Single‐Calibration Cell Size Measurement With Flow Cytometry

ABSTRACT Measuring the size of individual cells in high‐throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high‐throughput single‐cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arb...

Full description

Saved in:
Bibliographic Details
Published in:Cytometry. Part A Vol. 107; no. 4; pp. 263 - 270
Main Authors: Davies, Philip, Cavallaro, Massimo, Hebenstreit, Daniel
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.04.2025
Wiley Subscription Services, Inc
Subjects:
ISSN:1552-4922, 1552-4930, 1552-4930
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Measuring the size of individual cells in high‐throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high‐throughput single‐cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arbitrary scales and often subject to changes in the instrument's settings as selected by multiple users. In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings. We demonstrate our approach based on flow cytometric sorting of cells of a mammalian cell line according to a selection of scatter parameters, followed by cell size determination with a Coulter counter. A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.
AbstractList Measuring the size of individual cells in high-throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high-throughput single-cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arbitrary scales and often subject to changes in the instrument's settings as selected by multiple users. In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings. We demonstrate our approach based on flow cytometric sorting of cells of a mammalian cell line according to a selection of scatter parameters, followed by cell size determination with a Coulter counter. A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.Measuring the size of individual cells in high-throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high-throughput single-cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arbitrary scales and often subject to changes in the instrument's settings as selected by multiple users. In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings. We demonstrate our approach based on flow cytometric sorting of cells of a mammalian cell line according to a selection of scatter parameters, followed by cell size determination with a Coulter counter. A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.
Measuring the size of individual cells in high‐throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high‐throughput single‐cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arbitrary scales and often subject to changes in the instrument's settings as selected by multiple users. In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings. We demonstrate our approach based on flow cytometric sorting of cells of a mammalian cell line according to a selection of scatter parameters, followed by cell size determination with a Coulter counter. A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.
ABSTRACT Measuring the size of individual cells in high‐throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high‐throughput single‐cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arbitrary scales and often subject to changes in the instrument's settings as selected by multiple users. In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings. We demonstrate our approach based on flow cytometric sorting of cells of a mammalian cell line according to a selection of scatter parameters, followed by cell size determination with a Coulter counter. A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.
Author Cavallaro, Massimo
Hebenstreit, Daniel
Davies, Philip
Author_xml – sequence: 1
  givenname: Philip
  surname: Davies
  fullname: Davies, Philip
  email: Philip.Davies@warwick.ac.uk
  organization: University of Warwick
– sequence: 2
  givenname: Massimo
  orcidid: 0000-0002-2365-6024
  surname: Cavallaro
  fullname: Cavallaro, Massimo
  email: massimo.cavallaro@leicester.ac.uk
  organization: University of Leicester
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0003-0144-6728
  surname: Hebenstreit
  fullname: Hebenstreit, Daniel
  email: d.hebenstreit@warwick.ac.uk
  organization: University of Warwick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40071841$$D View this record in MEDLINE/PubMed
BookMark eNp90LlOw0AQBuAVCiIHdNTIEg0FCXv5apAiiwBSUIoEIarVej0LjnyEXVtRqHgEnpEnwcEhBQXVTPHNob-POkVZAEKnBI8IxvRKbapyJEeUh5QfoB5xXTrkIcOdfU9pF_WtXWLMXMzoEepyjH0ScNJD1_O0eMng6-MzklkaG1mlZeFEkGXOPH0H5wGkrQ3kUFTOU1q9OpOsXDtRczOHymyO0aGWmYWTXR2gx8nNIrobTme399F4OlTMI3yoAKh0gzDWSiY60Zq6gSY08CCQrgexilkcKBInLFSYai2Z5gGXMQZGgCc-G6CLdu_KlG812ErkqVXNl7KAsraCEd9j3HdDt6Hnf-iyrE3RfNeo0MMUMxY06myn6jiHRKxMmkuzEb_JNOCyBcqU1hrQe0Kw2AYvtsELKX6Cbzhv-TrNYPOvFdHzYjZux74BjMmHZQ
Cites_doi 10.1371/journal.pbio.3002453
10.1038/msb.2011.64
10.1002/0471142956.cy0123s50
10.1007/978-3-031-10836-5
10.18637/jss.v033.i01
10.1534/genetics.119.301012
10.1128/JB.00469-20
10.1126/sciadv.abk0271
10.1039/b404251b
10.1016/j.molcel.2015.03.005
10.1371/journal.pone.0016053
10.1186/s13059-020-02227-5
10.1038/s41467-018-06912-9
10.1016/j.molcel.2022.07.017
10.1146/annurev-cellbio-120219-040142
10.52601/bpr.2022.210036
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2025 The Author(s). Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2025 The Author(s). Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.24924
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 270
ExternalDocumentID 40071841
10_1002_cyto_a_24924
CYTOA24924
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/T002794/1
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/M017982/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M017982/1
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/T002794/1
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3614-cee2a589bfcadfdff258f1286e8a56ebcb3b8c1bd39c02ffa3f484ab0e31e4d73
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442446800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-4922
1552-4930
IngestDate Sat Nov 01 15:03:28 EDT 2025
Fri Jul 25 20:11:32 EDT 2025
Sat Aug 30 02:00:14 EDT 2025
Sat Nov 29 08:00:26 EST 2025
Tue Apr 29 10:30:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords computational biology
flow cytometry
calibration
cell size
Language English
License Attribution
2025 The Author(s). Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3614-cee2a589bfcadfdff258f1286e8a56ebcb3b8c1bd39c02ffa3f484ab0e31e4d73
Notes Philip Davies and Massimo Cavallaro contributed equally to this work.
This work was supported by EPSRC grant EP/T002794/1 and BBSRC grant BB/M017982/1.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0144-6728
0000-0002-2365-6024
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24924
PMID 40071841
PQID 3196020338
PQPubID 2045167
PageCount 8
ParticipantIDs proquest_miscellaneous_3176347595
proquest_journals_3196020338
pubmed_primary_40071841
crossref_primary_10_1002_cyto_a_24924
wiley_primary_10_1002_cyto_a_24924_CYTOA24924
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-Apr
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 33
2018; 9
2021; 7
2015; 58
2021; 22
2012
2022
2022; 82
2021; 203
2009; 50
2022; 8
2018
2019; 213
2024; 22
2011; 6
2004; 129
2022; 38
2011; 7
2012; 64
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
Meinelt E. (e_1_2_8_20_1) 2012
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Dittami G. M. (e_1_2_8_18_1) 2012; 64
Alberts B. (e_1_2_8_3_1) 2022
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_12_1
R Core Development Team (e_1_2_8_22_1) 2018
References_xml – volume: 82
  start-page: 3255
  issue: 17
  year: 2022
  end-page: 3269
  article-title: Increasing Cell Size Remodels the Proteome and Promotes Senescence
  publication-title: Molecular Cell
– volume: 8
  start-page: 150
  issue: 3
  year: 2022
  end-page: 157
  article-title: Measuring the Size and Growth of Single Cells
  publication-title: Biophysical Reports
– volume: 9
  start-page: 4528
  issue: 1
  year: 2018
  article-title: Sources, Propagation and Consequences of Stochasticity in Cellular Growth
  publication-title: Nature Communications
– volume: 58
  start-page: 339
  issue: 2
  year: 2015
  end-page: 352
  article-title: Single Mammalian Cells Compensate for Differences in Cellular Volume and DNA Copy Number Through Independent Global Transcriptional Mechanisms
  publication-title: Molecular Cell
– volume: 6
  issue: 1
  year: 2011
  article-title: Optimizing Optical Flow Cytometry for Cell Volume‐Based Sorting and Analysis
  publication-title: PLoS One
– volume: 7
  start-page: 531
  year: 2011
  article-title: A Regression Model Approach to Enable Cell Morphology Correction in High‐Throughput Flow Cytometry
  publication-title: Molecular Systems Biology
– volume: 38
  start-page: 291
  year: 2022
  end-page: 319
  article-title: Eukaryotic Cell Size Control and Its Relation to Biosynthesis and Senescence
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 203
  start-page: 10
  issue: 10
  year: 2021
  end-page: 128
  article-title: Changes in Cell Size and Shape During 50,000 Generations of Experimental Evolution With
  publication-title: Journal of Bacteriology
– volume: 7
  issue: 46
  year: 2021
  article-title: Cell Size Is a Determinant of Stem Cell Potential During Aging
  publication-title: Science Advances
– year: 2022
– volume: 64
  start-page: 3842
  year: 2012
  article-title: Determination of Mammalian Cell Counts, Cell Size and Cell Health Using the Moxi Z Mini Automated Cell Counter
  publication-title: Journal of Visualized Experiments
– volume: 50
  start-page: 1
  issue: 1
  year: 2009
  end-page: 23
  article-title: Pulse Width for Particle Sizing
  publication-title: Current Protocols in Cytometry
– volume: 129
  start-page: 478
  issue: 6
  year: 2004
  end-page: 482
  article-title: The Resurgence of Coulter Counting for Analyzing Nanoscale Objects
  publication-title: Analyst
– volume: 22
  start-page: 56
  issue: 1
  year: 2021
  article-title: 3 (′)–5 (′) Crosstalk Contributes to Transcriptional Bursting
  publication-title: Genome Biology
– year: 2018
– volume: 22
  issue: 1
  year: 2024
  article-title: Cell Size Homeostasis Is Tightly Controlled Throughout the Cell Cycle
  publication-title: PLoS Biology
– volume: 213
  start-page: 517
  issue: 2
  year: 2019
  end-page: 528
  article-title: A Conserved PP2A Regulatory Subunit Enforces Proportional Relationships Between Cell Size and Growth Rate
  publication-title: Genetics
– year: 2012
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  end-page: 22
  article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent
  publication-title: Journal of Statistical Software
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pbio.3002453
– ident: e_1_2_8_17_1
  doi: 10.1038/msb.2011.64
– ident: e_1_2_8_15_1
  doi: 10.1002/0471142956.cy0123s50
– ident: e_1_2_8_14_1
  doi: 10.1007/978-3-031-10836-5
– ident: e_1_2_8_21_1
  doi: 10.18637/jss.v033.i01
– volume-title: Molecular Biology of the Cell
  year: 2022
  ident: e_1_2_8_3_1
– ident: e_1_2_8_10_1
  doi: 10.1534/genetics.119.301012
– ident: e_1_2_8_7_1
  doi: 10.1128/JB.00469-20
– ident: e_1_2_8_9_1
  doi: 10.1126/sciadv.abk0271
– ident: e_1_2_8_19_1
– volume-title: R: A Language and Enviroment for Statistical Computing
  year: 2018
  ident: e_1_2_8_22_1
– ident: e_1_2_8_13_1
  doi: 10.1039/b404251b
– ident: e_1_2_8_5_1
  doi: 10.1016/j.molcel.2015.03.005
– volume: 64
  start-page: 3842
  year: 2012
  ident: e_1_2_8_18_1
  article-title: Determination of Mammalian Cell Counts, Cell Size and Cell Health Using the Moxi Z Mini Automated Cell Counter
  publication-title: Journal of Visualized Experiments
– ident: e_1_2_8_12_1
  doi: 10.1371/journal.pone.0016053
– ident: e_1_2_8_16_1
  doi: 10.1186/s13059-020-02227-5
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-018-06912-9
– ident: e_1_2_8_8_1
  doi: 10.1016/j.molcel.2022.07.017
– ident: e_1_2_8_6_1
  doi: 10.1146/annurev-cellbio-120219-040142
– ident: e_1_2_8_11_1
  doi: 10.52601/bpr.2022.210036
– volume-title: Standardizing Application Setup Across Multiple Flow Cytometers Using BD FACSDiva Version 6 Software
  year: 2012
  ident: e_1_2_8_20_1
SSID ssj0035032
Score 2.415352
Snippet ABSTRACT Measuring the size of individual cells in high‐throughput experiments is often important in biomedical research and applications. Nevertheless,...
Measuring the size of individual cells in high‐throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools...
Measuring the size of individual cells in high-throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 263
SubjectTerms Animals
Calibration
Cell Size
computational biology
Flow
Flow cytometry
Flow Cytometry - instrumentation
Flow Cytometry - methods
Flow Cytometry - standards
Humans
Lasers
Linear Models
Linear transformations
Medical research
Parameters
Scattering
Single-Cell Analysis - methods
Size determination
Title Single‐Calibration Cell Size Measurement With Flow Cytometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24924
https://www.ncbi.nlm.nih.gov/pubmed/40071841
https://www.proquest.com/docview/3196020338
https://www.proquest.com/docview/3176347595
Volume 107
WOSCitedRecordID wos001442446800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  issn: 1552-4922
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  issn: 1552-4922
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-2ZoO-7P86t2nxYHtUG0uyrbwUQtbQwZaFNaHZk5HkEwtkyUiclvSpH6GfsZ-kkuwkK4PC2IuxsYTE6XR3Okm_H8AHH0OLtEmoyJFwKTlRVCQkFwlSxeMYlfBkE2m3K4bDZq9KuLm7MCU-xDrh5maGt9dugks1P9qAhuplMT2Uhw7xjj-GWhQx4agbKO-tLDGLG56gzKGMEVuMVgffbf2jP2vfd0l_xZn3w1bvdzrP_7fHL-BZFXGGrVJFXsIjnLyCpyUH5fI1HJ9Z5zXG2-sbd01LlQoRtnE8Ds9GVxh-3SQRw_NR8TPsjKeXYds28guL2fINDDon_fYpqUgViGbWFRPrFKmMRVMZLXOTG0NjYayTSlDIOEGlFVNCRypnTd2gxkhmuOBSNZBFyPOUvYWtyXSC7yC0kUaiDJUac8NNpIUyueKGpiJCwxsqgI8ruWa_S-yMrERJppmTRSYzL4sA6iuhZ9UMmmfONLhdUiYCeL_-bXXfbWjICU4Xroy1jg6wMA5gpxysdUOO792uXqMAiB-TB3uQtX_0v7X86-4_lt-Dbeoogf1hnjpsFbMF7sMTfVGM5rMDr4_2mQ7FAdQ-fe8Mvtiv88_dO9jj6NQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTtswFD5iwLTd8LPBFmAsk7ZLQ-M4qXODhCoq0KCbRKd2V5btHItKXTq16aZyxSPwjDwJtpMW0KRJ0-4i2Zat4_OXY_v7AD76HJo3M0J5joRJyYiiPCU5T5EqliSouCebaHY6vN_PvtY8p-4tTIUPsSi4Ocvw_toZuCtIHz6ghupZOTqQBw7yjj2DFWZzDcfd0DvrzF1xnDQ8Q5mDGSO2G61vvtvxh49HP41JfySaT_NWH3ja6_-95A1Yq3PO8LhSkk1YwuIVPK9YKGev4ejShq8h3t3cuodaqlKJsIXDYXg5uMbw4qGMGPYG5VXYHo5-hy07yQ8sx7Mt-NY-6bZOSU2rQHRsgzGxYZHKhGfKaJmb3BiacGPDVIpcJikqrWLFdaTyONMNaoyMDeNMqgbGEbK8GW_DcjEq8C2ENtdIlaFSY26YiTRXJlfM0CaP0LCGCuDTXLDiZ4WeISqcZCqcLIQUXhYB7M2lLmobmgjnHNw5acwD-LBottrvjjRkgaOp62P9o4MsTAJ4U-3WYiLH-G7_X6MAiN-Uv65AtL53vxz7z51_7P8eXpx2L87F-Vnn8y68pI4g2F_t2YPlcjzFd7Cqf5WDyXjfK-c9Bq3plQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4aZSBedoUtG9syiT26NI6Tui-TUFm0aaxDXAQ8Wb4ci0qlRW3K1D3tJ-w37pfMdtIyhDQJ8RYpx7F1fG7x5fsAtkINzdsdQrlBwqRkRFGeE8NzpIplGSoeyCbavR4_Pe3s1zyn_i5MhQ-xWHDznhHitXdwvDR2-xo1VM_KUVM2PeQdW4Jl5nlkGrC8e1Ac782DcZq1AkeZBxojTpDWZ9_dF7b_bX8zK90qNW9WriH1FI_vPegn8KiuOuOdykyewgMcPoOViody9hw-HroENsA_v377q1qqMoq4i4NBfNj_ifG364XE-KRfnsfFYPQj7rpOLrAcz9bhuPh01P1MamIFolOXjolLjFRmvKOslsYaa2nGrUtUOXKZ5ai0ShXXiTJpR7eotTK1jDOpWpgmyEw73YDGcDTElxC7aiNXlkqNxjKbaK6sUczSNk_QspaK4MNcseKyws8QFVIyFV4XQoqgiwg251oXtRdNhA8Pfqc05RG8X7x29u83NeQQR1Mv4yKkBy3MInhRzdaiI8_57v5gkwhImJT_jkB0z46-74THV3eUfwer-7uF2PvS-_oa1qhnCA5nezahUY6n-AYe6quyPxm_ra3zL2qg6j4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Calibration+Cell+Size+Measurement+With+Flow+Cytometry&rft.jtitle=Cytometry.+Part+A&rft.au=Davies%2C+Philip&rft.au=Cavallaro%2C+Massimo&rft.au=Hebenstreit%2C+Daniel&rft.date=2025-04-01&rft.eissn=1552-4930&rft.volume=107&rft.issue=4&rft.spage=263&rft_id=info:doi/10.1002%2Fcyto.a.24924&rft_id=info%3Apmid%2F40071841&rft.externalDocID=40071841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon