorithm also generates continuous orientation angle, orientation angular velocity and orientation angular acceleration curves in the time‐domain. The trajectory‐planning capabilities of the OCAS‐algorithm are tested for cases where the prescribed nodal points lie along curves defined by analytically known non‐linear functions, as well as for nodal points specified along a non‐analytical (free‐form) test‐curve. The proposed trajectory‐planner may be implemented as part of kinematic and kinetic simulation software, and it also has the potential application for controlling machine tools in cutting along free‐form curves. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList A new path-planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar industrial robot. The user prescribes a set of nodal points along a general curve to be followed by the chosen working point on the end-effector of the mechanism. Given these specified points along the path and additional prescribed kinematical requirements, Overlapping Cubic Arcs are fitted in the Cartesian domain and a cubic Spline interpolation curve is fitted in the time-domain. Further user-specified information is used to determine how the end-effector orientation angle should vary along the specified curve. The proposed trajectory-planning methodology is embodied in a computer-algorithm (OCAS), which outputs continuous graphs for positions, velocities and accelerations in the time-domain. If a varying end-effector orientation angle is specified, the OCAS-algorithm also generates continuous orientation angle, orientation angular velocity and orientation angular acceleration curves in the time-domain. The trajectory-planning capabilities of the OCAS-algorithm are tested for cases where the prescribed nodal points lie along curves defined by analytically known non-linear functions, as well as for nodal points specified along a non-analytical (free-form) test-curve. The proposed trajectory-planner may be implemented as part of kinematic and kinetic simulation software, and it also has the potential application for controlling machine tools in cutting along free-form curves.
A new path‐planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar industrial robot. The user prescribes a set of nodal points along a general curve to be followed by the chosen working point on the end‐effector of the mechanism. Given these specified points along the path and additional prescribed kinematical requirements, Overlapping Cubic Arcs are fitted in the Cartesian domain and a cubic Spline interpolation curve is fitted in the time‐domain. Further user‐specified information is used to determine how the end‐effector orientation angle should vary along the specified curve. The proposed trajectory‐planning methodology is embodied in a computer‐algorithm (OCAS), which outputs continuous graphs for positions, velocities and accelerations in the time‐domain. If a varying end‐effector orientation angle is specified, the OCAS‐algorithm also generates continuous orientation angle, orientation angular velocity and orientation angular acceleration curves in the time‐domain. The trajectory‐planning capabilities of the OCAS‐algorithm are tested for cases where the prescribed nodal points lie along curves defined by analytically known non‐linear functions, as well as for nodal points specified along a non‐analytical (free‐form) test‐curve. The proposed trajectory‐planner may be implemented as part of kinematic and kinetic simulation software, and it also has the potential application for controlling machine tools in cutting along free‐form curves. Copyright © 2003 John Wiley & Sons, Ltd.
A new path‐planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar industrial robot. The user prescribes a set of nodal points along a general curve to be followed by the chosen working point on the end‐effector of the mechanism. Given these specified points along the path and additional prescribed kinematical requirements, Overlapping Cubic Arcs are fitted in the Cartesian domain and a cubic Spline interpolation curve is fitted in the time‐domain. Further user‐specified information is used to determine how the end‐effector orientation angle should vary along the specified curve. The proposed trajectory‐planning methodology is embodied in a computer‐algorithm (OCAS), which outputs continuous graphs for positions, velocities and accelerations in the time‐domain. If a varying end‐effector orientation angle is specified, the OCAS‐algorithm also generates continuous orientation angle, orientation angular velocity and orientation angular acceleration curves in the time‐domain. The trajectory‐planning capabilities of the OCAS‐algorithm are tested for cases where the prescribed nodal points lie along curves defined by analytically known non‐linear functions, as well as for nodal points specified along a non‐analytical (free‐form) test‐curve. The proposed trajectory‐planner may be implemented as part of kinematic and kinetic simulation software, and it also has the potential application for controlling machine tools in cutting along free‐form curves. Copyright © 2003 John Wiley & Sons, Ltd.
Author du Plessis, L. J.
Snyman, J. A.
Author_xml – sequence: 1
  givenname: L. J.
  surname: du Plessis
  fullname: du Plessis, L. J.
  organization: Multidisciplinary Design Optimization Group, Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa
– sequence: 2
  givenname: J. A.
  surname: Snyman
  fullname: Snyman, J. A.
  email: jan.snyman@eng.up.ac.za
  organization: Multidisciplinary Design Optimization Group, Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa
BookMark eNp90F1LwzAUBuAgCs4p_oVeqSCdJ-naNJeicwp-3Dh2GdL0VKNdUpNO3b-3c0NQ1KvD4Ty8cN4dsmmdRUL2KQwoADuxMxzwRGyQHgXBY2DAN0mvu4g4FTndJjshPAFQmkLSI5N7r55Qt84v4qZW1hr7ELWP3s0fHiNjW_SNq1VrnI2KReRe0deqaZZIzwujI-V1iJQt12toamMx7JKtStUB99azTyYXo_uzy_j6bnx1dnod6ySjIsYhKC5YlRdYoQJeiVQjpghVWQk2TJBBmlKsKC8KNeRZnhVlXiLkZVkUOlNJnxyschvvXuYYWjkzQWPdPYJuHiTLgWWMiQ4e_Qsp5IwKxmnW0cMV1d6F4LGSjTcz5RcdksuGZdew7BruZPxDatN-dtV6Zepf_PHKv5kaF3_Fytub0bd0E1p8_9LKP8uMJzyV09uxzM_5FLKhkNPkA4k7nrs
CitedBy_id crossref_primary_10_1017_S0263574714000393
crossref_primary_10_1016_j_mechmachtheory_2005_05_007
crossref_primary_10_1016_j_mechmachtheory_2009_04_005
crossref_primary_10_1002_cmm4_1049
crossref_primary_10_1016_j_mechmachtheory_2005_05_006
crossref_primary_10_1108_01439911011063263
crossref_primary_10_1002_asjc_203
crossref_primary_10_1177_0954406220969734
crossref_primary_10_1016_j_euromechsol_2013_05_007
crossref_primary_10_1016_j_robot_2016_09_008
crossref_primary_10_1002_mma_4790
crossref_primary_10_1016_j_endm_2018_05_004
Cites_doi 10.1016/S0094-114X(01)00030-1
10.1115/1.2919211
10.1016/S0736-5845(97)00021-5
10.1016/S0166-3615(01)00087-2
10.1016/S0094-114X(97)00095-5
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
H8D
DOI 10.1002/nme.739
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitleList Civil Engineering Abstracts
Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1641
ExternalDocumentID 10_1002_nme_739
NME739
ark_67375_WNG_8D7W0649_W
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~A~
~IA
~WT
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
H8D
ID FETCH-LOGICAL-c3619-e40a792f8befea07f95cee5e0fdf9243e20551ef17bba47686bd8de08ddbbc6a3
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184196400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 11 11:34:06 EDT 2025
Fri Jul 11 15:53:51 EDT 2025
Sat Nov 29 01:43:46 EST 2025
Tue Nov 18 21:36:27 EST 2025
Sun Sep 21 06:26:15 EDT 2025
Sun Sep 21 06:18:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3619-e40a792f8befea07f95cee5e0fdf9243e20551ef17bba47686bd8de08ddbbc6a3
Notes istex:55956E2B054579AA971D1E670D2058CD76DBBEC8
ark:/67375/WNG-8D7W0649-W
ArticleID:NME739
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082192716
PQPubID 23500
PageCount 27
ParticipantIDs proquest_miscellaneous_28026229
proquest_miscellaneous_1082192716
crossref_primary_10_1002_nme_739
crossref_citationtrail_10_1002_nme_739
wiley_primary_10_1002_nme_739_NME739
istex_primary_ark_67375_WNG_8D7W0649_W
PublicationCentury 2000
PublicationDate 21 July 2003
PublicationDateYYYYMMDD 2003-07-21
PublicationDate_xml – month: 07
  year: 2003
  text: 21 July 2003
  day: 21
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Bahr B, Xiao X, Krishnan K. A real-time scheme of cubic parametric curve interpolations for CNC systems. Computers in Industry 2001; 45:309-317.
Granville WA, Smith PF, Longley WR. Elements of Differential and Integral Calculus. New Revised Edition. Blaisdell Publishing Company: Massachusetts, 1962.
Kim J-H, Ryuh B-S, Pennock GR. Development of a trajectory method for a five-axis NC machine. Mechanism and Machine Theory 2001; 36:983-996.
Wolovich WA. Robotics: Basic Analysis and Design. CBS College Publishing: New York, 1987.
Dasgupta B, Mruthyunjaya TS. Singularity-free path planning for the Stewart platform manipulator. Mechanism and Machine Theory 1998; 33:711-725.
Buchanan JL, Turner PR. Numerical Methods and Analysis. McGraw-Hill: New York, 1992.
Gosselin CM, Hadj-Messaoud A. Automatic planning of smooth trajectories for pick-and-place operations. Transactions of the ASME: Journal of Mechanical Design 1993; 115:450-456.
Burden RL, Faires JD. Numerical Analysis, 6th edn. Brooks/Cole Publishing Company: Pacific Grove, USA, 1997.
Zhang QG, Greenway RB. Development and implementation of a NURBS curve motion interpolator. Robotics and Computer-Integrated Manufacturing 1998; 14:27-36.
1987
1997
1962
1992
2002
2000
2001; 45
1993; 115
2001; 36
1998; 33
1998; 14
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
Wolovich WA (e_1_2_1_5_2) 1987
Burden RL (e_1_2_1_11_2) 1997
e_1_2_1_2_2
e_1_2_1_3_2
Buchanan JL (e_1_2_1_12_2) 1992
e_1_2_1_10_2
Granville WA (e_1_2_1_13_2) 1962
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Gosselin CM, Hadj-Messaoud A. Automatic planning of smooth trajectories for pick-and-place operations. Transactions of the ASME: Journal of Mechanical Design 1993; 115:450-456.
– reference: Bahr B, Xiao X, Krishnan K. A real-time scheme of cubic parametric curve interpolations for CNC systems. Computers in Industry 2001; 45:309-317.
– reference: Wolovich WA. Robotics: Basic Analysis and Design. CBS College Publishing: New York, 1987.
– reference: Buchanan JL, Turner PR. Numerical Methods and Analysis. McGraw-Hill: New York, 1992.
– reference: Dasgupta B, Mruthyunjaya TS. Singularity-free path planning for the Stewart platform manipulator. Mechanism and Machine Theory 1998; 33:711-725.
– reference: Zhang QG, Greenway RB. Development and implementation of a NURBS curve motion interpolator. Robotics and Computer-Integrated Manufacturing 1998; 14:27-36.
– reference: Burden RL, Faires JD. Numerical Analysis, 6th edn. Brooks/Cole Publishing Company: Pacific Grove, USA, 1997.
– reference: Granville WA, Smith PF, Longley WR. Elements of Differential and Integral Calculus. New Revised Edition. Blaisdell Publishing Company: Massachusetts, 1962.
– reference: Kim J-H, Ryuh B-S, Pennock GR. Development of a trajectory method for a five-axis NC machine. Mechanism and Machine Theory 2001; 36:983-996.
– volume: 45
  start-page: 309
  year: 2001
  end-page: 317
  article-title: A real‐time scheme of cubic parametric curve interpolations for CNC systems
  publication-title: Computers in Industry
– year: 1997
– start-page: 126
  year: 2000
  end-page: 134
– start-page: 24
  year: 2000
  end-page: 33
– volume: 33
  start-page: 711
  year: 1998
  end-page: 725
  article-title: Singularity‐free path planning for the Stewart platform manipulator
  publication-title: Mechanism and Machine Theory
– year: 1962
– volume: 115
  start-page: 450
  year: 1993
  end-page: 456
  article-title: Automatic planning of smooth trajectories for pick‐and‐place operations
  publication-title: Transactions of the ASME: Journal of Mechanical Design
– year: 1992
– year: 2002
– year: 1987
– volume: 36
  start-page: 983
  year: 2001
  end-page: 996
  article-title: Development of a trajectory method for a five‐axis NC machine
  publication-title: Mechanism and Machine Theory
– volume: 14
  start-page: 27
  year: 1998
  end-page: 36
  article-title: Development and implementation of a NURBS curve motion interpolator
  publication-title: Robotics and Computer‐Integrated Manufacturing
– volume-title: Numerical Methods and Analysis
  year: 1992
  ident: e_1_2_1_12_2
– volume-title: Numerical Analysis
  year: 1997
  ident: e_1_2_1_11_2
– volume-title: Robotics: Basic Analysis and Design
  year: 1987
  ident: e_1_2_1_5_2
– ident: e_1_2_1_6_2
– ident: e_1_2_1_9_2
  doi: 10.1016/S0094-114X(01)00030-1
– volume-title: Elements of Differential and Integral Calculus
  year: 1962
  ident: e_1_2_1_13_2
– ident: e_1_2_1_2_2
  doi: 10.1115/1.2919211
– ident: e_1_2_1_10_2
– ident: e_1_2_1_7_2
  doi: 10.1016/S0736-5845(97)00021-5
– ident: e_1_2_1_8_2
  doi: 10.1016/S0166-3615(01)00087-2
– ident: e_1_2_1_3_2
  doi: 10.1016/S0094-114X(97)00095-5
– ident: e_1_2_1_4_2
SSID ssj0011503
Score 1.765018
Snippet A new path‐planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar...
A new path‐planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar...
A new path-planning interpolation methodology is presented with which the user may analytically specify the desired path to be followed by any planar...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1615
SubjectTerms Acceleration
Automation
cubic spline interpolation
Interpolation
machine tool orientation
Machine tools
Mathematical analysis
Methodology
non-uniform rational B-splines (NURBS)
Orientation
overlapping cubic arcs
planar industrial robot
Splines
trajectory-planning
Title Trajectory-planning through interpolation by overlapping cubic arcs and cubic splines
URI https://api.istex.fr/ark:/67375/WNG-8D7W0649-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.739
https://www.proquest.com/docview/1082192716
https://www.proquest.com/docview/28026229
Volume 57
WOSCitedRecordID wos000184196400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB21uz2UA7S0FUuBGglxS_E6ydo-ImDpAVYIQZebZSc22gIBbVgENz6Bb-yXME680SKEVKmnyMo4sTwe-409fgOwwWSPOZnGkZZcR0mXZ5E0SRpx66ijSW54Rdf0-4APBuLsTB7NpPqq-SGaDTdvGdV87Q1cm3JrhjT0yv7ksXwPbYajNm1Be_e4f3rQHCEg0omn8R2pFN36xqyvvBWqvliK2r5X71_gzFm0Wi03_YX_aOgnmA8Yk2zXg-IzvLPFIiwEvEmCNZeLMDdDRoilw4bBtfwCQ1zE_lQ7-g9_H59uQmojEtL6kFGdnqsOpCPmgfhI0EvtyR7OSTYxo4ygBZVEF3kolv7qry2_wml_72TnVxSSMERZjM5VZBOquWROGOusphwVi-tqaqnLHfpusWUUQZd1XW6MTtB56Zlc5JaKPDcm6-n4G7SK68IuAdEINbVxiLkQVPAk0QjOYkvxKyIzTooObE71obLAUO4TZVyqmluZKexKhV3ZAdII3tSkHK9FNiuFNu_1-MLHsPFUDQf7SuzyIYIxqYYdWJ9qXKFl-eMSXdjrSempU3E6Z-hQduDHGzJMoA_LGP5uoxoCbzVHDQ738LH8b2Lf4WMVM0h5xLor0LodT-wqfMjubkfleC0M9GcVpgTL
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RTxQxEJ4gZyI-iCLEU5CaEN5Wet3da_togAPj3cYY8Hhr2t2WHOJCbjkjb_4Ef6O_xOlub3OEkJj4tGl2utu0M-037fQbgB0m-8zJNI605DpKejyPpEnSiFtHHU0Kw2u6pq9DnmXi7Ex-DlGV_i5Mww_Rbrh5y6jna2_gfkN6b4E19Lt9z2P5CDoJKhFqd-fgy-B02J4hINSJ5wEeqRS95sqsr7wXqt5Zizq-W3_eAZqLcLVebwar_9PS5_AsoEzyoVGLF7BkyzVYDYiTBHuu1uDpAh0hlkYth2v1Esa4jF3Ue_q3f379vg7JjUhI7EMmTYKuJpSOmFviY0Evtad7OCf5zExygjZUEV0WoVj5y7-2WofTweHJ_nEU0jBEeYzuVWQTqrlkThjrrKYchxZX1tRSVzj03mLLKMIu63rcGJ2g-9I3hSgsFUVhTN7X8QYsl1elfQVEI9jUxiHqQljBk0QjPIstxa-I3DgpurA7HxCVB45ynyrjUjXsykxhVyrsyi6QVvC6oeW4L7Jbj2j7Xk-_-Sg2nqpxdqTEAR8jHJNq3IV38yFXaFv-wESX9mpWefJUnNAZupRd2H5Ahgn0YhnD3-3UOvBQc1Q2OsTH638T24YnxyejoRp-zD69gZU6gpDyiPU2YflmOrNb8Dj_cTOppm-D1v8Fn_AIuw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9BiyZ4YDBAlH8z0rS3MNdJavsRrSsgumiaNro3y05sVBhZ1ayIve0j7DPySXZO3KgTmjSJp8jKObF8Pvt39vl3AFtMDpiTaRxpyXWU9HkeSZOkEbeOOpoUhtd0Td_GPMvEyYk8CFGV_i5Mww_Rbrh5y6jna2_gdla4nRXW0F_2A4_lfegmPoVMB7rDw9HxuD1DQKgTLwM8Uin6zZVZX3knVL2xFnV9t_65ATRX4Wq93ozW_6elT-BxQJnkYzMsnsI9W27AekCcJNhztQGPVugIsbTfcrhWz2CCy9iPek__4u_l1SwkNyIhsQ-ZNgm6mlA6Yi6IjwU91Z7u4TvJF2aaE7ShiuiyCMXKX_611XM4Hu0d7X6OQhqGKI_RvYpsQjWXzAljndWUo2pxZU0tdYVD7y22jCLssq7PjdEJui8DU4jCUlEUxuQDHb-ATnlW2pdANIJNbRyiLoQVPEk0wrPYUvyKyI2TogfbS4WoPHCU-1QZp6phV2YKu1JhV_aAtIKzhpbjX5HtWqPtez3_6aPYeKom2SclhnyCcEyqSQ_eL1Wu0Lb8gYku7dmi8uSpOKEzdCl7sHmLDBPoxTKGv9uqx8BtzVHZ_h4-Xt1NbBPWDoYjNf6SfX0ND-sAQsoj1n8DnfP5wr6FB_nv82k1fxcG_TUgSgg2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory-planning+through+interpolation+by+overlapping+cubic+arcs+and+cubic+splines&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=du+Plessis%2C+L.+J.&rft.au=Snyman%2C+J.+A.&rft.date=2003-07-21&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=57&rft.issue=11&rft.spage=1615&rft.epage=1641&rft_id=info:doi/10.1002%2Fnme.739&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8D7W0649_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon