Block low‐rank single precision coarse grid solvers for extreme scale multigrid methods

Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity, it is essential to employ a hierarchy of grids. The cost to solve the coarsest grid system can often be neglected in sequential computings, but cannot be ignored i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications Jg. 29; H. 1
Hauptverfasser: Buttari, Alfredo, Huber, Markus, Leleux, Philippe, Mary, Theo, Rüde, Ulrich, Wohlmuth, Barbara
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Wiley Subscription Services, Inc 01.01.2022
Wiley
Schlagworte:
ISSN:1070-5325, 1099-1506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity, it is essential to employ a hierarchy of grids. The cost to solve the coarsest grid system can often be neglected in sequential computings, but cannot be ignored in massively parallel executions. In this case, the coarsest grid can be large and its efficient solution becomes a challenging task. We propose solving the coarse grid system using modern, approximate sparse direct methods and investigate the expected gains compared with traditional iterative methods. Since the coarse grid system only requires an approximate solution, we show that we can leverage block low‐rank techniques, combined with the use of single precision arithmetic, to significantly reduce the computational requirements of the direct solver. In the case of extreme scale computing, the coarse grid system is too large for a sequential solution, but too small to permit massively parallel efficiency. We show that the agglomeration of the coarse grid system to a subset of processors is necessary for the sparse direct solver to achieve performance. We demonstrate the efficiency of the proposed method on a Stokes‐type saddle point system solved with a monolithic Uzawa multigrid method. In particular, we show that the use of an approximate sparse direct solver for the coarse grid system can outperform that of a preconditioned minimal residual iterative method. This is demonstrated for the multigrid solution of systems of order up to 1011 degrees of freedom on a petascale supercomputer using 43,200 processes.
AbstractList Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity, it is essential to employ a hierarchy of grids. The cost to solve the coarsest grid system can often be neglected in sequential computings, but cannot be ignored in massively parallel executions. In this case, the coarsest grid can be large and its efficient solution becomes a challenging task. We propose solving the coarse grid system using modern, approximate sparse direct methods and investigate the expected gains compared with traditional iterative methods. Since the coarse grid system only requires an approximate solution, we show that we can leverage block low‐rank techniques, combined with the use of single precision arithmetic, to significantly reduce the computational requirements of the direct solver. In the case of extreme scale computing, the coarse grid system is too large for a sequential solution, but too small to permit massively parallel efficiency. We show that the agglomeration of the coarse grid system to a subset of processors is necessary for the sparse direct solver to achieve performance. We demonstrate the efficiency of the proposed method on a Stokes‐type saddle point system solved with a monolithic Uzawa multigrid method. In particular, we show that the use of an approximate sparse direct solver for the coarse grid system can outperform that of a preconditioned minimal residual iterative method. This is demonstrated for the multigrid solution of systems of order up to 1011 degrees of freedom on a petascale supercomputer using 43,200 processes.
Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity, it is essential to employ a hierarchy of grids. The cost to solve the coarsest grid system can often be neglected in sequential computings, but cannot be ignored in massively parallel executions. In this case, the coarsest grid can be large and its efficient solution becomes a challenging task. We propose solving the coarse grid system using modern, approximate sparse direct methods and investigate the expected gains compared with traditional iterative methods. Since the coarse grid system only requires an approximate solution, we show that we can leverage block low‐rank techniques, combined with the use of single precision arithmetic, to significantly reduce the computational requirements of the direct solver. In the case of extreme scale computing, the coarse grid system is too large for a sequential solution, but too small to permit massively parallel efficiency. We show that the agglomeration of the coarse grid system to a subset of processors is necessary for the sparse direct solver to achieve performance. We demonstrate the efficiency of the proposed method on a Stokes‐type saddle point system solved with a monolithic Uzawa multigrid method. In particular, we show that the use of an approximate sparse direct solver for the coarse grid system can outperform that of a preconditioned minimal residual iterative method. This is demonstrated for the multigrid solution of systems of order up to degrees of freedom on a petascale supercomputer using 43,200 processes.
Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity it is essential to employ a hierarchy of grids. The cost to solve the coarsest grid system can often be neglected in sequential computings, but cannot be ignored in massively parallel executions. In this case, the coarsest grid can be large and its efficient solution becomes a challenging task. We propose solving the coarse grid system using modern, approximate sparse direct methods and investigate the expected gains compared with traditional iterative methods. Since the coarse grid system only requires an approximate solution, we show that we can leverage block low-rank techniques, combined with the use of single precision arithmetic, to significantly reduce the computational requirements of the direct solver. In the case of extreme scale computing, the coarse grid system is too large for a sequential solution, but too small to permit massively parallel efficiency. We show that the agglomeration of the coarse grid system to a subset of processors is necessary for the sparse direct solver to achieve performance. We demonstrate the efficiency of the proposed method on a Stokes-type saddle point system. We employ a monolithic Uzawa multigrid method. In particular, we show that the use of an approximate sparse direct solver for the coarse grid system can outperform that of a preconditioned minimal residual iterative method. This is demonstrated for the multigrid solution of systems of order up to 1+e11 degrees of freedom on a petascale supercomputer using 43 200 processes.
Author Mary, Theo
Wohlmuth, Barbara
Leleux, Philippe
Buttari, Alfredo
Huber, Markus
Rüde, Ulrich
Author_xml – sequence: 1
  givenname: Alfredo
  orcidid: 0000-0003-3207-7021
  surname: Buttari
  fullname: Buttari, Alfredo
  email: alfredo.buttari@irit.fr
  organization: CNRS
– sequence: 2
  givenname: Markus
  surname: Huber
  fullname: Huber, Markus
  email: huber@ma.tum.de
  organization: Technical Universtiy Munich
– sequence: 3
  givenname: Philippe
  orcidid: 0000-0002-3760-4698
  surname: Leleux
  fullname: Leleux, Philippe
  email: leleux@cerfacs.fr
  organization: CERFACS
– sequence: 4
  givenname: Theo
  orcidid: 0000-0001-9949-4634
  surname: Mary
  fullname: Mary, Theo
  email: theo.mary@lip6.fr
  organization: Sorbonne Université
– sequence: 5
  givenname: Ulrich
  surname: Rüde
  fullname: Rüde, Ulrich
  email: Ulrich.ruede@fau.de
  organization: Friedrich‐Alexander Universität
– sequence: 6
  givenname: Barbara
  surname: Wohlmuth
  fullname: Wohlmuth, Barbara
  email: wohlmuth@ma.tum.de
  organization: Technical Universtiy Munich
BackLink https://hal.science/hal-02528532$$DView record in HAL
BookMark eNp10M1OAyEQB3BiNPEz8RFIvOhhKwML2z1W41fS6EUPnghlp4rSpcK26s1H8Bl9EqnVi9HTkMlvyMx_k6y2oUVCdoH1gDF-2HrT4yWrVsgGsLouQDK1unhXrJCCy3WymdIDY0zJWmyQ2yMf7CP14fnj7T2a9pEm1955pNOI1iUXWmqDiQnpXXQNTcHPMSY6DpHiSxdxgjRZk_1k5jv3ZSbY3YcmbZO1sfEJd77rFrk5Pbk-Pi-GV2cXx4NhYYWCqsASrColMpAwhga4EE1VQl9gPqepzEiUTd0fcTHC0tjSjpQqjaoqySVY6KPYIgfLf--N19PoJia-6mCcPh8M9aLHuOT9fPocst1b2mkMTzNMnX4Is9jm9TRXrAYloWJZ9ZbKxpBSxLG2rjNdzqKLxnkNTC-i1jlqvYg6D-z_GvjZ4w9aLOmz8_j6r9OXw8GX_wT4to6-
CitedBy_id crossref_primary_10_1137_21M1402510
crossref_primary_10_1016_j_future_2023_07_024
crossref_primary_10_1109_ACCESS_2023_3288889
crossref_primary_10_1137_24M1653756
crossref_primary_10_1137_23M1578255
Cites_doi 10.1016/0045-7825(86)90025-3
10.1137/18M1182760
10.1137/120903476
10.1016/j.epsl.2012.08.016
10.1016/j.cma.2015.03.014
10.1002/nla.1928
10.1109/IPDPS.2014.119
10.1137/17M1146440
10.1007/978-3-319-32149-3_12
10.1145/2929908.2929913
10.1002/2015GL066237
10.1029/2007GC001743
10.1007/s00211-002-0445-6
10.1007/s00791-014-0231-x
10.1137/16M1077192
10.1093/acprof:oso/9780199678792.001.0001
10.1090/S0025-5718-01-01324-2
10.1016/j.apnum.2017.07.006
10.2172/1090013
10.1137/S0895479899358194
10.1109/SC.2012.91
10.1137/1.9781611970753
10.1007/BF01395886
10.1016/j.jocs.2018.12.006
10.1016/j.jocs.2016.06.006
10.1137/16M1106304
10.1145/2807591.2807675
10.1093/gji/ggs070
10.1007/978-3-540-45209-6_114
10.1145/3242094
10.1002/nla.382
10.4208/nmtma.2015.w10si
10.1007/978-3-642-58312-4_13
10.1007/978-3-662-47324-5
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/nla.2407
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1099-1506
EndPage n/a
ExternalDocumentID oai:HAL:hal-02528532v1
10_1002_nla_2407
NLA2407
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft German Research Foundation through the Priority Programme 1648 ''Software for Exascale Computing'' (SPPEXA)
  funderid: WO671/11‐1
– fundername: Gauss Centre for Supercomputing
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c3617-e41c645e0151f1d1233d74183e100d7ab34d98b23be4ac4cb664a6775251c18e3
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684361800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-5325
IngestDate Sat Oct 25 07:27:11 EDT 2025
Fri Jul 25 12:09:19 EDT 2025
Sat Nov 29 05:31:59 EST 2025
Tue Nov 18 20:42:00 EST 2025
Wed Jan 22 16:28:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sparse direct solver
block low-rank
efficient coarse level solver
hierarchical hybrid grids
geometric multigrid
MUMPS
multifrontal
high-performance computing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3617-e41c645e0151f1d1233d74183e100d7ab34d98b23be4ac4cb664a6775251c18e3
Notes Funding information
Deutsche Forschungsgemeinschaft German Research Foundation through the Priority Programme 1648 ''Software for Exascale Computing'' (SPPEXA), WO671/11‐1; Gauss Centre for Supercomputing
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9949-4634
0000-0002-3760-4698
0000-0003-3207-7021
OpenAccessLink https://hal.science/hal-02528532
PQID 2609165170
PQPubID 2034341
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_02528532v1
proquest_journals_2609165170
crossref_citationtrail_10_1002_nla_2407
crossref_primary_10_1002_nla_2407
wiley_primary_10_1002_nla_2407_NLA2407
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Numerical linear algebra with applications
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 37
2012
2019; 31
2012; 353‐354
2019; 15
1986; 59
2008; 9
2005
2018; 40
2003
1988; 53
2016; 17
2001; 23
2015; 8
2003; 95
2014; 21
2004; 11
2018; 39
2015; 290
2000
2019; 41
2017; 39
2015; 42
2019; 45
2014; 16
2005; 51
2019
2017
2016
2011; 67
2015
2002; 71
2014
2013; 192
2017; 122
Hülsemann F (e_1_2_11_30_1) 2005
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Mary T (e_1_2_11_40_1) 2017
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
Gahvari H (e_1_2_11_15_1) 2014
e_1_2_11_19_1
Higham NJ (e_1_2_11_41_1) 2019
References_xml – volume: 67
  year: 2011
– volume: 11
  start-page: 279
  year: 2004
  end-page: 91
  article-title: Hierarchical hybrid grids: data structures and core algorithms for multigrid
  publication-title: Numer Linear Algebra Appl
– volume: 95
  start-page: 1
  issue: 1
  year: 2003
  end-page: 28
  article-title: Existence of ‐matrix approximants to the inverse FE‐matrix of elliptic operators with ‐coefficients
  publication-title: Numerische Mathematik
– volume: 37
  start-page: A1451
  issue: 3
  year: 2015
  end-page: 74
  article-title: Improving multifrontal methods by means of block low‐rank representations
  publication-title: SIAM J Sci Comput
– volume: 51
  start-page: 165
  year: 2005
  end-page: 208
– volume: 39
  start-page: A1710
  issue: 4
  year: 2017
  end-page: 40
  article-title: On the complexity of the block low‐rank multifrontal factorization
  publication-title: SIAM J Sci Comput
– year: 2005
– volume: 290
  start-page: 496
  year: 2015
  end-page: 523
  article-title: A scalable, matrix‐free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow
  publication-title: Comput Methods Appl Mech Eng
– volume: 71
  start-page: 479
  issue: 238
  year: 2002
  end-page: 505
  article-title: Analysis of iterative methods for saddle point problems: a unified approach
  publication-title: Math Comput
– year: 2003
– volume: 42
  start-page: 9270
  issue: 21
  year: 2015
  end-page: 8
  article-title: Evidence for long‐lived subduction of an ancient tectonic plate beneath the southern Indian Ocean
  publication-title: Geophys Res Lett
– volume: 353‐354
  start-page: 253
  year: 2012
  end-page: 69
  article-title: Reconciling dynamic and seismic models of earth's lower mantle: he dominant role of thermal heterogeneity
  publication-title: Earth Planet Sci Lett
– volume: 39
  start-page: 932
  issue: 2
  year: 2018
  end-page: 60
  article-title: On the analysis of block smoothers for saddle point problems
  publication-title: SIAM J Matrix Anal Appl
– year: 2016
– year: 2014
– volume: 17
  start-page: 509
  year: 2016
  end-page: 21
  article-title: A quantitative performance study for Stokes solvers at the extreme scale
  publication-title: J Comput Sci
– volume: 53
  start-page: 225
  issue: 1
  year: 1988
  end-page: 35
  article-title: Stabilized mixed methods for the Stokes problem
  publication-title: Numer Math
– year: 2012
– volume: 45
  start-page: 2:1
  issue: 1
  year: 2019
  end-page: 2:26
  article-title: Performance and scalability of the block low‐rank multifrontal factorization on multicore architectures
  publication-title: ACM Trans Math Softw
– volume: 8
  start-page: 22
  issue: 1
  year: 2015
  end-page: 46
  article-title: Towards textbook efficiency for parallel multigrid
  publication-title: Numer Math Theory Methods Appl
– volume: 41
  start-page: A1414
  issue: 3
  year: 2019
  end-page: 42
  article-title: Bridging the gap between flat and hierarchical low‐rank matrix formats: the multilevel block low‐rank format
  publication-title: SIAM J Sci Comput
– volume: 122
  start-page: 14
  year: 2017
  end-page: 38
  article-title: A two‐scale approach for efficient on‐the‐fly operator assembly in massively parallel high performance multigrid codes
  publication-title: Appl Numer Math
– volume: 59
  start-page: 85
  issue: 1
  year: 1986
  end-page: 99
  article-title: A new finite element formulation for computational fluid dynamics: V. circumventing the Babuška‐Brezzi condition: a stable Petrov‐Galerkin formulation of the Stokes problem accommodating equal‐order interpolations
  publication-title: Comput Methods Appl Mech Eng
– start-page: 101
  year: 2000
  end-page: 7
– volume: 16
  start-page: 151
  issue: 4
  year: 2014
  end-page: 64
  article-title: A massively parallel geometric multigrid solver on hierarchically distributed grids
  publication-title: Comput Visual Sci
– volume: 31
  start-page: 60
  year: 2019
  end-page: 76
  article-title: Large‐scale simulation of mantle convection based on a new matrix‐free approach
  publication-title: J Comput Sci
– volume: 23
  start-page: 15
  issue: 1
  year: 2001
  end-page: 41
  article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling
  publication-title: SIAM J Matrix Anal Appl
– volume: 9
  start-page: 1525
  issue: 4
  year: 2008
  end-page: 2027
  article-title: Age, spreading rates, and spreading asymmetry of the world's ocean crust
  publication-title: Geochem Geophys Geosyst
– volume: 192
  start-page: 889
  issue: 3
  year: 2013
  end-page: 906
  article-title: Large‐scale adaptive mantle convection simulation
  publication-title: Geophys J Int
– year: 2017
– volume: 40
  start-page: C581
  issue: 4
  year: 2018
  end-page: 604
  article-title: Scaling structured multigrid to 500K+ cores through coarse‐grid redistribution
  publication-title: SIAM J Sci Comput
– year: 2019
– volume: 15
  year: 2019
– year: 2015
– volume: 21
  start-page: 275
  issue: 2
  year: 2014
  end-page: 96
  article-title: Reducing communication in algebraic multigrid using additive variants
  publication-title: Numer Linear Algebra Appl
– ident: e_1_2_11_27_1
  doi: 10.1016/0045-7825(86)90025-3
– ident: e_1_2_11_38_1
  doi: 10.1137/18M1182760
– ident: e_1_2_11_22_1
  doi: 10.1137/120903476
– ident: e_1_2_11_35_1
  doi: 10.1016/j.epsl.2012.08.016
– ident: e_1_2_11_9_1
  doi: 10.1016/j.cma.2015.03.014
– volume-title: Solving block low‐rank linear systems by LU factorization is numerically stable
  year: 2019
  ident: e_1_2_11_41_1
– ident: e_1_2_11_14_1
  doi: 10.1002/nla.1928
– ident: e_1_2_11_13_1
  doi: 10.1109/IPDPS.2014.119
– ident: e_1_2_11_18_1
  doi: 10.1137/17M1146440
– ident: e_1_2_11_10_1
– ident: e_1_2_11_11_1
  doi: 10.1007/978-3-319-32149-3_12
– start-page: 165
  volume-title: Numerical solution of partial differential equations on parallel computers
  year: 2005
  ident: e_1_2_11_30_1
– ident: e_1_2_11_16_1
  doi: 10.1145/2929908.2929913
– ident: e_1_2_11_34_1
  doi: 10.1002/2015GL066237
– ident: e_1_2_11_24_1
  doi: 10.1029/2007GC001743
– ident: e_1_2_11_36_1
  doi: 10.1007/s00211-002-0445-6
– ident: e_1_2_11_19_1
  doi: 10.1007/s00791-014-0231-x
– ident: e_1_2_11_43_1
– ident: e_1_2_11_37_1
  doi: 10.1137/16M1077192
– ident: e_1_2_11_25_1
  doi: 10.1093/acprof:oso/9780199678792.001.0001
– volume-title: Improving the performance and scalability of algebraic multigrid solvers through applied performance modeling
  year: 2014
  ident: e_1_2_11_15_1
– ident: e_1_2_11_29_1
  doi: 10.1090/S0025-5718-01-01324-2
– ident: e_1_2_11_33_1
  doi: 10.1016/j.apnum.2017.07.006
– ident: e_1_2_11_42_1
– ident: e_1_2_11_3_1
  doi: 10.2172/1090013
– ident: e_1_2_11_20_1
  doi: 10.1137/S0895479899358194
– ident: e_1_2_11_12_1
  doi: 10.1109/SC.2012.91
– ident: e_1_2_11_2_1
  doi: 10.1137/1.9781611970753
– ident: e_1_2_11_26_1
  doi: 10.1007/BF01395886
– volume-title: Block low‐rank multifrontal solvers: complexity, performance, and scalability
  year: 2017
  ident: e_1_2_11_40_1
– ident: e_1_2_11_23_1
  doi: 10.1016/j.jocs.2018.12.006
– ident: e_1_2_11_6_1
  doi: 10.1016/j.jocs.2016.06.006
– ident: e_1_2_11_7_1
  doi: 10.1137/16M1106304
– ident: e_1_2_11_8_1
  doi: 10.1145/2807591.2807675
– ident: e_1_2_11_28_1
  doi: 10.1093/gji/ggs070
– ident: e_1_2_11_4_1
  doi: 10.1007/978-3-540-45209-6_114
– ident: e_1_2_11_21_1
  doi: 10.1145/3242094
– ident: e_1_2_11_5_1
  doi: 10.1002/nla.382
– ident: e_1_2_11_17_1
– ident: e_1_2_11_32_1
  doi: 10.4208/nmtma.2015.w10si
– ident: e_1_2_11_31_1
  doi: 10.1007/978-3-642-58312-4_13
– ident: e_1_2_11_39_1
  doi: 10.1007/978-3-662-47324-5
SSID ssj0006593
Score 2.335002
Snippet Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity, it is essential to...
Extreme scale simulation requires fast and scalable algorithms, such as multigrid methods. To achieve asymptotically optimal complexity it is essential to...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analysis of PDEs
Approximation
Asymptotic methods
block low‐rank
Computer Science
Distributed, Parallel, and Cluster Computing
efficient coarse level solver
hierarchical hybrid grids
high‐performance computing
Iterative methods
Mathematics
Multigrid methods
MUMPS
Saddle points
Solvers
sparse direct solver
Title Block low‐rank single precision coarse grid solvers for extreme scale multigrid methods
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2407
https://www.proquest.com/docview/2609165170
https://hal.science/hal-02528532
Volume 29
WOSCitedRecordID wos000684361800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006593
  issn: 1070-5325
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB5qu4fk0L8kxK1bNqW0JyXaP0k-OmmND44ppQb3JFa768TE2MZynGsfoc_YJ-mMJAsXWij0JJBGSLszu_PNMPsNwLuQZ1qqqQoyZ22gfNgNEh3zwHHvp54nxlhTNJuIR6NkMul-rqoq6SxMyQ9RJ9xoZRT7NS1wk-UXe6Shc3NO4UgDWgLNVjeh9fFLfzys9-GopNzF-CYMtBR6Rz0biovdu785o8YtlULu4cx9tFq4m_7T__nRZ_CkApmsV1rFc3jkFy_g8LpmaM2P4NslerE7Nl8-_Pz-gxq3M0oazD1brauuO8wuMej17GY9cwwtlOo3GEJchts5JRVZjur1rKhILGTKZtT5MYz7n75eDYKqzUJgJeKXwCtuI6U9AgM-5Q5dmXTEaSM9DsDFJpPKdZNMyMwrY5XNokiZKI41QiPLEy9PoLlYLvwpMIPojxPh4TRyqquk0aGV1iVOcaMyKdrwYTffqa04yKkVxjwt2ZNFwXFNk9WGs1pyVfJu_EHmLaqsfkxE2YPeMKV7iOQEAhGx5W3o7DSaVsszTzGIQ1iseRy24X2hu79-JB0Ne3R9-a-Cr-BA0BGJIk3TgeZmfe9fw2O73czy9ZvKSH8BHAPqtg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0FNSH1q_itVZXEX2KZrObj6NP19bjSuMhoqBPYbO7V8Xj7rioffVP8G_sX9KZfHGCguBTIJmQ7M7szm-G2d8A7Lk89YXsSyc1WjvSui0n8kPuGG5t3_JIKa3yZhNhrxddXrZOZ-BbdRam4IeoE260MvL9mhY4JaSPplhDB-qQ4pFZmJNoRWjecz_POhdxvREHBecuBjiu4wvPr7hnXe-oeveZN5q9plrIKaA5DVdzf9P5-K4_XYYPJcxk7cIuVmDGDldh6aTmaM3W4Oo7-rFbNhj9_ff4RK3bGaUNBpaNJ2XfHaZHGPZa9mdyYxjaKFVwMAS5DDd0SiuyDBVsWV6TmMsU7aizdbjoHJ__6DplowVHC0QwjpVcB9K3CA14nxt0ZsIQq42wOAATqlRI04pST6RWKi11GgRSBWHoIzjSPLLiEzSGo6HdAKYQ_3GiPOwHRrakUL6rhTaRkVzJVHhNOKgmPNElCzk1wxgkBX-yl7Nc02Q1YaeWHBfMGy_I7KLO6sdEld1txwndQyznIRTxHngTNiuVJuUCzRIM4xAY-zx0m7CfK-_VjyS9uE3Xz28V3IaF7vlJnMS_er-_wKJHBybypM0mNO4m9_YrzOuHu5tsslVa7H8rGO6m
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD7oKIs-eNldcbxGWXafujZNehl8Gi-D4jiIrOA-lTRJVRxmhqmXV3-Cv9Ff4jm9MQsrLOxToT2lTU6S851D8n0A31ye-EKm0kmM1o60bsuJ_JA7hlubWh4ppVUuNhH2etH1detiCvarszAFP0RdcKOZka_XNMHtyKR7E6yhffWT8pFpmJGkIdOAmaPLzlW3XoiDgnMXExzX8YXnV9yzrrdXvftHNJq-pb2QE0BzEq7m8aaz-F9_ugQLJcxk7WJcLMOUHXyG-fOaozX7Ar8PMI7ds_7w-e3llaTbGZUN-paNxqXuDtNDTHstuxnfGYZjlHZwMAS5DBd0KiuyDB1sWb4nMbcp5Kizr3DVOf51eOKUQguOFohgHCu5DqRvERrwlBsMZsIQq42w2AATqkRI04oSTyRWKi11EgRSBWHoIzjSPLJiBRqD4cCuAlOI_zhRHqaBkS0plO9qoU1kJFcyEV4TflQdHuuShZzEMPpxwZ_s5SzX1FlN2KktRwXzxl9sdtFn9WOiyj5pd2O6h1jOQyjiPfEmbFQujcsJmsWYxiEw9nnoNuF77rwPPxL3um26rv2r4TZ8ujjqxN3T3tk6zHl0XiKv2WxA42H8aDdhVj893GXjrXLAvgPQHu4h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+Low-rank+Single+Precision+Coarse+Grid+Solvers+for+Extreme+Scale+Multigrid+Methods&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Buttari%2C+Alfredo&rft.au=Huber%2C+Markus&rft.au=Leleux%2C+Philippe&rft.au=Mary%2C+Th%C3%A9o&rft.date=2022-01-01&rft.pub=Wiley&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fnla.2407&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02528532v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon