A fast method for binary programming using first-order derivatives, with application to topology optimization with buckling constraints

SUMMARY We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analyt...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 92; no. 12; pp. 1026 - 1043
Main Authors: Browne, P. A., Budd, C., Gould, N. I. M., Kim, H. A., Scott, J. A.
Format: Journal Article
Language:English
Published: Chichester Blackwell Publishing Ltd 21.12.2012
Wiley
Wiley Subscription Services, Inc
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SUMMARY We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analytic expression for the derivative of the stress stiffness matrix with respect to the density of an element in the finite‐element setting. Results are presented for a number of two‐dimensional test problems.Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList SUMMARY We present a method for finding solutions of large-scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analytic expression for the derivative of the stress stiffness matrix with respect to the density of an element in the finite-element setting. Results are presented for a number of two-dimensional test problems.Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analytic expression for the derivative of the stress stiffness matrix with respect to the density of an element in the finite‐element setting. Results are presented for a number of two‐dimensional test problems.Copyright © 2012 John Wiley & Sons, Ltd.
SUMMARY We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analytic expression for the derivative of the stress stiffness matrix with respect to the density of an element in the finite‐element setting. Results are presented for a number of two‐dimensional test problems.Copyright © 2012 John Wiley & Sons, Ltd.
Author Budd, C.
Kim, H. A.
Browne, P. A.
Gould, N. I. M.
Scott, J. A.
Author_xml – sequence: 1
  givenname: P. A.
  surname: Browne
  fullname: Browne, P. A.
  email: P. A. Browne, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, U.K., P.A.Browne@bath.ac.uk
  organization: Department of Mathematical Sciences, University of Bath, BA2 7AY, Bath, UK
– sequence: 2
  givenname: C.
  surname: Budd
  fullname: Budd, C.
  organization: Department of Mathematical Sciences, University of Bath, BA2 7AY, Bath, UK
– sequence: 3
  givenname: N. I. M.
  surname: Gould
  fullname: Gould, N. I. M.
  organization: Numerical Analysis Group, STFC Rutherford Appleton Laboratory, OX11 0QX, Oxfordshire, UK
– sequence: 4
  givenname: H. A.
  surname: Kim
  fullname: Kim, H. A.
  organization: Department of Mechanical Engineering, University of Bath, BA2 7AY, Bath, UK
– sequence: 5
  givenname: J. A.
  surname: Scott
  fullname: Scott, J. A.
  organization: Numerical Analysis Group, STFC Rutherford Appleton Laboratory, OX11 0QX, Oxfordshire, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26636567$$DView record in Pascal Francis
BookMark eNp1kdFKHDEUhkOx0NUKfYRAKfSisyaTncnkUkStoBaqZS_DmUyyRmeSaZLVbl_A1zbj2kJLC0kO5P_OH07-XbTjvNMIvaNkTgkpD9yg5wtW81doRongBSkJ30GzLImiEg19g3ZjvCWE0oqwGXo8xAZiwoNON77DxgfcWgdhg8fgVwGGwboVXsfpNDbEVPjQ6YDztveQ7L2On_CDTTcYxrG3Kl95h5PPa_S9X22wH5Md7M-t8Ey2a3XXT4bKu5gCWJfiW_TaQB_1_kvdQ99Ojq-PPhfnX07Pjg7PC8VqyouSc1gANG1VCSMUaGYWhghKlGKmrQmj1HQtEUBMB7ThDUDbMMGh7DToTrE99H7rm8f7vtYxyVu_Di4_KSkrqWiqelFl6sMLBVFBbwI4ZaMcgx3y18iyrlld1Txz8y2ngo8xaCOVTc-TTmP1khI5hSJzKHIKJTd8_Kvhl-c_0GKLPtheb_7LycuL4z95G5P-8ZuHcCezyiu5vDyVy-WJ-HpVXcgr9gQHgLCh
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_compstruct_2016_09_055
crossref_primary_10_1016_j_compscitech_2015_08_003
crossref_primary_10_1016_j_amc_2021_126032
crossref_primary_10_1080_0305215X_2021_1982930
crossref_primary_10_1177_1687814017715422
crossref_primary_10_1007_s00158_019_02396_3
crossref_primary_10_1007_s00366_023_01829_4
crossref_primary_10_1016_j_compstruc_2021_106685
crossref_primary_10_1016_j_istruc_2024_107533
crossref_primary_10_1007_s00158_016_1511_5
crossref_primary_10_1007_s10338_019_00088_5
crossref_primary_10_1016_j_istruc_2023_105220
crossref_primary_10_1007_s00158_015_1286_0
crossref_primary_10_1007_s00158_021_03152_2
crossref_primary_10_1007_s10409_015_0531_5
crossref_primary_10_1007_s00158_016_1544_9
Cites_doi 10.1007/s00158‐006‐0074‐2
10.1007/s00158-009-0476-z
10.1002/1097-0207(20000830)48:12<1761::AID-NME963>3.0.CO;2-R
10.1080/10556780410001682844
10.1002/nme.700
10.1002/9780470689486
10.1007/s00158‐002‐0177‐3
10.1007/BF01743302
10.1007/s00158‐011‐0703‐2
10.1007/s10589‐007‐9138‐5
10.1002/nme.1620240207
10.1007/s10589‐007‐9152‐7
10.1145/512274.512284
10.1061/JSDEAG.0001952
10.1007/BF01743339
10.1007/s00158-010-0574-y
10.1002/nme.449
10.1137/090757216
10.1115/1.2912596
10.1007/s001580050130
10.1115/1.2912568
10.1080/03052158808940951
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.4367
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 1043
ExternalDocumentID 2932489051
26636567
10_1002_nme_4367
NME4367
ark_67375_WNG_WWF9RS5M_S
Genre article
GrantInformation_xml – fundername: EPSRC
  funderid: EP/E053351/1
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3617-277a4aa8b559f9cae3f4f0910cc3fb60311fdb09a0fda1878aab8397a2deaedc3
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311397600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:33:47 EDT 2025
Mon Jul 21 09:16:23 EDT 2025
Sat Nov 29 06:43:46 EST 2025
Tue Nov 18 20:40:37 EST 2025
Sun Sep 21 06:12:27 EDT 2025
Sun Sep 21 06:15:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Geometrical shape
High performance
Stiffness matrix
Constraint
structural optimization
Minimization
Topology
Distributed computing
Modeling
Weight
Constrained optimization
Finite element method
Zero one programming
binary programming
Eigenvalue problem
topology optimization
Buckling
eigenvalue
Structural analysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3617-277a4aa8b559f9cae3f4f0910cc3fb60311fdb09a0fda1878aab8397a2deaedc3
Notes ark:/67375/WNG-WWF9RS5M-S
ArticleID:NME4367
EPSRC - No. EP/E053351/1
istex:0A5059919A6DABA57C8B7295DBA5D5D13219E799
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 1321985645
PQPubID 996376
PageCount 18
ParticipantIDs proquest_journals_1321985645
pascalfrancis_primary_26636567
crossref_citationtrail_10_1002_nme_4367
crossref_primary_10_1002_nme_4367
wiley_primary_10_1002_nme_4367_NME4367
istex_primary_ark_67375_WNG_WWF9RS5M_S
PublicationCentury 2000
PublicationDate 21 December 2012
PublicationDateYYYYMMDD 2012-12-21
PublicationDate_xml – month: 12
  year: 2012
  text: 21 December 2012
  day: 21
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Stolpe M, Svanberg K.Modelling topology optimization problems as linear mixed 0 − − 1 programs. International Journal for Numerical Methods in Engineering June 2003; 57(5):723-739. DOI: 10.1002/nme.700. Available from: http://doi.wiley.com/10.1002/nme.700.
Cook RD, Malkus DS, Plesha M.Concepts and Applications of Finite Element Analysis. John Wiley and Sons: London, UK, 1989.
Salajegheh E, Vanderplaats G.Optimum design of trusses with discrete sizing and shape variables. Structural Optimization 1993; 6:79-85.
Williams J.Algorithm 232: heapsort. Communications of the ACM 1964; 7(6):347-348.
Beckers M.Dual methods for discrete structural optimization problems. International Journal for Numerical Methods in Engineering 2000; 48(12):1761-1784.
Sandgren E.Nonlinear integer and discrete programming for topological decision making in engineering design. Journal of Mechanical Design 1990; 112(1):118-122. DOI: 10.1115/1.2912568. Available from: http://link.aip.org/link/?JMD/112/118/1
Hunt G, Thompson J.A General Theory of Elastic Stability. Wiley-Interscience: London, UK, 1973.
Kočvara M.On the modelling and solving of the truss design problem with global stability constraints. Structural and Multidisciplinary Optimization April 2002; 23(3):189-203. DOI: 10.1007/s00158-002-0177-3. Available from: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00158-002-0177-3
Rozvany GIN.Authors reply to a discussion by Gengdong Cheng and Xiaofeng Liu of the review article On symmetry and non-uniqueness in exact topology optimizationİ by George I. N. Rozvany (2011, Struct Multidisc Optim 43: 297317). Structural and Multidisciplinary Optimization September 2011; 44(5):719-721. DOI: 10.1007/s00158-011-0703-2. Available from: http://www.springerlink.com/index/10.1007/s00158-011-0703-2
Kočvara M, Stingl M.Solving nonconvex SDP problems of structural optimization with stability control. Optimization Methods and Software October 2004; 19(5):595-609. DOI: 10.1080/10556780410001682844. Available from: http://www.informaworld.com/openurl?genre=article&doi=10.1080/10556780410001682844&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
Wolsey L.Integer programming, Wiley-Interscience series in discrete mathematics and optimization, Wiley: New York, USA, 1998. Available from: http://books.google.com/books?id=x7RvQgAACAAJ
Pedersen N.Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization 2000; 20(1):2-11.
Neves MM, Sigmund O, Bendsøe MP.Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. International Journal for Numerical Methods in Engineering June 2002; 54(6):809-834. DOI: 10.1002/nme.449. Available from: http://doi.wiley.com/10.1002/nme.449
Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer: Berlin, Germany, 2003.
Achtziger W, Stolpe M.Truss topology optimization with discrete design variables-guaranteed global optimality and benchmark examples. Structural and Multidisciplinary Optimization December 2007; 34(1):1-20. DOI: 10.1007/s00158-006-0074-2. Available from: http://www.springerlink.com/index/10.1007/s00158-006-0074-2.
Achtziger W, Stolpe M.Global optimization of truss topology with discrete bar areas-Part II: implementation and numerical results. Computational Optimization and Applications 2009; 44(2):315-341. DOI: 10.1007/s10589-007-9152-7.
Huang X, Xie YM.Evolutionary Topology Optimization of Continuum Structures. John Wiley & Sons Ltd: Chichester, UK, 2010.
Svanberg K.The method of moving asymptotes-a new method for structural optimization. International Journal For Numerical Methods in Engineering 1987; 24:359-373.
Stolpe M, Bendsøe MP.Global optima for the Zhou-Rozvany problem. Structural and Multidisciplinary Optimization 2010; 43(2):151-164.
Tenek LH, Hagiwara I.Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME International Journal Series C 1994; 37(4):667-677.
Stolpe M.On some fundamental properties of structural topology optimization problems. Structural and Multidisciplinary Optimization 2010; 41(5):661-670.
Hogg J, Reid J, Scott J.Design of a multicore sparse cholesky factorization using DAGs. SISC 2010; 32:3627-3649.
Sandgren E.Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design 1990; 112(2):223-229. DOI: 10.1115/1.2912596. Available from: http://link.aip.org/link/?JMD/112/223/1.
Farkas J, Szabo L.Optimum design of beams and frames of welded I-sections by means of backtrack programming. Acta Technica Academiae Scientiarum Hungaricae 1980; 91(1):121-135.
Arora J, Huang M.Methods for optimization of nonlinear problems with discrete variables: a review. Structural Optimization 1994; 8:69-85.
Toakley A,Optimum design using available sections. Journal of the Structural Division: proceedings of the American Society of Civil Engineers 1968; 94:1219-1241.
Achtziger W, Stolpe M.Global optimization of truss topology with discrete bar areas-Part I: theory of relaxed problems. Computational Optimization and Applications November 2008; 40(2):247-280. DOI: 10.1007/s10589-007-9138-5. Available from: http://www.springerlink.com/index/10.1007/s10589-007-9138-5.
John K, Ramakrishna C, Sharma K.Optimum design of trusses from available sections-use of sequential linear programming with branch and bound algorithm. Engineering Optimization 1988; 13(2):119-145.
2009; 44
2010; 32
2000; 48
2011
2010
1964; 7
2002; 54
2000; 20
1998
2003; 57
2009
1988; 13
1973
1980; 91
2003
2007; 34
2010; 41
1993; 6
1987; 24
1994; 8
2010; 43
2004; 19
2002; 23
2011; 44
1994; 37
1968; 94
1990; 112
2008; 40
1989
e_1_2_7_5_1
e_1_2_7_3_1
Tenek LH (e_1_2_7_21_1) 1994; 37
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Toakley A (e_1_2_7_4_1) 1968; 94
Hunt G (e_1_2_7_24_1) 1973
Cook RD (e_1_2_7_25_1) 1989
Farkas J (e_1_2_7_6_1) 1980; 91
e_1_2_7_31_1
e_1_2_7_32_1
Bendsøe MP (e_1_2_7_17_1) 2003
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_20_1
Wolsey L (e_1_2_7_2_1) 1998
Williams J (e_1_2_7_30_1) 1964; 7
References_xml – reference: Beckers M.Dual methods for discrete structural optimization problems. International Journal for Numerical Methods in Engineering 2000; 48(12):1761-1784.
– reference: Neves MM, Sigmund O, Bendsøe MP.Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. International Journal for Numerical Methods in Engineering June 2002; 54(6):809-834. DOI: 10.1002/nme.449. Available from: http://doi.wiley.com/10.1002/nme.449
– reference: Williams J.Algorithm 232: heapsort. Communications of the ACM 1964; 7(6):347-348.
– reference: Arora J, Huang M.Methods for optimization of nonlinear problems with discrete variables: a review. Structural Optimization 1994; 8:69-85.
– reference: Kočvara M.On the modelling and solving of the truss design problem with global stability constraints. Structural and Multidisciplinary Optimization April 2002; 23(3):189-203. DOI: 10.1007/s00158-002-0177-3. Available from: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00158-002-0177-3
– reference: Wolsey L.Integer programming, Wiley-Interscience series in discrete mathematics and optimization, Wiley: New York, USA, 1998. Available from: http://books.google.com/books?id=x7RvQgAACAAJ
– reference: Achtziger W, Stolpe M.Global optimization of truss topology with discrete bar areas-Part I: theory of relaxed problems. Computational Optimization and Applications November 2008; 40(2):247-280. DOI: 10.1007/s10589-007-9138-5. Available from: http://www.springerlink.com/index/10.1007/s10589-007-9138-5.
– reference: Cook RD, Malkus DS, Plesha M.Concepts and Applications of Finite Element Analysis. John Wiley and Sons: London, UK, 1989.
– reference: Achtziger W, Stolpe M.Global optimization of truss topology with discrete bar areas-Part II: implementation and numerical results. Computational Optimization and Applications 2009; 44(2):315-341. DOI: 10.1007/s10589-007-9152-7.
– reference: Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer: Berlin, Germany, 2003.
– reference: Tenek LH, Hagiwara I.Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME International Journal Series C 1994; 37(4):667-677.
– reference: Sandgren E.Nonlinear integer and discrete programming for topological decision making in engineering design. Journal of Mechanical Design 1990; 112(1):118-122. DOI: 10.1115/1.2912568. Available from: http://link.aip.org/link/?JMD/112/118/1
– reference: Sandgren E.Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design 1990; 112(2):223-229. DOI: 10.1115/1.2912596. Available from: http://link.aip.org/link/?JMD/112/223/1.
– reference: Hogg J, Reid J, Scott J.Design of a multicore sparse cholesky factorization using DAGs. SISC 2010; 32:3627-3649.
– reference: Toakley A,Optimum design using available sections. Journal of the Structural Division: proceedings of the American Society of Civil Engineers 1968; 94:1219-1241.
– reference: Farkas J, Szabo L.Optimum design of beams and frames of welded I-sections by means of backtrack programming. Acta Technica Academiae Scientiarum Hungaricae 1980; 91(1):121-135.
– reference: Stolpe M, Svanberg K.Modelling topology optimization problems as linear mixed 0 − − 1 programs. International Journal for Numerical Methods in Engineering June 2003; 57(5):723-739. DOI: 10.1002/nme.700. Available from: http://doi.wiley.com/10.1002/nme.700.
– reference: Achtziger W, Stolpe M.Truss topology optimization with discrete design variables-guaranteed global optimality and benchmark examples. Structural and Multidisciplinary Optimization December 2007; 34(1):1-20. DOI: 10.1007/s00158-006-0074-2. Available from: http://www.springerlink.com/index/10.1007/s00158-006-0074-2.
– reference: Huang X, Xie YM.Evolutionary Topology Optimization of Continuum Structures. John Wiley & Sons Ltd: Chichester, UK, 2010.
– reference: Svanberg K.The method of moving asymptotes-a new method for structural optimization. International Journal For Numerical Methods in Engineering 1987; 24:359-373.
– reference: Kočvara M, Stingl M.Solving nonconvex SDP problems of structural optimization with stability control. Optimization Methods and Software October 2004; 19(5):595-609. DOI: 10.1080/10556780410001682844. Available from: http://www.informaworld.com/openurl?genre=article&doi=10.1080/10556780410001682844&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
– reference: Salajegheh E, Vanderplaats G.Optimum design of trusses with discrete sizing and shape variables. Structural Optimization 1993; 6:79-85.
– reference: Pedersen N.Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization 2000; 20(1):2-11.
– reference: John K, Ramakrishna C, Sharma K.Optimum design of trusses from available sections-use of sequential linear programming with branch and bound algorithm. Engineering Optimization 1988; 13(2):119-145.
– reference: Rozvany GIN.Authors reply to a discussion by Gengdong Cheng and Xiaofeng Liu of the review article On symmetry and non-uniqueness in exact topology optimizationİ by George I. N. Rozvany (2011, Struct Multidisc Optim 43: 297317). Structural and Multidisciplinary Optimization September 2011; 44(5):719-721. DOI: 10.1007/s00158-011-0703-2. Available from: http://www.springerlink.com/index/10.1007/s00158-011-0703-2
– reference: Stolpe M.On some fundamental properties of structural topology optimization problems. Structural and Multidisciplinary Optimization 2010; 41(5):661-670.
– reference: Hunt G, Thompson J.A General Theory of Elastic Stability. Wiley-Interscience: London, UK, 1973.
– reference: Stolpe M, Bendsøe MP.Global optima for the Zhou-Rozvany problem. Structural and Multidisciplinary Optimization 2010; 43(2):151-164.
– volume: 20
  start-page: 2
  issue: 1
  year: 2000
  end-page: 11
  article-title: Maximization of eigenvalues using topology optimization
  publication-title: Structural and Multidisciplinary Optimization
– year: 2011
– volume: 13
  start-page: 119
  issue: 2
  year: 1988
  end-page: 145
  article-title: Optimum design of trusses from available sections—use of sequential linear programming with branch and bound algorithm
  publication-title: Engineering Optimization
– volume: 6
  start-page: 79
  year: 1993
  end-page: 85
  article-title: Optimum design of trusses with discrete sizing and shape variables
  publication-title: Structural Optimization
– volume: 44
  start-page: 315
  issue: 2
  year: 2009
  end-page: 341
  article-title: Global optimization of truss topology with discrete bar areas—Part II: implementation and numerical results
  publication-title: Computational Optimization and Applications
– volume: 91
  start-page: 121
  issue: 1
  year: 1980
  end-page: 135
  article-title: Optimum design of beams and frames of welded I‐sections by means of backtrack programming
  publication-title: Acta Technica Academiae Scientiarum Hungaricae
– volume: 8
  start-page: 69
  year: 1994
  end-page: 85
  article-title: Methods for optimization of nonlinear problems with discrete variables: a review
  publication-title: Structural Optimization
– volume: 23
  start-page: 189
  issue: 3
  year: 2002
  end-page: 203
  article-title: On the modelling and solving of the truss design problem with global stability constraints
  publication-title: Structural and Multidisciplinary Optimization
– year: 1989
– year: 2003
– year: 1973
– volume: 41
  start-page: 661
  issue: 5
  year: 2010
  end-page: 670
  article-title: On some fundamental properties of structural topology optimization problems
  publication-title: Structural and Multidisciplinary Optimization
– volume: 32
  start-page: 3627
  year: 2010
  end-page: 3649
  article-title: Design of a multicore sparse cholesky factorization using DAGs
  publication-title: SISC
– volume: 112
  start-page: 118
  issue: 1
  year: 1990
  end-page: 122
  article-title: Nonlinear integer and discrete programming for topological decision making in engineering design
  publication-title: Journal of Mechanical Design
– volume: 34
  start-page: 1
  issue: 1
  year: 2007
  end-page: 20
  article-title: Truss topology optimization with discrete design variables—guaranteed global optimality and benchmark examples
  publication-title: Structural and Multidisciplinary Optimization
– year: 1998
– year: 2010
– volume: 44
  start-page: 719
  issue: 5
  year: 2011
  end-page: 721
  article-title: Authors reply to a discussion by Gengdong Cheng and Xiaofeng Liu of the review article On symmetry and non‐uniqueness in exact topology optimizationİ by George I. N. Rozvany (2011, Struct Multidisc Optim 43: 297317)
  publication-title: Structural and Multidisciplinary Optimization
– volume: 43
  start-page: 151
  issue: 2
  year: 2010
  end-page: 164
  article-title: Global optima for the Zhou–Rozvany problem
  publication-title: Structural and Multidisciplinary Optimization
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: International Journal For Numerical Methods in Engineering
– volume: 19
  start-page: 595
  issue: 5
  year: 2004
  end-page: 609
  article-title: Solving nonconvex SDP problems of structural optimization with stability control
  publication-title: Optimization Methods and Software
– volume: 54
  start-page: 809
  issue: 6
  year: 2002
  end-page: 834
  article-title: Topology optimization of periodic microstructures with a penalization of highly localized buckling modes
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 57
  start-page: 723
  issue: 5
  year: 2003
  end-page: 739
  article-title: Modelling topology optimization problems as linear mixed 0 − − 1 programs
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 7
  start-page: 347
  issue: 6
  year: 1964
  end-page: 348
  article-title: Algorithm 232: heapsort
  publication-title: Communications of the ACM
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  end-page: 229
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: Journal of Mechanical Design
– start-page: 1
  year: 2009
  end-page: 10
– volume: 37
  start-page: 667
  issue: 4
  year: 1994
  end-page: 677
  article-title: Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming
  publication-title: JSME International Journal Series C
– volume: 94
  start-page: 1219
  year: 1968
  end-page: 1241
  article-title: Optimum design using available sections
  publication-title: Journal of the Structural Division: proceedings of the American Society of Civil Engineers
– volume: 40
  start-page: 247
  issue: 2
  year: 2008
  end-page: 280
  article-title: Global optimization of truss topology with discrete bar areas—Part I: theory of relaxed problems
  publication-title: Computational Optimization and Applications
– volume: 48
  start-page: 1761
  issue: 12
  year: 2000
  end-page: 1784
  article-title: Dual methods for discrete structural optimization problems
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_7_13_1
  doi: 10.1007/s00158‐006‐0074‐2
– ident: e_1_2_7_31_1
  doi: 10.1007/s00158-009-0476-z
– ident: e_1_2_7_20_1
– volume-title: Integer programming
  year: 1998
  ident: e_1_2_7_2_1
– ident: e_1_2_7_11_1
  doi: 10.1002/1097-0207(20000830)48:12<1761::AID-NME963>3.0.CO;2-R
– ident: e_1_2_7_19_1
  doi: 10.1080/10556780410001682844
– volume-title: Concepts and Applications of Finite Element Analysis
  year: 1989
  ident: e_1_2_7_25_1
– volume-title: Topology Optimization: Theory, Methods and Applications
  year: 2003
  ident: e_1_2_7_17_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_12_1
  doi: 10.1002/nme.700
– ident: e_1_2_7_29_1
  doi: 10.1002/9780470689486
– ident: e_1_2_7_18_1
  doi: 10.1007/s00158‐002‐0177‐3
– ident: e_1_2_7_3_1
  doi: 10.1007/BF01743302
– volume-title: A General Theory of Elastic Stability
  year: 1973
  ident: e_1_2_7_24_1
– ident: e_1_2_7_32_1
  doi: 10.1007/s00158‐011‐0703‐2
– ident: e_1_2_7_14_1
  doi: 10.1007/s10589‐007‐9138‐5
– ident: e_1_2_7_16_1
  doi: 10.1002/nme.1620240207
– volume: 37
  start-page: 667
  issue: 4
  year: 1994
  ident: e_1_2_7_21_1
  article-title: Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming
  publication-title: JSME International Journal Series C
– ident: e_1_2_7_15_1
  doi: 10.1007/s10589‐007‐9152‐7
– volume: 7
  start-page: 347
  issue: 6
  year: 1964
  ident: e_1_2_7_30_1
  article-title: Algorithm 232: heapsort
  publication-title: Communications of the ACM
  doi: 10.1145/512274.512284
– volume: 94
  start-page: 1219
  year: 1968
  ident: e_1_2_7_4_1
  article-title: Optimum design using available sections
  publication-title: Journal of the Structural Division: proceedings of the American Society of Civil Engineers
  doi: 10.1061/JSDEAG.0001952
– ident: e_1_2_7_10_1
  doi: 10.1007/BF01743339
– ident: e_1_2_7_5_1
  doi: 10.1007/s00158-010-0574-y
– ident: e_1_2_7_23_1
  doi: 10.1002/nme.449
– ident: e_1_2_7_27_1
  doi: 10.1137/090757216
– ident: e_1_2_7_9_1
  doi: 10.1115/1.2912596
– ident: e_1_2_7_22_1
  doi: 10.1007/s001580050130
– volume: 91
  start-page: 121
  issue: 1
  year: 1980
  ident: e_1_2_7_6_1
  article-title: Optimum design of beams and frames of welded I‐sections by means of backtrack programming
  publication-title: Acta Technica Academiae Scientiarum Hungaricae
– ident: e_1_2_7_8_1
  doi: 10.1115/1.2912568
– ident: e_1_2_7_26_1
– ident: e_1_2_7_7_1
  doi: 10.1080/03052158808940951
SSID ssj0011503
Score 2.162746
Snippet SUMMARY We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then...
We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this...
SUMMARY We present a method for finding solutions of large-scale binary programming problems where the calculation of derivatives is very expensive. We then...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1026
SubjectTerms binary programming
Buckling
eigenvalue
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
Sciences and techniques of general use
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
structural optimization
topology optimization
Title A fast method for binary programming using first-order derivatives, with application to topology optimization with buckling constraints
URI https://api.istex.fr/ark:/67375/WNG-WWF9RS5M-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4367
https://www.proquest.com/docview/1321985645
Volume 92
WOSCitedRecordID wos000311397600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLag5QAHBgNEYUxGQnAhrLaTJjlO2wqHtUIbo7tZ_hGjCdqiOkxw47rb_kb-Et5znKiVQEJCShRFek6sl2f7i_38fYS8cCPLIHZZUmRcJ6kxJilzw5M0dQbQs7IsMN58PM6n0-L8vHwfsypxL0zDD9FNuGHLCP01NnCl_d4aaei8epOKUX6T9DmEbdYj_cOT8dlxt4YAUEe0CR5ZWbCWenbI99qyG4NRH_36HZMjlQf_uEbYYgN5ruPXMACNt_6n6vfI3Qg76X4TJ_fJjWqxTbYiBKWxgfttcmeNnxDuJh2pq39ArvapU76mjeg0BbRLddjNS2OS1xwKUUyk_0TdBaDKXz-vA7MnhTOIqF1W_jXFmV-6tm5O6yUcQarhB11CDzaPW0MbS42Lz_hIg0gWBS1q_5CcjY8-HLxLopJDYgRApITnuUqVKjT8v7jSqEq41CFSMUY4jULXzFk9LNXQWcWKvFBKA3LLFbeVqqwRj0hvsVxUjwm1mdBOZEPrnEmZVSUzxiLNH9dFbkZ8QF61n1SaSHOOlfsiG4JmLsH7Er0_IM87y68NtccfbF6GqOgM1OozpsLlmZxN38rZbFyenGYTeToguxth0xUAACQAM8OTdto4krGb8JIJGDAKJPSBF4WI-WtN5HRyhNcn_2r4lNwGcBeUazjbIb169a16Rm6Zy_rCr3ZjY_kNva4d9g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFL2sO4L64OqqOLquEURfrDtp2kmLT4vuuOJMkf1w9i2kSSOLzoxM66Jvvvrmb_SXeG_6wQwoCEJLKdy04fYkOU1uzgV47IaWI3Z5kMRhHkTGmCCVJgyiyBlkz9pyr3jzfiyzLDk7S99twIt2L0ytD9FNuFHL8P01NXCakN5bUQ2dFc8jMZSXoBchihDevVdHo9Nxt4iAXEe0ER5xmvBWe3YQ7rVl10ajHjn2K0VH6hId5OrMFmvUc5XA-hFotPVfdb8B1xviyfZrpNyEjWK-DVsNCWVNEy-34dqKQiHeTTpZ1_IW_NhnTpcVq9NOM-S7LPf7eVkT5jXDQoxC6T8wd4688tf3n17bk-Hp06hdFOUzRnO_bGXlnFULPHyyhm9sgX3YrNkcWlvmtPxMjzTEZSmlRVXehtPRwcnLw6DJ5RAYgSQpCKXUkdZJjn8wLjW6EC5yxFWMES6nVNfc2XyQ6oGzmicy0TpH7iZ1aAtdWCPuwOZ8MS_uArOxyJ2IB9Y5E3GrU26MJaG_ME-kGYZ9eNp-U2UaoXOq3CdVSzSHCr2vyPt9eNRZfq7FPf5g88TDojPQy48UDCdjNc1eq-l0lB4dxxN13IfdNdx0BZACCWTN-KSdFkiq6ShKxQUOGQlJ-uCLPGT-WhOVTQ7oeu9fDR_ClcOTyViN32Rv78NVpHo-j03Id2CzWn4pHsBlc1Gdl8vdpuX8BrosIeY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4aLUJwYDBAFMYwEoIL2eo4aRJxmtgCiDaaNkZ3sxw7RhO0nZowwY0rN_5G_hLec36olUBCQkoURXpOrJdn-4v9_H0AT-3IcIxd7sWhn3uB1tpLIu17QWA1omdluGO8-TCOsiw-O0uONuBluxem5ofoJtyoZbj-mhp4cWHs3gpr6KzYDcQougL9gDRketA_OE5Px90iAmId0WZ4hEnMW-7Zob_Xll0bjfrk2K-UHalKdJCtlS3WoOcqgHUjULr5X3W_BTcb4Mn260i5DRvFfAs2GxDKmiZebsGNFYZCvJt0tK7lHfixz6wqK1bLTjPEuyx3-3lZk-Y1w0KMUuk_MnuOuPLX95-O25Ph6WTULovyBaO5X7aycs6qBR5OrOEbW2AfNms2h9aWOS0_0yM1YVmStKjKu3CaHr5_9cZrtBw8LRAkeX4UqUCpOMc_GJtoVQgbWMIqWgubk9Q1tyYfJmpojeJxFCuVI3aLlG8KVRgt7kFvvpgX94GZUORWhENjrQ64UQnX2hDRn5_HkR75A3jeflOpG6JzqtxnWVM0-xK9L8n7A3jSWV7U5B5_sHnmwqIzUMtPlAwXhXKavZbTaZocn4QTeTKAnbW46QogBBKImvFJ220gyaajKCUXOGTEROmDL3Ih89eayGxySNcH_2r4GK4dHaRy_DZ79xCuI9JzMjY-34ZetfxSPIKr-rI6L5c7TcP5DRezIWE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+method+for+binary+programming+using+first%E2%80%90order+derivatives%2C+with+application+to+topology+optimization+with+buckling+constraints&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Browne%2C+P.+A.&rft.au=Budd%2C+C.&rft.au=Gould%2C+N.+I.+M.&rft.au=Kim%2C+H.+A.&rft.date=2012-12-21&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=92&rft.issue=12&rft.spage=1026&rft.epage=1043&rft_id=info:doi/10.1002%2Fnme.4367&rft.externalDBID=10.1002%252Fnme.4367&rft.externalDocID=NME4367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon